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Abstract

This review highlights the importance of dietary fibres (DF) intake and its interconnection with
the gut microbiome and psychological well-being, while also exploring the effects of existing DF
interventions on these aspects in adults. The gut microbiota is a complex and diverse ecosystem
in which microbial species interact, influencing the human host. DF are heterogeneous,
requiring different microbial species to degrade the complex DF structures. Emerging evidence
suggests thatmicrobial fermentation of DF produces short-chain fatty acids (SCFA), whichmay
play a role in regulating psychological well-being by affecting neurotransmitter levels, including
serotonin. The effectiveness of DF interventions depends on factors such as baseline gut
microbiota composition, the dosage and the source of DF consumed. Although the gut
microbiota of adults is relatively stable, studies have shown that the abundance of the species in
the gut microbiota can change within 24 h of an intervention and may return to baseline
following the termination of DF intervention. This review underscores the need for larger and
well-powered dietary clinical trials incorporating longitudinal biological sample collections,
advanced sequencing and omic techniques (including novel dietary biomarkers and microbial
metabolites), validated subjective questionnaires and dietary records. Furthermore,mechanistic
studies driven by clinical observations are crucial to understanding gut microbiota function and
its underlying biological pathways, informing targeted dietary interventions.

The human gut is home to trillions of microorganisms. These microbes, collectively known as
‘gut microbiota’, are composed of eukarya (0·01 %), protozoa (0·01 %), fungi (0·1 %), archaea
(0·1 %), viruses (6 %) and bacteria (93 %)(1–3). The gut microbiota is vastly diverse, where the
number of microbes is 10 times higher than germline and somatic cells of the human body(2,4–6).
Further, the number of microbial genes (gut microbiome) is over a hundredfold more than the
human genes(2,4,5). It has also been estimated that a normal healthy gut harbours over 1000
microbial species, with at least 160 microbial species shared among individuals(2,6).

The metabolic interactions between the gut microbiota and host involve complex interactive
processes(7). The gut microbiota undertakes anaerobic fermentation activities to produce a wide
range of metabolites, including short-chain fatty acids (SCFA), branched-chain fatty acids,
neurotransmitters and others(8,9). Each metabolite is an information messenger between
microbes and host cells that can affect these interactions(8,9).

Furthermore, diet, particularly dietary fibre (DF) intake, is a modifiable lifestyle factor
associated with the modulation of the gut microbiota composition and function(10–12). Intake of
fermentable DF may diversify the gut microbiota community, subsequently increasing the
production of SCFA(13). SCFA are considered neuroactive bacterial metabolites of DF
degradation and fermentation(14) and also regulate systemic inflammation and oxidative stress
in the gut(15). Several reviews show that SCFA can affect other neuroactive metabolites(16),
including serotonin(17). Therefore, the interactions between DF intake and the gut microbiota
are likely crucial for the psychological well-being of the human host(18).

The current understanding of how different types of DF affect the human body has been
gleaned from studies on prebiotics, whole food or isolated fibre interventions(10). While several
reviews have established the protective role ofDF against chronic diseases and gut dysbiosis(19–22),
critical gaps remain. Most studies focus on broad DF categories rather than the distinct effects of
specific fibre types on gut microbiota composition, function and metabolite production.
Moreover, the interconnection among DF, the gut microbiome and psychological well-being
remains largely underexplored. Given that microbial and metabolic responses to DF are dictated
by its chemical structure(23,24), this review addresses the following key questions: (1) How do
different DF types impact gut microbiota composition, metabolic activity and psychological
well-being? (2) What gaps remain in the current understanding and what future research
directions are needed to further investigate these relationships? By addressing these questions,

https://doi.org/10.1017/S002966512510061X Published online by Cambridge University Press

https://www.cambridge.org/pns
https://doi.org/10.1017/S002966512510061X
mailto:hwei.ng@postgrad.otago.ac.nz
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6830-5829
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S002966512510061X&domain=pdf
https://doi.org/10.1017/S002966512510061X


this review aims to provide a more nuanced understanding of how
specific fibre types influence the gut microbiome and psychological
well-being in adults.

Gut microbiota composition

Gut microbes are classified according to their taxonomy: phyla,
classes, orders, families, genera and species(25). Gut microbial
density increases progressively downstream from the stomach and
duodenum (ranging from 101 to 103 cells per gram) to the large
intestine (1011 to 1012 cells per gram)(26). The gut microbiota differs
across different regions of the intestine due to variations in
physiology, pH, oxygen levels and digesta flow rates, substrate
availability and host secretions(27). The small intestine has relatively
short transit times (three to five hours) and high bile concentrations.
In contrast, the large intestine has slow flow rates, a neutral tomildly
acidic pH and a higher concentration of obligate anaerobic
microbes(4,5,27–29). The two most abundant gut microbial phyla,
which represent 90 % of the gut microbiota, belong to Bacillota
(formerly Firmicutes) (Lactobacillus, Bacillus, Enterococcus,
Ruminococcus and Clostridium genera) and Bacteroidota (formerly
Bacteroidetes) (Bacteroides and Prevotella genera)(4,5,28,29). The
phylum Actinomycetota (formerly Actinobacteria) is less abundant
in the overall proportion of the gutmicrobiota but mainly consists of
the Bifidobacterium genus(4,5,28,29) (Figure 1). For this manuscript,
former taxonomic names, Firmicutes, Bacteroidetes and
Actinobacteria will be used.

What is a healthy gut microbiota

Due to the high degree of inter-individual variability(30), there is no
consensus on the definition of a ‘healthy gut microbiota’.
Nonetheless, it can be described as a state in which the gut

microbiota exhibits diversity, stability and resilience to potential
gut disturbances(9,31) or achieves a state of homeostasis(32).

Gut homeostasis is a complex interconnection involving the
gut microbiota, specialised epithelial cells and the host immune
system(33). These specialised epithelial cells are part of the gut
barrier and regulate cross-communication between commensal
microbial communities and mucosal immune cells(34).
Consequently, this helps protect the gut against pathogens(34).
The state of homeostasis occurs when there is neither an
overgrowth of pathogenic microbes nor a loss of beneficial gut
microbes and diversity(32). The most well-known diversity indices
are alpha (richness and evenness of gut microbial species within an
individual) and beta diversity (similarity and differences of
microbial community between individuals)(35–37). Nourishing the
gut microbiota by consuming a diverse diet containing substrates
such as DF may help enhance gut microbiota diversity, stability
and resilience(9,31) and/or homeostasis(32), promoting a healthier
gut microbiota.

Dysbiosis, on the other hand, occurs when gut homeostasis is
disrupted(32). A dysbiotic microbiota is often related to a loss of
microbial diversity(38), which can compromise the functional
resilience of the gut microbiota. This subsequently will increase
susceptibility to dysbiosis-related diseases, including irritable
bowel syndrome (IBS)(33) and IBS-associated psychological issues,
including anxiety and depression(39). Emerging evidence suggests
that disruptions in microbial functions, called the ‘functional core’,
may be more critical than microbial composition changes in
establishing a healthy gut microbiota and psychological
health(40,41).

Determining microbial functions is achieved using -omic
approaches(42). For instance, metagenomics characterises the
various gut microbial species and their gene abundances depend-
ing on the depth of sequencing(7); metatranscriptomics allows the

Figure 1. Gut microbiota composition. Created with BioRender.com.
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comparison of the microbial gene expression profile among
individuals(42,43); metabolomics and proteomics provide insights
into the functional relationship between the gut microbiota and
host(7,43) using mass spectrometry (MS) instruments(7,44). These -
omic approaches help improve our understanding of the complex-
ity of the gut microbiota and its role in human health and diseases.

Definition of dietary fibre

Diet, particularly DF intake, is a modifiable lifestyle factor
associated with modulating the gut microbiota composition and
function(10–12). The ability of the gut microbes to metabolise DF
depends on the chemical structure, including chain length and
branching of DF(45).

Defining DF has been controversial for multiple reasons.
Firstly, DF are a collection of related chemical compounds(46). The
physicochemical mechanisms that provide health benefits are not
fully elucidated. Secondly, whether and how DF affects peristaltic
gut movement and microbial fermentation is unclear(47). Thirdly,
compounds embedded in the DF matrix, such as antioxidants and
polyphenols, may produce different physical, chemical and
physiological effects in the gut(48). It is also unclear if these effects
are contributed byDF per Se or occur onlywithin the foodmatrix(46).
In a food industry context, DF are further characterised based on
physiological effects(46,49). These complexities around defining DF
have led to separate organisations proposing their own definitions.

Despite DF complexities, a uniform and accurate definition is
warranted. In 2009, the CODEX Alimentarius Commission
proposed a definition and classified DF into three distinct
categories(50). The first category covers DF derived from naturally
occurring foods as part of a healthy diet. The second and third
categories include extracted DF and synthetic carbohydrate
polymers, which have demonstrated beneficial health effects(50).
These effects may include increased gut transit time and faecal
bulk, colonic fermentation and modulation of blood glucose and
cholesterol levels(46). The CODEX definition allows officials
worldwide to decide whether to include oligosaccharides and/or
carbohydrates of three to nine monomeric units within the DF
definition(50,51). While no uniform definition is used worldwide,
CODEX definition adaptation could be an initial step towards
achieving global DF definition consensus.

Prebiotics

Most prebiotics are DF, but not all DF are prebiotics(45). Prebiotics
are usually carbohydrates, and only a few functional carbohydrates
have been accepted as prebiotics. These include inulin-type
fructans, fructo-oligosaccharides (FOS)(20,52,53) and galacto-oligo-
saccharides (GOS)(54,55) that effectively stimulate the growth of
species from the Bifidobacterium(56,57) and Lactobacillus genera(58).
Resistant starch (RS)(59,60) and arabinoxylans(59,61,62) also have
prebiotic effects(59,61,62). However, most experimental methods and
mechanisms of RS and arabinoxylans have been investigated either
in vitro(63) or in animal models, which require further exploration
to confirm their role as a prebiotic for improving human health.

The current concept of prebiotics has been criticised as ill-
defined and in need of revision(64). Initially, prebiotics were
described as ‘selective’ and ‘specific’ toward beneficial gut
microbial groups, which shifts the gut microbiome to a ‘healthier’
state(64). However, this concept lacks clarity, as many dietary
compounds could meet these criteria. Moreover, gut microbial
species can share degradation features via horizontal gene transfer,

allowing a broad range of species with the necessary degrading
enzymes to degrade DF(65). Compounds such as polyphenols and
polyunsaturated fatty acids with evident therapeutic effects may
also qualify as prebiotics(53). This further challenges the notion of
selectivity and identification of beneficial microbes within the
definition(64).

Categorising gut microbes as beneficial or non-beneficial may be
oversimplified(64). Different gut microbes can be both beneficial and
detrimental to the human host depending on environmental factors
such as diet, gut microbiota or host genetic predisposition(64).
Prebiotic research often focused on bifidobacteria and lactobacilli, as
these genera are widely known for their beneficial role(64). However,
other genera, such as Faecalibacterium(54), Anaerostipes and
Bilophila(55), as well as the previously considered harmful genera
Clostridia and Bacteroide(66,67), may also be beneficial to the
human host.

Microbiota accessible carbohydrates

The inter-individual variation of gut microbiota makes defining
DF and prebiotics more complex. Gut microbiota composition
varies between individuals and populations of different physical
and health statuses and lifestyles(59). These may impact the degree
of metabolism and health effects of DF on the human body. A new
term, microbiota-accessible carbohydrates (MAC), was coined to
address these challenges. This term classifies carbohydrates into
dietary (prebiotics and DF) and host-derived MAC (mucosal
glycans)(68). MAC does not include non-fermentable DF and
depends on the presence of gut microbial species in the gut to
metabolise the different types of DF(69,70). For example, individuals
who possess the important gut microbial species Rumonococcus
bromii can metabolise Resistant Starch (RS) type 3(70). Therefore,
RS type 3 would be considered a MAC for these individuals(70).
Additionally, if a MAC provides health benefits to the human host,
it would also be a prebiotic(71). This concept helps contextualise
how different DF types interact with the gut microbiota, setting the
stage for a deeper discussion on their metabolic activities and
implications for host health.

Metabolic activities of the gut microbiota

This section describes how DF metabolism can influence the
relationship between the gut microbiota and the human host. The
effectiveness of the existing DF interventions on the gut microbiota
and psychological well-being is subsequently reviewed.

DF are usually favoured over other nutrients as a substrate for
microbial anaerobic fermentation(8,13). Gut microbes can under-
take two types of fermentation: saccharolytic and proteolytic.
Saccharolytic fermentation mainly occurs in the proximal
colon(13,72). This part of the colon is more acidic (pH 5·5–6·5)
than the distal colon (pH 6·5–7·0)(73) and has a greater availability
of highly fermentable DF, such as inulin, which produces
SCFA(13,72). Saccharolytic fermentation increases faecal biomass,
bulk, weight and frequency(13,72) and are considered beneficial to a
certain extent(8). Proteolytic fermentation, on the other hand,
occurs in the distal colon, where there is are lower amount of
fermentable DF(13,74). In this process, the high amount of
undigested dietary protein is broken down by proteolytic bacteria
and subsequently used in proteolytic fermentation(13,74). This
fermentation process potentially results in toxic compounds, such
as branched-chain fatty acids, ammonia, amines, phenols, thiols
and indoles(13,74) (Figure 2). Therefore, consuming a wide range of
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DF will likely benefit the human host as it promotes saccharolytic
fermentation and lowers proteolytic fermentation(72).

The degradation of DF by the gut microbiota provides
substrates supporting a symbiotic relationship with the human
host and other microbes(9,45). Gut microbial species utilise energy
from the degradation process for survival, growth, reproduction,
provision and maintenance of cellular functions for the human
host(14,75). Highly specialised microbial species that degrade
DF directly are referred to as primary degraders or keystone
species(64,76). Degradation of DF by these keystone species results in
partial breakdown products, including SCFA, which can lower the
colonic pH(45,77). This acidic condition can benefit the primary
degraders and potentially other microbial species. However, it may
also inhibit the growth of another microbial species(45,77). For
example, the lower colonic pH promotes butyrate producers that
thrive under acidic conditions and reduces acid-sensitive species
such as members of the Bacteroides genus(45). Additionally, SCFA
produced during DF degradation can affect neurotransmitter
levels(16,78), such as serotonin, highlighting the link between gut
microbial activity and brain function.

Further, secondary degraders taking up metabolites released by
primary degraders(79) is generally termed ‘cross-feeding’(80). This
process can occur within the same species, between different species
or in a complex system where species depend on each other(81,82).
A cross-feeding relationship can be observed in a co-culture
experiment where Ruminococcus bromii, a primary degrader,
metabolises RS type 2 and RS type 3, which subsequently stimulates
metabolite utilisation by species Eubacterium rectale, Bacteroides
thetaiotaomicron and Bifidobacterium adolescentis(70). Therefore,
DF degradation products are part of a complex web of interactions
that influences the symbiotic relationship between the gut

microbiota and the human host highlighting the crucial role of
this ecosystem in human health.

Organic acids

The degradation of DF by microbial species produces organic
acids(45,77). Among the organic acids are SCFA that are saturated
fatty acids containing aliphatic carboxylic acid tails of up to six
carbon atoms(83). In ascending order of carbon atoms, the six SCFA
are formate, acetate, propionate, butyrate, valerate and caproate(83).
Acetate, propionate and butyrate are the primary SCFA as they are
produced at a higher rate than other SCFA(8,22,84).

SCFA are often measured from faecal or plasma samples(85).
However, their levels may vary depending on the production and
absorption into gut epithelial cells. Acetate concentrations then
propionate and butyrate concentrations are considered more
prevalent, as they are utilised by colonocytes(9,22,86), taken up by
hepatocytes(9,22,87), enter peripheral circulation(9). Therefore, it has
been suggested that the concentrations of SCFA in faecal and
plasma samples might not accurately represent their in vivo
production(88).

Recent studies found that colonic transit time affects SCFA
production(89). A longer transit time in the descending colon was
associated with lower plasma acetate concentrations but not
butyrate or propionate concentrations(89). More SCFA are released
from the distal colon into the circulation compared to the proximal
colon(88), potentially due to greater proximal gut mucosal
metabolism(90). Additional factors include variations in SCFA
production by the microbiota between proximal and distal colon(1)

and the differences in apical and basolateral sides of epithelial cells
uptake and transport across gut segments(91). Therefore, faecal

Figure 2. Metabolic activities of the gut microbiota. Created with BioRender.com.
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SCFA levels are suggested to primarily reflect production and/or
absorption in the distal colon rather than the proximal colon(85).
Nonetheless, the production and absorption of SCFA are dynamic.
These processes can change based on factors, including the
consumption of different types and doses of DF(84) and the presence
of specific microbial species capable of metabolising the DF(13).

Neurotransmitters

The gut microbiota also produces neuroactive metabolites,
including neurotransmitters such as serotonin, which influence
gut motility, secretion and neurological functions related to
behaviour and mood(78,92–96). Serotonin is primarily produced by
enterochromaffin cells in the gut(78), with tryptophan, a dietary
amino acid, as a precursor(97). Tryptophan metabolism and
serotonin production are also modulated by specific commensal
microbes(97) that degrade tryptophan or convert it into serotonin
via tryptophan synthetase enzyme(98). These include genera
such as Clostridium, Ruminococcus, Blautia, Lactobacillus(99),
Lactococcus, Streptococcus, Klebsiella and species like Escherichia
coli(98,100).

Dietary fibre may influence serotonin pathways indirectly by
shaping the composition and metabolic activity of these
microbes. Microbial degradation of DF produces SCFA, which
help maintain gut barrier integrity and modulate immune
responses(45,77), thereby influencing tryptophan metabolism
and serotonin production(17,101). Low DF intake and the resulting
dysbiosis have been linked to disrupted serotonin signalling,
especially in disorders of gut-brain interaction(102–104) such as
IBS(33,78), which frequently co-occur with anxiety and depression(39).
For instance, mice lacking serotonin reuptake transporter in the
gut mucosal cells exhibit alternating bouts of diarrhoea and
constipation(103). In humans, reduced expression of this transporter
has been reported in individuals with IBS or inflammatory bowel
disease(105), potentially leading to increased mucosal serotonin
exposure and desensitisation of serotonin receptors(105).
Subsequently, these reduce reflex activity, luminal secretion and
gut motility(105). In the brain, dysfunction of the serotonin reuptake
transporter is associated with mood disorders(106), reinforcing the
gut-brain interaction influenced by DF-microbiota interactions.

Moreover, SCFA can affect neurotransmitter levels(16,78),
including serotonin(17,101). For instance, propionic acid and butyric
acid help regulate host gut cell gene expression(107), which can have
downstream effects on neurotransmitter synthesis. However, it
remains a challenge to understand whether these changes in SCFA
levels are directly associated with the development of diseases
or are a consequence of disease-related changes in the gut
microbiota(108) or whether they are primarily diet-dependent(7).

Together, these findings suggest that DF can modulate
neurotransmitter signalling via gut microbiota mediated pathways.
This highlights the potential of DF-based strategies tomodulate the
gut microbiome and psychological well-being.

Impact of dietary fibre interventions on the gut
microbiome

Different types of DF induce varied changes in the gutmicrobiome,
whether post-intervention compared to baseline and/or between
intervention groups. Most studies from more than a decade ago
used a metagenomic approach, while one recent study used a
culture-based experiment to explore the microbial community
following asafoetida-curcumin complex in turmeric capsules

administration(109). It is not surprising that this culture-dependent
study only explored a small subset of bacteria strains, specifically
taxa from Bifidobacterium and Lactobacillus genera, due to the
limited capability of the technique to explore a broader spectrum of
bacterial strains and detect fine detail changes in the gutmicrobiota
composition(13). Nonetheless, this study showed that a asafoetida-
curcumin complex intervention increased the abundance of
Bifidobacterium and Lactobacillus genera compared to the control
group(109).

However, studies using metagenomics of faecal samples found
varied impact of DF and prebiotics consumption. Following a
mixed fibre intervention changes in gut microbiota composition
occurred as rapidly as four days(110). However, in other studies, the
relative abundances of microbial species changed either after seven
days of a low fermentable oligo-, di- and mono-saccharides and
polyols (FODMAP) diet and oligofructose(111) or after four
weeks of prebiotic oligofructose and prebiotic candidate 2’fuco-
syllactose(112). An intervention with GOS also showed increased
Shannon (alpha) diversity and relative abundances of
Bacteroidetes, Clostridia and Bifidobacterium genera compared
to the control group(113). Similarly, a prebiotic mixture containing
different prebiotics and DF increased the relative abundance of the
Actinobacteria phylum and Bifidobacterium species but showed no
differences in SCFA concentrations compared to the control
group(114).

Similarly, other types of DF intervention led to mixed results on
the gut microbiota. The consumption of 14 gram (g) resistant
dextrin for four weeks did not affect the gut microbiota
composition and predictive function(115). However, this result
was not seen in studies with resistant maltodextrin. A three-week
intake of 15 g or 25 g of resistant maltodextrin increased the
relative abundance of Fusicatenibacter saccharivoran(116), but only
25 g of resistant maltodextrin increased Bifidobacterium counts after
four weeks(117) and increased that of species Akkermansia mucini-
phila and Faecalibacteriumprausnitzii after threeweeks(116). Further,
a three-week intervention with 4·5 g chitin-glucan changed several
microbial species abundances(118,119) and faecal SCFA concentra-
tions, particularly butyric and caproic acids(119). A 24-week rice bran
intake increased the relative abundances of Firmicutes phylum and
Lactobacillus genus compared to rice powder intake(120). Similarly,
there were changes in gut microbiota composition after the
consumption of broccoli and daikon radish for 18 d(121), of crackers
containing RS for 10 d(122), bread and biscuits containing refined or
wholemeal amylose wheat for four weeks(123), a snack bar containing
7 g of chicory inulin-type fructans daily for four weeks(123) and
biscuits enriched with olive pomace for eight weeks compared to
control group(124). These findings overall highlight the diverse and
duration-dependent effects of different types of DF interventions on
the gut microbiota.

In terms of gut microbiota diversity, there was no difference in
the reviewed studies. This includes a four-week study providing
either chitin-glucan(119), rice bran(120), mixed prebiotics(114), fruit
pomace(125) or polydextrose(126), a two-week study using potato RS,
maize RS or chicory root inulin(127), two-week of a whole grain
diet(128), an eight-week intervention of olive pomace enriched
biscuits(124), a 10-week high DF diet(129) or 18 d of cooked broccoli
and daikon radish(121). Interestingly, a diet containing six serves or
more of fermented foods increased alpha diversity, but not a diet
containing 20 g or more fibre(129). The alpha diversity was also
lower following a 12-week wheat bran-derived arabinoxylan
oligosaccharides intervention, possibly resulting from softer stools,
selective stimulation and growth of the Bifidobacterium genus(130).
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Therefore, this alpha diversity reduction might not correlate with
gut microbiota instability(130).

Overall, the reviewed studies that explored the effect of DF on
the gut microbiome showed mixed results. Different study
durations and washout periods, high inter-individual variability
and limited research examining different DF types examined
might have been contributing factors. Comparing these studies
directly is challenging, which warrants better designed clinical
trials. Future studies on DF should consider baseline dietary
intake and individual gut microbiota composition prior to
intervention. The gut microbiota of individuals with low DF
intake and limited baseline microbial diversity may respond
more to the intervention as compared to their counterparts(131).
Therefore, a personalised nutrition approach may be more
effective, allowing improved adherence to the dietary
intervention.

Impact of dietary fibre interventions on psychological
well-being

A handful of studies have explored the effects of DF on
psychological well-being in healthy adults. These studies used
either resistant dextrin(115), chitin-glucan(119), wheat bran-derived
arabinoxylan oligosaccharides(89), GOS(113), polydextrose(126),
snack bar containing chicory inulin-type fructans(132) or a low
FODMAP diet supplemented with prebiotics(133). These studies
found that the interventions did not affect well-being, quality of life
or mood. However, GOS supplementation tended to decrease
anxiety symptoms in participants with anxiety(113). These findings
may be influenced by a ceiling effect, where individuals with
already high well-being levels have limited potential for further
improvement. This suggests that the effectiveness of these
interventions may depend on participant selection criteria, with
greater effects potentially observable in those with lower baseline
well-being(134,135).

Further, co-administration of a prebiotic consisting of
oligofructose and 2’fucosyllactose, demonstrated a decrease in
depression, anxiety and negative affect schedule scores in a double-
blind, placebo-controlled, randomised controlled trial(112). Despite
research on co-administering DF or prebiotics is limited,
combining isolated fibres might offer a ‘dual treatment’ for gut-
related and psychological outcomes(20). This was shown where the
co-administration of isolated oligofructose and 2’fuscosyllactose
increased the relative abundances of several beneficial butyrate-
producing microbes, including taxa from the Lactobacillus and
Blautia genera, after four weeks of intervention(112). The authors
observed several positive correlations between several mental
health scores improvement and presence of the genera
Bifidobacterium, Roseburia, Anaerostipes, Blautia and the species
Faecalibacterium prausnitzii in in their cohort(112). The authors
speculated that gut microbiota manipulationmay influence mental
health by regulating neurological pathways(16,112). This can be
explained by the ability of some DF types to promote microbes
involved in serotonin precursors production or tryptophan
metabolism, linking gut microbial activity to serotonin signalling
and mood regulation(17,45,77,97–101). Nonetheless, as these findings
are based on associations rather thanmechanistic evidence, further
research is needed to establish causal pathways.

There is no conclusive evidence on how specific DF types or
food items modulate the gut microbiota to improve psycho-
logical well-being. However, some prebiotic fibres, such as GOS,
oligofructose and 2’fucosyllactose have shown promise in

modulating microbial composition and mood-related out-
comes, particularly among individuals with lower baseline
well-being. Therefore, consuming a variety of DF-rich foods,
including those high in prebiotic fibres may help support a
beneficial gut microbiome and potentially improve psychologi-
cal well-being.

Future directions

Determining the most suitable food or dietary pattern is crucial to
help manage specific diseases or disorders. Furthermore, this may
also help in designing personalised nutrition strategies to alter
the gut microbiota and optimise the health and metabolism of
humans(136). However, several reviews and intervention studies
have suggested that factors, including season, age(137), both baseline
gut microbiota and well-being as well as habitual dietary patterns
can influence gut microbiota composition and overall response to a
dietary intervention(138,139).

Baseline microbial richness, diversity and stabilitymight be able
to predict dietary interventions’ effectiveness(140–142). A systematic
review proposed that individuals with low DF intake and limited
baseline microbial diversity may show more gut microbiome
changes following intervention(131), particularly after acute dietary
interventions(143). However, taxonomy changes may be relatively
temporary, subtle and inconsistent compared to the effects of
habitual, sustained diet(11). The authors of a review further argued
that a stable gut microbiota may suggest a stable response or that
there may not be a change to the diet(142). An unstable gut
microbiota may indicate a flexible response to the ‘optimal diet’.
This may require constant re-evaluation of the diet(142), which can
be challenging to determine the effectiveness of the dietary
intervention.

The taxonomic composition of the adult gut microbiota is
relatively stable over extended periods(11). The abundance of
individual taxa may be susceptible to alterations in dietary patterns
and geographic area(10,144). With the diverse dietary and lifestyle
choices available, there is a tendency for each individual to have a
highly individualised gut microbiome(145). Large phylum-level
adjustments in response to dietary changes may be more
pronounced in animal models involving rodents or pigs due to
the highly controlled study environment(11). To further substan-
tiate this, a one-year longitudinal study of two individuals showed
that 75 % to 88 % of bacteria were relatively stable for several
months. However, relative abundances of specific taxa, including
E. rectale, F. prausnitzii, Eggerthella, Clostridium, Ruminococcus,
Blautia and Bifidobacteriales shifted within a day following
a change in geographical and DF intake in one of the
participants(144). Following travel for 51 d, the gut microbiota of
this participant returned to its pre-travel state within 14 d. The
authors suggested that this reversal was partly due to temporarily
adopting the local diet abroad(144). Nonetheless, the range of
behavioural choices was limited to these two individuals and the
shift in gut microbiota was observed in only one participant(144). In
this context, migration and intervention studies will be particularly
valuable in understanding the long-term impact of dietary and
environmental changes on gut microbial composition, warranting
further clinical research in this area.

The addition of certain types of DF may lead to unwanted
negative gut symptoms. Tolerances between individuals vary, but a
sudden increase or a drastic change in DF intake may result in
bloating, discomfort and increased flatulence(146). These potential
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adverse effects should also be considered in future studies to ensure
both efficacy and tolerability of DF interventions.

Conclusion

Taken together, evidence remains inconclusive on how habitual
intake of DF supplementation through whole foods influence the
gut microbiome and psychological well-being in adults. Key
knowledge gaps include the effects of specific DF types, inter-
individual variability and the impact of habitual v. acute intake.
Baselinemicrobial composition, dietary patterns and psychological
status may influence dietary intervention outcomes, highlighting
the potential for stratified or personalised approaches. To address
this, there is a pressing need for larger and well-powered clinical
trials that incorporate longitudinal biological sample collections,
advanced sequencing techniques and other -omics techniques
(including novel dietary biomarkers and microbial metabolites),
validated subjective questionnaires and comprehensive dietary
records. Integrating these data can enhance understanding of the
gut microbiome, while mechanistic studies driven by clinical
observations are essential for identifying underlying biological
pathways. These insights may ultimately support the development
of targeted interventions that can be applied to the general public
and clinical practices.
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