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Abstract

We present analytical methods to investigate the Cauchy problem for the complex Ginzburg-
Landau equation u, = (v + ia)Au — (K + ip)\u\^u + yu in 2 spatial dimensions (here all
parameters are real). We first obtain the local existence for v > 0, K > 0. Global existence
is established in the critical case q = 1. In addition, we prove the global existence when
? = 2 if (1)|0| < f * o r ( 2 ) a / ? > 0 .

1. Introduction

The complex Ginzburg-Landau equation (GL)

u, = (v + ia)Au -(K + ifi)\u\^u + yu (1.1)

with a 2q + 1 order nonlinearity in D spatial dimensions in the domain £2 C RD

was originally derived by Newell and Whitehead [15, 17] and studied by Hocking,
Stewartson and Stuart [13,22] to describe the amplitude evolution of instable waves in
fluid dynamics. The critical case qD = 2 is the key to understanding (1.1) (cf. [2]). It
is important to realize that v, K > 0 is often necessary to establish a solution which is
physically meaningful. If v = K = y = 0 one has the nonlinear Schrodinger equation
(NLS limit). It is well-known that a necessary condition for the blowup of solutions to
the NLS limit with certain nontrivial initial data is q D > 2. (For details on the Cauchy
problem of the NLS limit in D spatial dimensions, see H. Brezis and T. Gallouet [3],
M. Tsutsumi [25], W. Strauss [23], Ablowitz and Segur [1].) For q = D = 1, the
Cauchy problem for the GL equation with x e S2 = [0, L], u(x, 0) e //0' (£2) is well-
posed as can be seen by using classical techniques of nonlinear parabolic equations
(cf. [12, 16]). One could also study the GL equation as a perturbed NLS limit to
investigate the phenomena associated with singular perturbation of the NLS [18]. For
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n = [0, oo) it is possible to impose initial and boundary conditions such that u(x, 0)
and M(0, t) are given and study the half-line GL equation for x, t > 0. This problem
is interesting from a certain experimental point of view. For the NLS limit, such a
problem is called a forced integrable system (see Kaup [14]). It can be solved via
inverse scattering (e.g. Carroll [7], Fokas [11]) and semigroup theory ([8], [4]). For
the half-line GL equation, a unique global solution is established if \fi\ < V3K or
a/3 > 0 (cf. [5]). For D = 2, numerous results are available in the literature, but
nearly all of them require that £2 be a finite domain, for example, Q = [0,1]D. The
recent joint paper by Bartuccelli, Constantin, Doering, Gibbon and Gisselfalt [2] gives
many interesting estimates in their study of the possibility of soft and hard turbulence
in the GL equation with q = 1 and £2 = [0, I]2. For the initial (or boundary) value
problems in an unbounded domain, much is unknown.

This paper is devoted to q = 1 (the critical case) and q = 2 (the super-critical
case) with D = 2, and £2 = R1 throughout. When the boundary is pushed to
infinity, we would like to see under which restriction on the coefficients the system
tries to blow up, only apparently being pulled back by dissipation. We note that the
complex Ginzburg-Landau equation (1.1) could be derived as a wave envelope or
amplitude equation governing wave-packet solutions, for example, in the study of the
Taylor-Couette flow, Benard convection and plane Poiseuille flow. It is well-known
that there is a significance difference in behavior of the hard and soft turbulence
in the system when we move from D = 1 to D = 2. This change is caused by the
background role of the NLS equation, which is the dissipationless limit of the complex
Ginzburg-Landau equation. For D = 1, the NLS is integrable and has infinitely many
conserved quantities, but when D > 2 solutions of the NLS might blow up under
certain conditions. We note that it is generally more difficult to treat the unbounded
domain problem than the bounded domain problem. For example, to disprove the
global existence, one would like to show the blow-up of the solution. However, when
the domain is unbounded, it is much harder to do that.

The main results are summarized as follows. We first in Section 2 establish a
unique local classical solution to the Cauchy problem of the GL equation (1.1) with
initial data u(x, y, 0) = uo(x, y) e //3(£2). In Sections 3 and 4 we prove the global
existence theorems. The first global existence theorem is shown when q = \. The
second and third global existence theorems are based on the criterion |/J| < &K or
a/3 > 0 when q = 2. The physical significance of these criteria is also discussed.

2. Existence of the local solution

The Cauchy problem for the Ginzburg-Landau equation in 2 spatial dimensions is
posed as follows (K > 0, v > 0, a, fi, y real):

https://doi.org/10.1017/S0334270000010468 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010468


[3] On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation 315

u, = (v + ia)Au -(K + ip^u^u + yu, (2.1)

u{x, y, 0) = IIO(JC, y), (x, y) € Q = R\ / > 0.

Here uo(x, y) is a smooth complex function. We shall, throughout this paper, assume
that

f \u\pdxdy\', (2.2)
—oo J—oo J

HV«||2 = \ f°° [°° \Vu\2 dxdyY , (2.3)
\_J — oo J—oo J

D/.00 /.oo -15

1 / lAuprfxrfj . (2.4)
—oo J—oo J

We first write down the Gagliardo-Nirenberg estimates [19] which relate the Lp

norm of the jth derivative of u to other norms and their derivatives:

where
1 j (\ m
p D \r D

I-a
( 2 6 )

q
with 1 < q, r < oo. Two further restrictions are 0 < j < m and j/m < a < 1. We
will assume D = 2 throughout this paper. Thus by setting p = 6, j = 0, m = 1,
r = q = 2 in (2.5) one has

ll«ll6<c||V«||| Hull*. (2.7)

By setting p = oo, j = 0, m = 3, r = q = 2 in (2.5) one has

ll«lloo<cl|V3
M||!||u||l, (2.8)

and by setting p = 2, j = 1, m = 3, r = <? = 2 one obtains

I|VW||2<C2||V3
M||2M|«|||. (2.9)

Also by setting p = oo, j = 0,m = r = q = 2 one obtains

IMU<C3||V2
M||2MMI1. (2.10)

Finally, by setting p = 4, j = 0, m = r = q = 2 one has

2 j l . (2.11)

The above five estimates (2.7), (2.8), (2.9) (2.10) and (2.11) will be used in Sec-
tions 3 and 4 to prove global existence.
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LEMMA 2.1. Let Au = (v + i'a)A«, D(/4) = H2(R2). Then the operator A is the
infinitesimal generator of a continuous semigroup of contractors N(t) = expAt for
t > 0 .

PROOF. Let H = L2(R2), V = Hl(R2), then D(A) and V are dense in H. To show
that the resolvent set of A contains R+, let v e V, X > 0. Consider

/•OO /-

= / /

t/-OO • / -

- A)v, v) = / / (Xv-(v + ip)Av)vdxdy (2.12)
/ /

Take the real part of (2.12). One has

|((A - A)v, v)\ > k\\v\\2
2 + v||Vw||l > co||v||2v. (2.13)

and by the Lax-Milgram Theorem [6], the operator X - A maps D(A) 1-1 onto H.
Now let v € D(>1). From (2.13) one has the inequality A.||u||2 < ||(A. - A)v\\2. Thus
||(A - A)"1 |l < 1A- By Hille-Yosida Theorem [20, Section 1.3.1]), the unbounded
and linear operator A is the infinitesimal generator of a countinuous semigroup of
contractors N(t) = exp At for t > 0.

Now one could convert (2.1) to an integral equation

u = N(t)u0 + f N(t - s) [-(K + iP)\u\2u + yu] ds (2.14)
Jo

= N(t)uo+ [ N(t-s)G(s)ds.
Jo

Since G(t) = —{jc + i/3)\u\2u + yu is locally Lipschitz in u under the norm of D(A)
uniformly on [0, T] for any T > 0, by [20, Theorem 6.1.7] one obtains the following
local existence theorem:

THEOREM 2.2. For uo{x, y) € D(A), there exists a unique solution u to (2.1) such that
u e C°([0, TM), D(A)) n C'([0, TM), L2) with either lim \\u\\D(A) = co as t - • 7^
or TM = oo.

REMARK 2.3. By the regularity theory [21], if uo(x, y) e H3(R2) then the solution
(obtainedby Theorem 2.2) u e C°([0, TM),H\R2)) n C'([0, TM),H\R2)).

In next three sections we will prove the global existence in the following situations:
(1) q = 1; (2) 9 = 2 and |0| < ^ ; (3) <7 = 2 and a£ > 0. The main tools are
the Gagliardo-Nirenberg estimates and various estimates demonstrated in Sections 3
and 4. Some of these estimates require that u e H3.
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3. Global existence theorem (I) in the case q = 1

The purpose of this section is to prove the global existence of the Cauchy problem
for the GL equation in the critical case q = 1.

THEOREM 3.1. Suppose q = 1 anduo(x, y) € H\R2). Then TM = oo.

PROOF. Three steps are needed in the proof, that is, to show that on any given interval
[0,T], 1) ||M||2 is bounded; 2) ||Vw||2 is bounded and 3) \\^u\\2 is bounded and hence
INID(/O is bounded.
STEP 1. The following could be directly verified (noting K > 0, v > 0):

d,||u||2 = -2* | |H | | * + 2y\\u\\l - 2V||VM||1 < 2y\\u\\2
2. (3.1)

By Gronwall's lemma, for t € [0, T],

\\u\\l < ||Mo|liexp{2|K|/} < ||MOlliexp{2|y|r} = M0
2. (3.2)

STEP 2. Calculate

d,\\ux\\
2
2 = 2Re [ I u,xuxdxdy (3.3)

J— oo J—oo
/•OO />OO

= -2Re / / u,uxxdxdy
J-oo J-oo

= -2Re / / [(v + ia)(uxx + uyy)uxx
J—oo J—oo

- (K- + iP)\u\2uuxx + yuuxx]dxdy

< -2v\\uxx\\
2
2 - 2v\\uxy\\

2
2 + c'\\ + 66 + v\\uxx\\

2
2 + 2y\\ux\\

2
2.

Therefore
d.WVuWl < -v\\Au\\2

2 + 2C'||M||^ + 2y||V«|||. (3.4)

Since ||M||* < C6||AM||| \\U\\\ from (2.7), we work on (3.4):

d,\\Vu\\l < -v||AM||^ + 2c'c6| |VM||X + 2yl|VM||2. (3.5)

Let g(t) = 1 + || VM|||. It is evident from (3.1) and (3.2) that ||u||2 < Mo and

\\u\\\dT (3.6)

<2M2 + 2\y\M2t.
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By (3.5) one obtains

g'(0 < -v\\Au\\2
2+c0g

2(t) + fi(t), (3.7)

where h(t) is a continuous function on [0, oo). Ignoring the —u|| AM||| norm, divide
both sides of (3.7) by g(t) and integrate to get

8(0 < £(0)exp ( f (cos(r) + h(z)) dr. (3.8)
Vo /

One concludes from (3.6) and (3.8) that || VM||| is bounded on any [0, T]. Further, we
can see that J'Q || AM \\\dx is also bounded for any t > 0.
STEP 3. Consider

/•oo poo

3, / / \uxx\
2dxdy (3.9)

J—oo J—oo

= -d, / uxuxxxdxdy
J—oo J—oo

/•OO pOO

= —2Re / / uxluxxx dxdy
J—oo J—oo xxx

—oo J -oo
/•OO />OO

/ ((v + /a) An -
—oo ^ — o o

/•OO />OO

/•O

= -2Re /

/•OO />OO

< -2V| |MX«| |2 + 2Re/ / ((«• + ip)(2\u\2ux + u2ux) - yux) uxxxdxdy
J—oo J—<x

/•OO />0O

<-2v\\uxxx\\l + 2J I (3\,c + ip\\u\2\ux\ + \yux\)\uxxx\dxdy

7
-ooJ-oo\ V V )

dxdy
J-ooJ-ooX ^ V J

and use (2.10) to estimate \u(x, y, t)\ in (3.9):

9, f f \uxx\
2dxdy (3.10)

J—oo J—oo

^—oo •/—oo v \ / v

https://doi.org/10.1017/S0334270000010468 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010468


[7] On the Cauchy problem for the 1+2 complex Ginzbuig-Landau equation 319

Therefore by (3.2), (3.8) and (3.10)

3, (ll«,,ll2 + IIM2) ^ c\\y2u\\\ ||u||2 ||VM||2 + c'||V«||* (3.11)

<c||V2
M||2Mo

2M2 + c'M2-

Since the ||AM||2-norm and ||V2w||2-norm are equivalent, by applying Gronwall's
inequality to (3.11) one obtains

||V2M||2 < cexp{cr} < cexp{cT] = M2 (3.12)

for 0 < t < T. From (3.2), (3.7) and (3.11) we conclude that IIMHD^, is bounded on
[0, T] for any T > 0. By Theorem 2.2, TM = 00.

4. Global existence theorems (II) and (III) in the case q = 2

This purpose of this section is to prove the global existence of the Cauchy problem
for the GL equation if \fi\ < ^ or af} > 0 when q = 2.

THEOREM 4.1. Suppose uo{x, y) e H3(R2) and |/3| < ^. Then TM = oo.

PROOF. We will show that on any given interval (1) ||«||2 is bounded, (2) ||Vw||2 is
bounded, (3) || A«||2 is bounded and hence UMIID^J is bounded.

One verifies the following directly:

d,\\u\\l = -2K\\u\\6
6 + 2y\\u\\2

2 - 2v||VM||* < 2y\\uf2. (4.1)

By Gronwall's lemma, for / e [0, T],

\\u\\l < ||«0|l2exp(2|y|O < ||«0|lSexp(2|y|r) = M2. (4.2)

As a matter of fact, we also see that /0' || VM \\l dx is bounded for any / > 0 from (4.1)
and (4.2) since v > 0. Now we turn to

dt\\ux\\l = 2Re f [ u,xuxdxdy = -2Re I f u,uxxdxdy (4.3)
J -oo J—oo J -oo J -oo

/»OO /»OO

= -2Re / / [(v + /«)(«„ + «„)«„ - (K + i^)|M|4iiii«] dxdy
J —OO J — CX)

< -2v\\uxx\\\ - 2v\\uxy\\\ + 2Re(/c + i/8) f f u3u2iixxdxdy
J—oo J—oo-oo

(•OO /-OO

/ \ 2

/•OO /-OO

7 / '"•
J — oo J — oo

2y / / \ux\
2dxdy.
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Let uux = A + iB and consider

/•OO /-OO

2Re(*r + i/J) / / U3M2UX, dxdy (4.4)
J — 00 ./-OO

= -2Re(* + i/8) /" /" |«|2 (3|M|2|«J2 + 2M
2«2) dxdy

J —OO J — OO

/•OO /»OO

= - 2 / / |«|2 (3«:|M|2|MJ2 + 2/fRe«2«2 - 2p\mu2u])dxdy
J —OO J—OO

/•OO />OO

= - 2 / / |M|
J—OO J — 00

/»OO /»00

= - 2 / / |«|
J —OO J—OO

Since |/3| < *£K, one observes that the above quantity is negative definite. Thus (4.3)
becomes

d,\\ux\\\<-2v\\uxx\\
2
2-2V\\uxy\\l + 2y f f \ux\

2dxdy (4.5)
J—oo ./—oo

/•OO /.OO

<2y / \ux\
2dxdy.

J—oo J—oo

One concludes from (4.5) that

3 ,HVM| | 2 <2K| |V« | | 2 . (4.6)

Apply Gronwall's inequality to (4.6) to obtain

||VM||| < ||VM0||2exp{2|>/|f} < ||VM0||
2exp{2|)/|r} < M2. (4.7)

Write

B, f°° T \uxx\
2 dxdy (4.8)

J—OO J—OO
/•OO /«OO

= -d, I uxiixxx dxdy
J—oo J~oo

/•OO /»OO

= - 2 R e / / uxluxxxdxdy
J—oo J—oo

/•OO /-CO

= -2Re / / ((v + ia)Au - (K + //3)|M|4M + yu)x uxxxdxdy
J—oo J—oo

<-2v\\uxxx\\
2+2Ref f ((K+iP)(3\u\*ux+2\u\2u2ux)-yux)uxxxdxdy

J—oo J—oo

https://doi.org/10.1017/S0334270000010468 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010468


[9] On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation 321

2 jf j

f
-oo J-oo

< / I \uf\Ui\ + \dxdy

and use (2.10) to estimate \u{x, y, t)\ in (4.8):

/ \uxx\
2dxdy (4.9)

<

J-
f f
-oo J—oo

Therefore by (4.2), (4.7) and (4.9)

2 ^ 2 2 (4.10)

.

Since the ||AM||2-norm and HV^I^-norm are equivalent, by setting up g(t) = 1 +
IIV2!*!!2. + 1 in (4.10), dividing both sides by g(t) and integrating from 0 to t, one
obtains

g(j)dx\. (4.11)

From (4.5) it is clear that /0' g(r) dx is bounded for any t > 0 and hence ||V2!* ||| is
bounded on any [0, T]. We therefore conclude that ||M||D(,4) is bounded on [0, T] for
any T > 0 and the solution is global.

REMARK 4.2. The following rescaled Ginzburg-Landau equation

A, = RA + (\+iv)Au-(l+ifi)\A\4A (*)

has been studied extensively where v = ea, fi = eb. It leads to a perturbation analysis
on a complex Duffing equation. The criterion |/J| < — is met since fi = eb, K = 1
and e <K 1. Thus the Cauchy problem for (*) has a unique global solution provided
that uo(x, v) € H3.

Our next global existence theorem is based on the criterion a/5 > 0.
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THEOREM 4.3. Ifq = 2, uo{x, y) e H\R2) andafi > 0 then TM = oo.

PROOF. Without loss of generality, let us assume that a > 0, /J > 0. Again we don't
have to worry about Step 1 since v > 0, K > 0. To proceed with Step 2, differentiate
the second Lyapunov functional F2 defined in [2] with respect to t:

(4.12)

/•OO /»OO ^ / 5 /»OO /«OO

= - 2 R e / / Auu,dxdy + —Re / |M|4«
•/—oo J —oo & J—oo J—oo

= -2v\\Au\\2
2

/•CXJ /»0O

ip) / |«|4
J —OO J—OO

0 /•? /»oo /»oo

+ — Re(v + ia) I / IM
a J-oo J-co

I f SZ>JZo \u\4uAQdxdy = A + iB then

/»OO /»OO <~\ Q y»O0 /»OO

i0) / |M| 4 MAMC?X^ + — Re(v + i a ) l / |M|4

i/ — oo J—oo " y~oo J-oo
(4.13)

2J3
= 2Re(K + ip)(A + iB) + — Re(v + /a)(A - /

a
2j6

= 2(/cA - 0B + —(vA + aB)
a

( >J O \ /»OO /»OO

2ic + —\Re / |M|

2/f + - ^ - ) / / (3|M|
a / J-oo J-oo

+ 3|M|4|M,|2 + 2Reu3uu2
y)dxdy < 0.

Combine (4.12) and (4.13), noting a, £, v > 0, K > 0 and (2.11):3, (||V«|G + ^ l l « l l ^ < -2v||A«||2 + 2y HViiHl - ^ | | « | l ! g + ^\\u\\< (4.14)

< -2cv||V2
M|| |

< 2y || V« ||2
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The last inequality is obtained via (4.2). Now (4.14) becomes

^ l £ 6 [ ( l )dT. (4.15)
za la Jo

Hence

[ (4.16)
o

and by Gronwall's inequality (0 < t < T)

\\Vu\\\ < (c + cM%T)exp{2\y\t] < M2.

This is exactly (4.7). Thus we have completed Step 1 and Step 2. Step 3 is similar (as
shown in proof of Theorem 4.1).

It is indicated in [2] that for the 2D NLS (corresponding to v = K = 0), the solutions
exist but blow up in finite time in the region (aft < 0). While in the region a/3 > 0,
the constant-amplitude solutions are modulationally stable. Whether the solution of
the Cauchy problem for the 2D GL equation blows up in the whole region afi < 0
is unknown. When D = 1, the GL equation in the super-critical case (q = 4) is a
special version of the so-called generalized GL equation. Duan, Holmes and Titi have
obtained the criterion for the global existence for the ID generalized GL equation in
a finite or infinite domain [10, 9]. We would like to point out that if we replace our
Cauchy problem on R2 by the Cauchy problem with periodic boundary condition,
the same results are still valid. The proof is quite similar and here we just list the
following theorem.

THEOREM 4.4. For the 2D complex GL equation (1.1) on [0, L]2 with the initial
condition uo(x, v) € //3([0, L]2) and periodic boundary condition u(x, y) — u(x +
L,y) = u(x, y + L), there exists a unique global solution u € C°(//3(/?2)) D
C^H^iR2)) if one of the following criteria holds: (1) q = 1/ (2) q = 2 and
101 < TK' (3> a = 2 andafi > 0.

We will investigate the 3D GL equation later and report our progress in the future.
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