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Abstract. Bott—Samelson varieties are an important tool in geometric representation theory
[1, 3, 10, 25]. They were originally defined as desingularizations of Schubert varieties and share
many of the properties of Schubert varieties. They have an action of a Borel subgroup, and
the projective coordinate ring of a Bott—Samelson variety splits into certain generalized
Demazure modules (which also appear in other contexts [22, 23]).

Standard Monomial Theory, developed by Seshadri and the first author [15, 16], and recently
completed by the second author [20], gives explicit bases for the Demazure modules associated
to Schubert varieties. In this paper, we extend the techniques of [20] to give explicit bases for
the generalized Demazure modules associated to Bott—Samelson varieties, thus proving a
strengthened form of the results announced by the first and third authors in [12] (see also [13]).
We also obtain more elementary proofs of the cohomology vanishing theorems of Kumar [10]
and Mathieu [25]; of the projective normality of Bott—Samelson varieties; and of the Demazure
character formula.
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1. Basis Theorem

In this section we state the main results which we prove in the rest of the paper.

1.1. DEMAZURE MODULES

Let G be a reductive algebraic group of rank »n over an algebraically closed field k, g
its Lie algebra, and U(g) its universal enveloping algebra. (To avoid technicalities,
we deal with finite-dimensional g, but our results extend straightforwardly to
symmetrizable Kac-Moody algebras.) Choose a Cartan subgroup H C G, and a
Borel subgroup B D> H. For i =1, ..., n, we then have positive and negative simple
root vectors E; and F; generating g; the Cartan subalgebra h; the Borel subalgebra
b generated by E; and h; the simple roots o; and coroots ; = [E;, F;]; the fundamental
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weights @; with (@, ¢) = 0; and the weight lattice X = P_; Zw;; and the simple
reflections s;: X — X, 11— A—(4, o/)o;, generating the Weyl group W.

An element 4 € X is a one-dimensional representation A: h — k, and it extends
to a one-dimensional b-module denoted k;. For a dominant weight
le Xt =@, Ziw;, we let V; denote the Weyl module of highest weight vector
v, with b-v; = A(b)v; for b € b. (That is: over the rational numbers, V), o is the
irreducible Gp-module; V), 7 C V¢ is the smallest Z-submodule containing v,
and closed under the operations E!/I! and F!/I! for [ >0, i € [1, n]; and in general
V,=V,x = V,z ®zk.) We also have the dual module V. For k of characteristic
zero, V; and V7 are irreducible G-modules.

Given an arbitrary word, meaning a sequence i = (iy, ..., i) withi; € {1,2, ..., n};
as well as a multiplicity list m = (my, ..., m,) with m; € Z,; we let
M i=mwi, ..., Ay = Moy,

We define the generalized Demazure module Vip as a certain B-submodule of the
tensor product V; ® --- @ V).:

Vim = (v, @y (v, ® - @0 (v, QU (v2,))-+4)),

where u; = P, . oKF!/I! denotes the hyperalgebra of a single negative root vector.
(By convention, if r =0, so that i is the empty word, we set Vi, = Ko, the trivial
one-dimensional B-module.) The dual B-module V7, is a quotient of
Vi®---®V;. We will explain in Section 1.4 how these modules arise from
Bott—Samelson varieties.

The ordinary Demazure module V;(w) C V; is essentially a special case. Given

w € W, choose the wordiso that w =, - - - 5; is a reduced decomposition, and hence
V(w) == - wy- vy

Given a weight A = | + - - - 4+ [,,, choose multiplicities (my, ..., m,) as follows.
Suppose the rightmost occurrence of i = 1 in the word i is at position k: that is,
ix =1,i; # 1 for j > k. Then let my = /;. (If i =1 does not occur in i, proceed to
the next step.) Next let &' be the rightmost occurrence of i =2 in i, and let
my = . Proceed in this way for each i, then let m; = 0 if it has not already been
defined. Finally, let A’ = Zigi l;oo;, where the sum runs over those i which do not
occur anywhere in i. Then V;(w) = ky ® Vim, with w(1) = 1.
This paper revolves around the following problem.

PROBLEM. Find explicit bases for the generalized Demazure module V;n, and its
dual V77,

From now on, we will assume i and m are fixed, so that we can refer to i;, or r, or
A, ..., Ay Without ambiguity.
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1.2. STANDARD TABLEAUX

We recall the machinery of Lakshmibai—Seshadri paths ([17, 18]) needed to index our
bases of Vim.

Let Xr:=X ®z R be the real form of the weight lattice. A path is a
piecewise-linear map 7: [0, 1] = Xr (up to reparametrization) with n(0) = 0. For
a weight 2 € X, we let n* denote the straight-line path: 7n’(¢) ;= t4; and m; % 7>
denotes the concatenation of two paths. The weight of a path is its endpoint,
wt(n) := n(1).

Let W, C W be the stabilizer of a weight 1 € X, and use > to denote the
Chevalley-Bruhat order on W and on the coset space W/W,. Let A€ X+ be a
dominant weight. An LS-chain of shape A is a pair of lists

(t1>>15 0=ay<a; < <a,=1),

where 1; € W/W), and a; € Q, such that for each j there exists a chain in the
Bruhat order 1, =09>01 > ->0,=14 With {l(og)=4€(ox)+1 and
aj(on s — o1h) € @), Zo; for each k. An LS-chain corresponds to a path
7 : [0, 1] - Xr, whose linear pieces are defined by

k—1
() =Y (4 — qi1)tih+ (1 — ag)tid for  ay <1< ay.

Jj=1

We call a path an LS-path if it can be so constructed from a (necessarily unique)
LS-chain. We will frequently refer to LS-paths by their defining LS-chains, and abuse
notation by writing: 7 = (11 > -+ > 74} ap < --- < ag).

The lowering root operators f; act on a path = in the usual way [18]. Since we will
only consider f; acting on an LS-path or a concatenation of LS-paths, we may
equivalently define these operators as in [17]. That is, let Q be the minimum value
of the function ¢ — (n(f), ;) for ¢ € [0, 1]. Let #; be the largest ¢ for which this
minimum Q is attained, and let #, € [0, 1] be the smallest ¢ > ¢; where the function
attains Q + 1 (if there exists any such 7). Now split our path = into three segments
7T = T * My x 13, corresponding to ¢ € [0, #], ¢ € [t1, 12], and t € 1, 1]. Define the
root operator

fi(m) := my * 81 * 73,

where s;m, is the path 71— s;(my(¢)). If there exists no #, as above, then fi(n) is
undefined.

We may also define the raising root operators e; analogously, so that e; reflects the
portion of m between ¢} and 1, where #} is the smallest t for which (n(?), oY) attains its
minimum Q, and ¢, is the largest ¢t < ¢, where the function attains Q + 1 (if there
exists such 7). We thus have e;(fi(nr)) ==n whenever fi(n) is defined, and
wt(fim) = wt(n) — a;, Wt(e;m) = wt(m) + ;.

Recall our notation 4; = mywy, ..., 4, = m,w; for our fixed data i, m. A tableau or
LS-monomial of shape (41, ..., 2,)is a concatenation Il = my * - - - % 7., where 7; is an
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LS-path of shape 4;. A given tableau can be divided in only one way into such a
concatenation of LS-paths of the proper shapes. Indeed, all LS-paths of shape /;
have length |4;| (in the W-invariant metric); so if we divide the path II into pieces
of length ||, ..., |4,], and successively translate the division points to the origin,
we obtain the unique LS-path factors =y, ..., «,.

We will usually refer to the tableau IT by the corresponding r-tuple of LS-chains,
and write: I1 = (ny, ..., n,). If we list all the Weyl group cosets in all the chains
71, ..., T, we obtain a long list which we denote

H = (Tll’ T12, "'7‘51171’121’ '~'stl‘pr)7

where 1), is a coset modulo W, in the LS-chain n;. When convenient we will reindex
this long list as T = (11, 12, . . ., Tv).

Denote by [1,r] the set of integers {1,2,...,r}. For any subset of indices
J={a<b<---}C[l,r], we have a subword i(J) = (i, ip, ...) of our fixed word
i=(,...,i). We also define w(i) =s;s;,--s;, € W, so that w(i(J)) =s;,s;, -,
the Weyl group element corresponding to the subword i(J). We say that i is reduced
if r = £(w(i)), the Bruhat length; and similarly for the subword i(J). Further, we write
JV :=JnN[l,j], so that w(i(J)) is an initial subword of w(i(J)). If i(J) is reduced,
then so is i(JY).

Let IT be a tableau of shape (4, ..., 4,), considered as a sequence (7, ..., 7,) of
LS-chains m;, producing the long list of cosets IT = (111, ..., T,p,).

DEFINITION. We say I1is a liftable-standard tableau (or just liftable) if there exists
a long chain of position-sets (Ji; D --- D J;,,) such that for all j, p, the subword i(J}I’]))
is reduced and

w(i(.]jg))) =1, modulo W;,.
Now consider the tableau IT as a concatenation of LS-paths 7y * - .- % 7,.

DEFINITION. We say a tableau Il is a constructable-standard tableau (or is
constructable) if it can be written as

= f " f2@ 5 fl @) )
for some /y,...,l. € Z,.

Note that for any [y, ..., I, € 7, the path II defined by the previous formula is a
concatenation of LS-paths of the correct shapes, and is thus a tableau, which is
constructable-standard by the definition. (See [18, §§ 2.6 and 4.2].)

Given an arbitrary path IT of shape (41,...,4,), we may test whether it is a
standard tableau as follows. Define the highest raising e'°P(IT) := ¢/(IT), where /
is maximal such that ¢/(IT) is defined. Let elt-f’p(l'[) =} % --- % 7, (division into pieces
of length [A1],...,|4]). If =} # 7#, then IT is not standard. Otherwise, let
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I =m) -« and let ¢;P(IT) =} % - - - m/. If m§ % 7’2, then IT s not standard.
If we can continue in this way, raising by ¢; and removing intial factors 7%, until
we obtain the one-point path (of length 0), then IT is standard; otherwise it is not.

EXAMPLE. Let G=GL3;, i=(1,2,1,2) a non-reduced word, m=(2,1,0,1),
X=7e®7Ze&, wy=¢,wr =8 +&, A1 =261, a=¢1+8&, 13=0, A4 =¢] +¢.
A typical LS-path of shape A is: n=(si >e;0<i<1)=n@xnM, a
concatenation of two length-one segments. (For legibility we write (1), &(2) instead
of &1, &; and 7* denotes a straight-line path.)
Now consider the tableau IT = 7%? % g1 x g#D+:0) 5 722+ Dividing I into
segments of lengths 2, 1,0, 1, we get the LS-path factors of shapes 4y, ..., 44:
IT = my % my % 73 * My, Where:

m =P xrl = (5 >e0<i<),

1y = WO = (5,;0 < 1),

n3 =" = (e; 0 < 1), the one — point path,
1y = TG = (525:0 < 1).

This path has the lifting: Ji; = {1, 2, 3,4}, J1o = {2, 3, 4}, Jo1 = {2, 3,4}, J31 = {3, 4},
Ja1 = {3, 4}; since:

wi(J1))) = w(iy) = s1 = T W,
wi(J1)) = w(@) = e = 1 W,
W(i(Jg))) =w(h) =5 =10 W),,
W(i(Jg))) =w(iz) =851 =e=131 Wy,

. 4 ..
W(I(JA(”))) = W(l3l4) = 5152 = T41 W;W
Furthermore, Il is constructable, since:

11 =f1( 26 *fz( 7 D+e2) *furz(ns(l)+g(z)) )
= A (% fi( 7" 5 (7))

THEOREM 1. 4 tableau 1 is liftable if and only if it is constructable. We call such 1
a standard tableau of shape (11, ..., ).

Any set 7 of paths possesses a natural structure of crystal graph: namely, the
graph with vertex set 7, and with i-colored edges {II, f;I1} (whenever both IT
and f;I1 lie in 7). For example, the crystal graph of an ordinary Demazure module
V,(w) is associated to the set of tableaux {fl'f‘ jlln" | l1,..., 0, =0}, where
w=s; ---s; (reduced). Many important crystal graphs reduce to this basic case.
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THEOREM 2. The crystal graph on the set {I1} of standard tableaux of shape
(A1 ..., Ay) is isomorphic (as an edge-colored graph) to a disjoint union of crystal
graphs of ordinary Demazure modules. For n € X a dominant weight, the same
is true of the set of paths {n*«I1}, where Il runs over the standard tableaux of shape

Gt ooy I,

This is a combinatorial version of excellent filtration for the B-modules V7 and
K, ® V. (See Section 2.4.)

1.3. STANDARD MONOMIAL BASES

We use tableaux to index bases of B-modules, starting with the Weyl modules V),
then proceeding to Vim.

For any Weyl module V), the second author has constructed [20] a basis {v,}
indexed by LS-chains n of shape /A, in which v, is a weight vector with weight
wt(m). (See Section 3.1 below for details.) The basis {v,}, inspired by the work of
Raghavan and Sankaran [26], is highly non-canonical, depending on several
arbitrary choices. However {v,} is related to most ‘reasonable’ bases of V, by a
triangular matrix. Actually, we shall find it more convenient to pair {v;} with bases
of the dual module V7;.

To be more specific, define the following lexicographic partial order on LS-chains.
Givennt=(t; >--;0<ay<--)and 0 =(6; >---;0 < b; <---), we say n<¥0 if
71 <oy (in Bruhat order); or 1y =0y, a; <by; or 1y =0, a;=by, 13 <0y; etc. Note
that the highest weight path is minimal in this order, and a path is large in this order
if it is far from the highest weight path. We can extend this to tableaux by defining

(ny,...,m) < (01,...,0,) to mean: n; < 0; (in the above order); or n; = 0; and
Ty < 0, etc.
Given a basis {p,} of V] indexed by LS-chains of shape /4, we say {p,} is triangular
to {v.} if
Pr=Vp+ Z oy
0>n

where ocindicates an appropriate scalar coefficient (possibly different in each term).
That is, (p,, vz) = 1, and (pg, v;) = 0 for all 0 > n. A certain basis {p,} defined in
[20] obeys this triangular property for all groups G, as do most of the other known
bases of Weyl modules, at least for classical groups G (types 4,, B,, Cy, D,).

THEOREM 3. The following bases of V; are triangular to {vs}, for the specified
classes of reductive groups:

(a) Littelmann’s canonically defined LS-path basis [20], for all G,
(b) Lusztig’s dual canonical basis [21] (= Kashiwara’s upper crystal basis [6, 8]), for
classical G,
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(¢c) Lakshmibai’s standard PBW basis [11] for classical G.
(d) Lakshmibai-Seshadri’s standard monomial basis [15, 16], for classical G.

Proof. For (a), see [20]. It is established in [24, 26] that, for the fundamental
representations V7, the bases (a), (b), and (d) coincide. But this implies the
triangularity for an arbitrary V5. The triangularity between (b) and (c) follows from

[11]. O

We expect that bases (b)—(d) possess the triangularity property for all G (including
the Kac—Moody case).

Any such system of bases {p,} for each V' gives a basis of V] ®---® V} whose
indexing set consists of a/l tableaux of shape (11, ..., 4,). The standard tableaux pick
out a subset of this basis which restricts to a basis of the quotient F{ .

THEOREM 4. For every 1 € X+, let {p;} be a basis of V¥ which is triangular to {v,}.
For 11 = (my, ..., m,) a tableau of shape (A1, ..., A,), define

pn ::Pn]®"'®l7n,.€ VZ@...@ Vz"_

Then {pr1}, where Il runs over the standard tableau of shape (A1, ..., A,), restricts to a
basis of Vi, We call this a standard monomial basis of V}.

Since we may assume pyy to have weight wt(I1), we can use the combinatorics of
tableaux to compute the character of Vim. Let R = Z[X] = @,y Ze" be the group
ring of the weight lattice X. The Weyl group acts Z-linearly on characters by
w(e’) = "™, We may define the Demazure operator A; : R — R by

S —e7si(f)

I —e

Ailf) =

’

which can be interpreted uniquely as an element of R. We may also characterize A; as
the unique linear operator with A? = A; and

A,’(CZ) — e/l + e}v—oc,- + e/l—Zsc,» 4a es,-)v.
for any 4 € X with (4, ) > 0.
THEOREM 5. The character of the B-module Vipy is
Ail (eMAiz (elz e Air(e)vr) o ))
Our strategy of proof for the above theorems is as follows. Theorem 1 is an
elementary combinatorial fact, proved in Section 2.2. Also in Section 2.3 we prove
that the Demazure formula computes the formal character of the set of standard

tableaux, and we prove Theorem 2 in Section 2.4, all by the combinatorics of paths.
Next we prove Theorem 4 in two steps. First, in Section 3 we show that the set
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{pn} is linearly independent in V;* | so that

im>

dim V', > dim Span(pn) = # standard tableaux.

Then in Section 4 we compare the combinatorial Demazure formula with the
geometric version to conclude

*
im’

# standard tableaux > dim

which proves the Theorem. Also, Theorem 5 follows in the course of this proof, as
does Theorem 6 below.

1.4. BOTT-SAMELSON VARIETIES

We now give a Borel-Weil-type result for producing our Demazure modules inside
the projective coordinate rings of certain varieties. We will prove this, along with
the corresponding analog of Bott’s vanishing theorem. (These theorems were
originally proved in our case in [25] and [10].)

Recall our fixed word i = (iy, . .., i,) from Section 1.1, and our Borel subgroup B of
G. Foreachilet P; O B be the minimal parabolic subgroup with Weyl group (s;), and
define the Bott—Samelson variety as the quotient

Zi = (Pfl X e XP,‘]_)/BF,
where B acts on the right by:

1o p) - (bry oo by) o= iy, by paba, . b piby).

This is a smooth algebraic variety of dimension r. (If » = 0 and i is the empty word,
we let Z; be a point.)
For /. € X, let ¢* denote the multiplicative character of B associated to A, and let

K(;, ., be the one-dimensional representation of B" defined by

(b1, ....b) k=M (b)) - M (by)k.
Define a line bundle on Z; by

B,

Lim:i= Py x---xP;) x k(il ,,,, )
so that we identify

k)~ (@b b~ k)

for pe Py x---xP;, BeB’, and k € k. Unraveling the definitions, we may
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concretely describe the space of regular global sections of this bundle as:

VbjGB,p]'GPljf
HZi, Lim) = { [ Piy x - x Py > K[ f((pr..-..p) - (br.....b) = ¢,
(b)) (bf (prs - .- )

where /" denotes a polynomial function on the linear algebraic group P; x---x P;.
The Borel subgroup acts on Z; and £;, by left multiplication: for b € B,

b-(pr,....p;):=(p1,p2,....pr) and b-(p1,...,pr k) = (bp1,p2..... P k).

The space H(Z;, Lim) of regular global sections of Li, over Z; is naturally a
B-module under translation.

Our analysis extends to certain varieties desingularized by Bott-Samelson
varieties, called configuration varieties in [22, 23]. For a given m = (my, ..., m,),
the line bundle £;y is ample (resp. semi-ample) when all m; > 0 (resp. m; = 0).
In the latter case, define Z;, as the image of the natural map
Z; — P*H'(Z;, Lim). This variety is singular in general, and can be of smaller
dimension than Z;. If we take i, m so that ky ® Vim = V,(w) is a Demazure module
(see Section 1.1), then Z;, = B-wB C G/B, a Schubert variety.

THEOREM 6. The B-module of regular global sections is isomorphic to the dual of a
generalized Demazure module:

HO(ZB £i,m) = I/;fm

Also, Z; is projectively normal with respect to the bundle Ly, and H'(Z;, Liym) = 0
for i = 1. Furthermore, all the above statements hold for Z;iy in place of Z;.

We give the proof in Section 4.2.

1.5. THE SYMPLECTIC GROUP

In[13], we work out the above constructions at length in the case of the general linear
group G =GL,; . (Our treatment there is more elementary, avoiding the
technicalities of the basis {vr}.) In this section, we give the example of the symplectic
group G = Spy,, in the spirit of De Concini [2]. (The orthogonal case is similar, but
slightly more complicated.)

In general, the main obscurity in the above constructions is that most bases {p,} of
Vi are difficult to write explicitly, so that writing the corresponding basis {pn} of V',
is equally difficult. However for G a classical group, it is easier to construct bases of
the fundamental representations V7, , and to obtain from these a standard monomial
basis {p,} of the quotient (V;,i)®m — Vyw, = Vi - (See [15, 16].) Thus we will obtain
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bases of Vi, via the composite restriction map:

E (V;i] )®ml Q- - .®(V;ir)®m,. N Vj.kl R--® V;’i — Vl*m
This is the formulation announced in [12].

Now, for i € [1, 2n], let us denote i := 2n+1—i and |i| := min(, i). The standard
basis of k¥ is {ei, ..., em) = {e1, ..., en e, . .., eq}. Let G = Sps,(k) be the linear
isometries of the symplectic form (e;, &) = —(e, ) = 0ij, (ei, e)) = (e, ) = 0 for
i,je[l,n]. That is, G={A4 € GL,, | AEA" = E}, where E is the matrix with
ij-coordinate (e;, e;) for i,j € [1, 2n].

We may write the weight lattice as X =@}, Ze; with simple roots

0] =& — &2, v vny O] = Epl — Ens oy = 285, fundamental weights
wi=¢ +e&+---+¢; and simple coroots o) =& —&}, ..., 0 =&, —¢&f,
o, = &t An element of the Weyl group W may be indexed by a signed permutation:
a map w:[l,n]—[1,2n]={1,...,n 7, ...,1} such that |w|:i— |w()| is a
permutation of [1,n]. Such a w acts on X by w(g;) := &), where we write
g = —¢ for i € [1,n].

We can realize the fundamental representations V5 inside the coordinate ring k[G]
of polynomial functions on the affine variety G. (The group acts on functions via left
translation: (g-1)(4) := f(g~'4) for f € k[G], g, A € G.) That is, we have

V. = Span(p. | t C[1,2n], #r=1i),

where p, = p.(A) is the minor of the matrix A4 on the first i columns and on the rows .

To use the above model, it is most convenient to index the basis of the
fundamental-weight modules V, not by LS-paths, but by certain lattice paths,
concatenations of coordinate steps

TCi = nl}(i)’ 71; = n—.f:(i)

for i € [1,n]. A subset t = {t(1)<---<1()} C [1, 2n] corresponds to the lattice path
n(t) := 1 Wx. . % 170, We write:
a[l, i :=n(l,i) =n' s« n? s w7,

Any path obtained from =[l1, {] by repeated application of the lowering operators
Sfi, ... fu 1s of the form =n(r) for some 7, and we say such paths n(z) (or subsets
t) are lattice-standard of shape w;. A basis for V; is given by
{p. | T lattice-standard}. This basis has the triangularity property of Theorem 3.
For more details, see [2].

Similarly, a path IT is lattice-standard for V' if it can be constructed by the usual
formula, with the 7 replaced by dominant lattice-paths:

T = £ (afl, a0 /2Rl ] e - f (a1, i]7™) <)),

where 7[1, iI*" := #[1, i]*- - -x7[1, {] (m factors). Every such path is a concatenation of
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lattice-standard tableaux for fundamental weights
I = 2t m (e ) s st se(r®V) s - se(z0™),
where t0" C [1, 2n], #19" = i; for 1 <j <r, 1 <m <my. A basis of V7, is given by

{p(Paan ® -+ @ poonn ) | (1Y, ..., 7)) is lattice-standard},

the restriction of standard tensor-monomials via the map p. Alternatively, we can

realize V}, inside k[G], with a basis of monomials in the minors p,

Vim = Spany{p.an - - - promn | (V... 7)Y is lattice-standard}.

EXAMPLE. Let G = Sps,i=(2,1,2), m = (1, 1, 1). For conciseness, we denote the
lattice-path 7% % n” % n° % - - - by the list abc---. The lattice-standard tableaux for
Vi are{l,2, 2,1}, meaning {n!, 72, n2, n'}; with crystal graph: 1 i} 2__£> 351, For
Vi, the lattice-standard tableaux are: ~({12,12,22,21,21}, meaning
{(mhxn?, mhxn?, .. .}; with crystal graph: 12 5 12 5 22 5 21 5 21.

For V},, we can construct the 17 lattice-standard tableaux of the form

I =732 f7(1 *f312)) in steps, starting from the right end of the expression
for IT:

A _ _ . -
1203 12,12y 8 21, 112 & 112, 112, 212, 212, 222, 221)

B 12112, 12112, 12212, 12212, 12222, 12221}

f;{12112,12112,12212,12212,12222,12221,12112,12112,12212,
12212, 12212, 12212, 12222, 12222, 12221, 12221, 12221}.

A list like 12221 represents the lattice-path IT = ! *ni*ni*nz*ni, which can
be divided into lattice-standard paths for fundamental weights as:
IT = 7(12) % m(2) * m(21). To illustrate the action of the lowering operator f1, we write
under each tableau the value of (7, ay) = —1,0, or +1 for each coordinate step ,
and we emphasize the step which is flipped by £ (that is, the step where the path
rises for the last time from the minimum value of (n(¢), o)) ):

121124/ 12212 51 12222
— —
+ -+ + + + - — + + + - — — +

ﬁ> 2221 iundefined
+____

The 17 standard tableaux index a basis for V7§, which we can realize inside k[G],
the coordinate ring of G C GL4. That is, k[G] is the polynomial ring k[x;]; (1 4
where X = (x;) a generic matrix, modulo the ideal generated by the supra-diagonal
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coordinates of XEX' — E: that is, modulo the polynomials

— X41X12 — X31X22 + X21X32 + X11X42,  —X41X13 — X31X23 + X21X33 + X11X43,
— X41X14 — X31X24 + X21X34 + X11X44 — 1,
— X42X13 — X32X23 + X22X33 + X12x43 — 1,

— X42X14 — X32X24 + X22X34 + X12X44,  —X43X14 — X33X24 + X23X34 + X13X44.

(This ideal has a small square-free Grobner basis in the degree-lex order, so it is
reduced.) For example, the tableau 12221 corresponds to the following polynomial
in k[G]:

Di531 = P13P5P>1 = (X11X32 — X31X12) - X31 - (X21X42 — X41X22).

(Recall 2=3,1=4)

2. Combinatorics of Tableaux

In this section, we regard the word i = (i, ..., i) as given, and for J C[1,r], we
abbreviate w(i(J)) as w(J). For example, sw(J) means s - w(i(J)).

2.1. THE MAIN LEMMA

LEMMA 7. Consider a long list of Weyl group cosets
Tty o5 Tp) = (T1, ..., TN)

possessing a lifting
JiiD--DJp)=U1D--DJn),

meaning that each subword i(‘]jg)) is reduced and tj, = w(Jg)) mod W,,. Suppose that
Jfor some consecutive elements tj, = Tg_, Tjy = Tk, Ty = Tgq, and for some simple

reflection s we have either:
(a) sw(JI(?_l) < w(]l(?_l) and stg =1, or
(b) swIL)) > wJl)) and stx < k.

Then the long list of cosets
(T1y -+ oy TRDs STK s TRt -+ » TN)
also possesses a lifting (J, D --- D Jy), with (respectively):
@) sw(j,(?)) < W(j,(?)); or
(b)) swT) > wT).

Proof (cf. [19, Pf of Thm 10.1]). We will prove the lemma under assumption (a).
For (b), replace < by > and K — 1 by K + 1. First suppose sw(J,(é)) < w(J,(é)). Then
we must have stx = 7x, and we may take J; = J; for all k.
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On the other hand, suppose sw(J,(?)) > W(J,(?)). We have
sw(J,(p_l) < W(J(/)l) W(J[(é)),

and by the Zigzag Lemma [5, Proposition 5.9], sw(J,(?) < W(J[(?_ ). Thus by the
subword definition of Bruhat order, there is a reduced Jy C Jl(é)_ . Wwith
w(Jg) = sw(J(f)) Furthermore for all L > K there are reduced subwords
J; C Jl(é)l with w(J;) = W(J(/)) and we may take the sets J; to be decreasing as
L increases. Now define J, = J; for L < K and J;, = r\[L,j)uJ; for L > K.
Now
wIE) = wl Wk NGi+1,7D) = s - wIE) - wUxNG+1, /D,

and by our supposition the latter product is reduced (length of product = sum of
lengths). Hence 7,%) is a reduced word, and w(jl(?)) = sw(JI(?)) = s7g. Similarly the
appropriate initial segment of J; for any other L is a reduced lifting of ;.
Therefore (.71 >--+D 71\1) is a lifting of (ty, ..., stk, ..., Tx) as required. Property
(a') follows from the above along with our supposition. O

2.2. ROOT OPERATORS
LEMMA 8. Let i € [1,n].

(@) If I is a liftable tableau, and e;(I1) exists, then e;(IN) is liftable.

(b) If 11 is a liftable tableau, and e;(I1), fi(I1) both exist, then f;(I1) is liftable.

(c) IfIlisaliftable tableau with respect to i, and f;, (I1) exists, where i) is the first letter of
i, then f; (I1) is liftable.

Proof. 1t is clear by [18] that e;(IT), f;(IT) are always tableaux if they are defined, so
in each case we need only show liftability.
(a) Suppose

I = (T1ts ooy Trp,) = (T, -0, TN)
with lifting
1D DJp)=U1D:-DJw).
It is easily seen (cf. [17, Proposition 4.2]) that

o) = (Tl e ooy TR STy o+« STL, TLtls - - - TN)  OF
; =
(T1y e ooy TR TRy STKy + o+ s STLy TLt s+ + - TN)

for some indices 1 < K < L < N with

ST < Tg,...,57, <17 and  sThy > Try.

We must show that this list of cosets has a lifting.
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First, suppose L # N, so that 7.4 =1, exists, and let 7, =17,. Then
sw(JZ_l) > w(JZrl) and stp <717, so we can apply Lemma 7(b) to the lifting
(J1 D ---) at positions L, L+1. Using condition (b") we can repeat this at positions
L—1, L, and so on leftward, thus producing a lifting of ¢;(IT).

On the other hand, suppose L = N. If sw(Jg/)) > w(Jg/)), then ty = sty, and we
may again repeatedly apply the Lemma starting at positions N—1, N. If
sw(J(’ )) < W(J(’ )) we cannot directly apply the Lemma, but instead take
Jy CJy so that W(J]((,)) —sw(J(’)) Then (J1 D - - D Jya DJN) is a lifting of
(t1,..., TN, 8Ty), to which we can apply the Lemma starting at positions N—1,
N. In each case, we produce a lifting of ¢;(IT).

(b) We have

ﬁ(H) — (T1, - TR1> STKy -+ +» STL, TL4l, - - - TN) OF
(Ths e vy TRA» ST+« s STLy TLy TLidy - - - TN)

for 1 < K <L <N with
STkl < Txa and stg =1k, ...,8TL = TL.

Since e;(IT) also exists, we must have K > 1, so that we may repeatedly apply
Lemma 7(a) analogously to the previous argument, starting at positions K—1, K
and proceeding rightward to produce a lifting of f;(IT).

(c) Let Jx = Jyp. As before, if K > 1 or sw(J](//)) < w(J](//)), we use Lemma 7(a)
immediately. Otherwise if K = 1 and sw(Jy/)) > W(Jl(//)), take J, = J; U {1} (reduced):
this gives a lifting (jl DJ,D---DJy) of (s11,72,...,7x), to which we apply
Lemma 7(a). O

Proof of Theorem 1. We use induction on r, the number of letters of the word
i=(,...,i). For r =0 and i the empty word, the only constructable or liftable
tableau is the trivial path 7°. Now assume the Theorem for the word (i, ..., i\).

Constructable = liftable. Suppose I1 = flf‘ (' ff(ﬂ2 -++)) is constructable. By
induction IT' = f; [2(7112 -) is liftable. Then n*' % IT’ is clearly also liftable, and so
is 1= fl‘ ("' x IT') by Lemma 8(c).

Liftable = constructable. Suppose Il = (ny, ..., ;) has lifting (J;; D ---). Since
w(JS?)) =y, or id, the cosets mod I, in the LS chain m; must be
T = (Si,, ..., 5;,1d, ..., id). Thus we may write ewp(l'[) = (D) = (", 7y, ..., 7))
for some /;, since if the initial segment were not n*!', we could apply e; once more
(Section 1.2). But IT' = (n}, ..., ) is liftable by Lemma 8(a), and is therefore
constructable by induction. Hence IT = flf‘ (n*' % IT') is also constructable. O

2.3. DEMAZURE OPERATORS

We show that the number of liftable tableaux is given by the Demazure character
formula. This is the combinatorial version of Theorem 5. For a set 7 of tableaux,
define the formal character (or multi-variate generating function)
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char(T) := Y oy e¥'™. Fori € [1, n], a tableau Iy with ¢;(I1y) undefined is called an
i-head. An i-string is the set S of all tableaux generated under f; by some i-head ITy:
S = {Io, fi(Tp), fA(Tp), . . ., f/(Ip)}, where / is maximal with f/(ITp) defined. In fact
[ = (wt(ITp), o) = 0. (See [18].) Thus any i-string S with head Il, has
character

char(S) = W) + eWTo)—a; 4o gt wi(Ilo)
Suppose a set of tableau 7 is a disjoint union of i-heads and i-strings. Let
T =) | MeT, >0}

Then it is clear that char(f*7) = A;(char 7).

LEMMA 9. Let T be the set of standard tableau of shape (Ao, . .., A,). Then the set of
concatenations ' x T is a disjoint union of i\-heads and i,-strings.

Proof. Let m =", e=e;, f =f;. First we show: if m;xI1en*7 with
e(my % IT) defined, then e(m) *I1), f(m *xI1) e n; «7. By [18, §2.6] we have
e(my * IT) = 7y * (eIl) or (em;) * IT; but en; is undefined, so the first alternative must
hold. Also eIl € 7 by Lemma 8(a), so e(n; xI1) € m; % 7.

Next we show that if 7; % IT € 7y * 7 with e(nt; * IT) and f (7} * IT) are both defined,
then f(m; = IT) € m; % 7. First, recall that the operator e reflects a part of m; = I1
before the first minimum point of the function ¢ i— ((n; * I1)(¢), "), and the operator
[ reflects a part of 7 x IT after the last minimum point of the function. Thus f acts on
the path at a later point than e acts.

Now consider f(my *I1) = (fr))*«I1 or = *(fII). We know that
e(my * IT) = my * (ell), so that e acts after the first segment of 7y * I; and f acts later
than e. Thus we must have the second alternative: f(m * [1) = m; = (fT1). But
fI1 € 7 by Lemma 8(b), so f(m; xI1) € my % 7. OJ

COROLLARY 10. The formal character of the set of standard tableaux of shape
(;ul, ey /1,) is
Ai (@ AR - Ay (e™) - - ).

Proof. Let T be the set of standard tableaux for the (i, . . ., i,). The set of standard
tableaux for (if,...,J) is 7' = f2(x" x T), so that char7’ = A; (¢*'char 7). The
result now follows by induction. O

2.4. COMBINATORIAL EXCELLENT FILTRATION

The ordinary Demazure modules V;(w) and their duals play a central role in the
theory of B-modules. For example, consider the twisted dual Demazure module
k, ® V;(y) for dominant weights u, v € X+, It was conjectured by A. Joseph and
proved by O. Mathieu [25] (in the general case, and by P. Polo in some special cases)
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that this module has an excellent filtration, namely a filtration by B-modules whose
quotients are isomorphic to V}(w) for various 2 € X*, w e W. This implies that
k:‘l ® Vi(y) inherits the favorable homological properties of the V7 (w). More
generally, Mathieu proved that twists of our generalized Demazure modules
kz ® Vi, have excellent filtration. For a survey, see [27].

In this section, we prove Theorem 2, which is a combinatorial analogue of
Mathieu’s result. We first formulate and prove a more precise result for the special
case of a twisted ordinary Demazure module k;’; ® Vi(y). (Note that we do not
distinguish between tableaux for this module and for its dual.)

Let C(4, w) denote the crystal graph on the set {f;" - - - /* n*} of standard tableaux for
V,(w), where w =s;, ---s; is any reduced decomposition. This set of tableaux is
known to be independent of the choice of reduced decomposition. In fact, it is
precisely the set of LS-paths 7 =(7y >---;0 < a;---) such that w > 1, W,. See
[7, 17].

Further, let C(u, v, y) be the crystal graph on the set {n**n}, where = runs over
standard tableaux for V,(y). Recall that each edge in a crystal graph is assigned
acolori =1,...,n We will show that for dominant g, v, the C(u, v, y) is isomorphic
as an edge-colored graph to a disjoint union of various C(4, w). There is one such
component C(Z,w) for each path n*x7m which is dominant, i.e., which stays
completely within the dominant Weyl chamber: that is, (u+ n(?), ;) = 0 for all
t€[0,1] and all i. The 1 corresponding to a dominant path is its weight:
A=wt(n**7m) = u+ wt(n). To compute the corresponding w requires some
definitions.

The second part of the following lemma is due to Deodhar [14, Lemma 11.1].

LEMMA 11 (i) For u,w € W, the set {u'w | u' < u} has unique maximal and minimal
elements.
(i1) Let W' C W be the parabolic subgroup generated by some subset of the simple
roots. Forz <y € W, theset {u'z|u € W, u'z <y} has a unique maximal element.
Proof Foraset A C W,wewritew =maxAifwe Adandw > yforall y € 4 (that
is, w is the unique Bruhat-maximal element of A). Similarly for min 4. We will
repeatedly use the Zigzag Lemma [5, § 5.11]:

If x <y, then sx < max(y, sy) and min(x, sx) < sy,

where s is any simple reflection, and similarly for xs and ys.

(i) Induction on ¢(u). The case £(u) =0 is trivial. Take su > u, and assume
uw < upw for all o' <wu. We claim «’w < max(uyw, sujw) for all v’ < su, so that
max(uyw, suyw) is the unique maximum of {u'w | v’ < su}.

From the subword definition of Bruhat order, any #” < su has either: v’ < u, so
that u’w<wuyw;, or su’ <u, so that su'w<wuw, and u'w=s(su'w)<
max(u;w, su;w) by the Zigzag Lemma. This proves the claim.

The proof that {#'w | ¥’ < u} has a unique minimum is almost the same: Again take
su > u. If upw < u'w for all ' < u, then min(uyw, supw) < u’w for v’ < su.
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(i) We follow Deodhar [14, Lemma 11.1], correcting several misprints. We denote
(W'z) o, ={uz|u e W, u'z <y} Also let Wwmin « I be the set of minimal coset
representatives of W'\ W, and write y = wyy with w € W’ and yy, € W™, Suppose,
without loss of generality, that z =zy € W™" (since (W'uz) <y =W'z), for
any u € W’). Now we proceed by induction on £(yy). For £(yo) =0, we have
Yo = zo = e, and max(W'z) ., = w. Next suppose £(yo) > 0, and choose a simple
root s with yy < yos. Note that yos € W™", since otherwise there is a simple root
s € W with £(5'yos) = £(yo) — 2 = £(5'yo) — 3. Note also that wygs < wyy, since:
Lwyos) = LW)+L(os) = Lw)+L(yo)—1 = L(wyy) — 1.

Case (a): zos < zg. The facts noted above for yy also hold for z;. We have
zZos = min(zos, o) < yos, and by induction we may let w'zos = max(W'zos) < uys-
Then we claim w'zo = max(W'zo) ¢ - First, Wzos < wyps, SO
wzo < max(wyps, wyg) = wyo. Now suppose uzo < wyg for ue W. Then
uzos = min(uzgys, uzg) < wyos and by definition of w/, we have uzps < w'zps. Thus
u<w and uzy < w'z.

Case (b): zos > zp and zops € W™". We have zy = min(zo, zos) < yos, so by
induction we may let w'zg = max(W'z) ¢, We claim w'zg = max(W'zg) ¢ -
First, w'zy < wyy just as before. Also note that, as before, for any u € W’ we have
uzops > uzg. Now suppose uzy < wyg for u € W’. Then uzy = min(uzos, uzg) < wyos
and by definition of w/, we have uzy < w'z.

Case (c): zos > zo and zos ¢ W™ First note: there exists a simple root s’ € W’ with
S'zo5 < zos, so  L(5'zo8) = €(z9); but sz9 =2z9, SO szos = min(zg, zos') = 2.
Hence, szos' =zp. Now, as in case (b), we may let w =max(W’'z) -
Define w" :=max(w',w's')). Then we claim w"=max(W'z),, . First,
w’zy = max(w'zg, wzos) < max(wyg, wyos) = wyg. Now suppose uzg < wyy for
ue W. If us’ <u, then uzy > us’zo = uzps and wus'zg = min(uzg, uzps) < wyps, so
by the definition of w', we have us'zy < w'zg. Hence u < w”, and uzy < w’z5. On
the other hand, if us’ > u, then uzy = min(uzo, uzos) < wyyps, so by the definition
of w, we have again uzy < w'zy < w'’z. O

Now, given u, v, y as above, and a path : [0, 1] — Xg, let W(¢) := Staby (1 + n(¢))
denote the stabilizer of the point yu + n(f) € Xr. This is the parabolic subgoup of W
generated by the simple reflections s; such that u+n(f) lies on the corresponding
wall of the dominant Weyl chamber. Let [0, 1] = I; U - -- U [, be the decomposition
of [0, 1] into the minimal number of disjoint intervals such that W(¢) is constant
for all 7 in each interval J;. We enumerate the intervals so that for j </, the ¢ in
I; are smaller than those in I;.

For an LS-path n=(t1>---;0<a;<---) with 7#*n dominant, we let
A= p+ wt(n), and we define w(r) (modulo W)) inductively as follows. Intuitively,
we start with w = id; then we travel along the path 7*x7n from its endpoint 1 to
u, and every time we hit a wall, we multiply w by the corresponding reflection if
this makes w longer. However, at the end of our trip, if u itself is on a wall, we
only multiply by the corresponding reflection s if s times the initial direction of
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7 is smaller than y. Formally, we define:

wy = max(W(l,)), wet :=max(W(l)-wy), ..., wa:i=max(W(h)-ws),

wy = max{uwy | u <u}; w(n) = wy.

Here u; := max{u € W()) | ut; < yW,}. We explain why u; is well-defined. The path
7 % 7 has a segment in direction 7(v) from u into the fundamental chamber. Thus if
s; € W) = W, we have (1(v), o) = 0, and s;7; > 7, W,. That is, we may take 7, to
be minimal in the coset W(l})r;, so that we may use the Lemma to define
wyty = max{u'ty | v’ € W(l;), u't; < y}. (Note: In the Kac-Moody setting, in which
W may be infinite, we can show that W(J;) is always finite, and the above definition
of w(r) is still valid.)

The following result is a refinement of the Littlewood-Richardson rule of [17].

PROPOSITION 12. The crystal graph of k, ® V,(y) has as its connected components
the crystal graphs of ordinary Demazure modules V;(w). Specifically, it is the disjoint
union:

Clu,v,y) = ] Clutwim), wm)),

running over all standard tableaux © for V,(y) such that n*xn is dominant.

Proof. (a) First the containment D. Fix a path n=(11> > 14
0<a <. - <ay=1)withwithy > 1 W), and 7" * = dominant. We must show that
for some (and hence for any) reduced word w(n) = s, - - 5;,, the path fi{‘ o fi{"(n“ * T0),
if defined, is of the form n* x @ with 0 = (61 > ---;0 < b; < ---)and y = o W). We
may choose our reduced word compatible with the partial products wy in the
definition of w(r). That is, for any p, we have wy > s; - --s;, = wiy for some k.

Claim:fii”- . ~fif"(7r/‘ * 1) = n* x 0, for some 0, with 0,(1) = n(t) forte L u--- U .
This follows by descending induction on p. Indeed, assume the claim for a given
p (with p > 1), and suppose wi > s;,---5; = wgy1. Then on r€ [ U--- U, the
function ¢1— (u+ Hp(t),oc[zfl) = (u + n(7), “Zﬁ is non-negative, and it attains its
minimum value 0 at the right endpoint of 7. Hence by definition, the operator
f;’:l' does not change the path n* % 6, within the interval t € I U --- U Ii, and the
claim holds for p — 1.

Finally, y > ¢ follows immediately from the claim and the definition of u;.

(b) Now the opposite containment C. Consider any path 76 (not necessarily
dominant), and consider the unique dominant path z*x7 such that
fif' ~--f,-{"(n“ * 1) = n**0 for some reduced word s;,---s; =:w and /; > 0. We must
show that w(w) = w.

If 7 % 0 is itself dominant, there is nothing to prove. Otherwise, let I, 1, k > 1, be
the interval where u—+ 0(¢) first exits the fundamental chamber. We will use
decreasing induction on k to show the stronger statement wy = ;- - - ;.
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By the definition of the lowering operators, we have u + 0(t) = u + n(¢) for t <
the first point of exit of #n* % 6 from the fundamental chamber. Thus, for ¢ € I,
u+ 0(2) lies on all the walls which are crossed in interval /. Thus there exists

a product ¢ ---¢i" of ¢; with s; € W([y), such that 7+ 0 := ¢/ --- €' (1 % 0)

lies inside the dominant chamber for fe/lju---Uly;. By induction,
1)

7 0 =f,-p’ ---f/’(n“ *m), where wgp1 =s;,---s,. We thus have n'x0=
] I .

];-’”‘ e fi l-p” .. f,] (m" % m), where wy >s;, ---s;,5; - --5;, provided only that k > 1.

If k =1, we may assume that u; > s;, ---5;,, and the conclusion again follows. [J

EXAMPLES. We write (t1aj12a; - - ) for an LS-chain (t;>---;0<a; <---) of V,, so
a chain (r1; 0 <1) with extremal weight 7(v) is written simply (11).

(i) G=SL3, u=2w,, v=w + w,, y=s5. There are four components of
C(u, v, ) m=(s18), C(ws,id); t=(s152 %sz), CQwy,1d); n=(s1), C(w+2w,1d);
n=(d), C(w;+3w,,s;). Note that for mn=(s;) we have W(l}) = (s,), but
s271 £y, so w(n) = id.

(i) G=SLs;, p=2w, v=2w 43w, y=s15. The path n=(s;52 %5 3¢)
corresponds to C(2w|+anm, s152). Note that 0 = f5f1fo(n *x 1) € C(u, v, y), but this
is no contradiction, since 0 = f,f3(n" * 7).

Proof of Theorem 2. This follows immediately by the definition of constructable-
standard tableaux and repeated application of the previous Proposition.

2.5. RAGHAVAN-SANKARAN OPERATORS

We define certain raising operators on liftable tableaux, different from the
root operators above, which we will need in our proof of Theorem 4. (Cf. [26], [20,
§41)

Given a tableau IT and a simple reflection s, define S(IT) as follows. Let
I =(t1,...,ty). If for some 1 < K < N we have

T| 2 8T1, ..., TK 2 STK, Tkl < STK4,

takeS(IT) to have the same rational numbers in its LS-chains as IT has, but change the
cosets to

ST = (5T1, ..., STK, TKals - - - » TN)-
(In case stx = tgy and these cosets form part of the same LS-chain, for consistency

of notation we must combine these two into a single segment: that is, omit Tgy
and its corresponding rational number.)

PROPOSITION 13. If 1 is a liftable tableau, then s(I1) is also a liftable tableau.

Proof. First we show that S(IT) is a tableau. Suppose the coset tx in the
definition of (IT) occurs in the jth LS-chain m; of II: that is, 1x = 1. Then
ST = (m), ..., 8(wj), mpa, ..., m).  We  thus  need to show that if
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n=(t1>-->1450<a <---) is an LS-chain, then s(n)=(st; > >
ST > Ty > -+ > 7450 < ap--+) is also an LS-chain.

If L = g, thens(n) = e'°P(r), where e is the raising root operator corresponding to
s. If L<gqg,letnw =(t1>-->11;0<a; <--- <ay < 1), which is an LS-chain
by [17, Lemma 3.1]. Then once again s(n') = e'°P(x’), so that 5(n) is an LS-chain,
and this easily implies that 5(r) is also an LS-chain. Therefore 5(IT) is a tableau.

Now to see that s(IT) is liftable, we use Lemma 7(b) repeatedly, starting with the
positions L, L+1 (or N—1, N if L = N) and proceeding leftward. (Cf. the proof
of Lemma 8(a).) O

3. Linear Independence

3.1. LS-PATH BASIS

In order to show the independence of the set {pri} of standard monomials in V', we
first establish independence for a set {v} in Vi, which we call the LS-path basis.

First we recall the analogous basis {v,} of ¥} referred to in Theorem 3. Let’s; be the
operators of Section 2.5. Note that wts;(n) = wtn — lo; for [ € Z .. For an LS-chain

7 of shape A, define integers /;(n), L(n), ... by

wtn — wts; (n wts; (n) — wts,s; (7
ll(n) — ll( )’ 12(7'[) — ll( ) %) 11( )’
oy O,

That is, wtn — wt's;, (1) = lj(n)a;,, etc. Note that this depends on our fixed word
i=(,...,i). For (4, ..., 1) = (Li(n), ..., (n)), define

i J— 1] lr N
ve=F---Fv, eV,

where F; € g are negative root vectors. Now, let wp(i) be the unique
Bruhat-maximal element in the set {w(J) | J C[1,r]}; that is, wp.x(i) is the Weyl
group element generated by a longest reduced subword of i. (See [13, Lemma 1].)
Our definition of {v;} is a slight generalization of [20, Definition 3], since i need
not be reduced. Recall [20, Theorem 2]:

PROPOSITION 14. Let w = wyax(i). The set {v;}, where 7 runs over all LS-chains
n=(1>1>--;0<a; <--) withw> 11, forms a basis of V,(w).

We shall need one technical property of the v,.
LEMMA 15. Let ' =75(n), | = (wtn —wtn')/oy, and 0 < «' in the lexicographic

order on LS-chains (Section 1.3). Suppose either of the following holds: (i)
k <[, or (ii) the Raghavan—Sankaran operator coincides with ordinary reflection.
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7 =75i(n) = si(n). Then

Vi, if 0 =n' and k=1,
F,'k(Vo’) = Z xvg, otherwise,

O<mn

where 0 runs over LS-chains less than m.

Proof. The first case of the conclusion, F¥(vy) = v,, follows directly from the
definition of v,. The second case of the conclusion follows easily from either
hypothesis together with [20, Lemma 3(ii)]. O

Now we extend the above construction to generalized Demazure modules. For a
tableau IT of shape (11,...,4,), we have 5, (IT) = o * IT" for some tableau I1" of
shape (L2, ..., 4,); and 5,(IT'") = 7> x I1”, etc. Then define integers

L) = o La(m) =

Oy %y

etc.

wt T — wi, (IT) Wt — wes, (1)

(Recall that wt IT denotes the endpoint of IT considered as a path, i.e., the sum of the
weights of the LS-chains in IT.)
Now for (Ly,...,L,) =L ID),..., L)), let
v =FP 0, @ FP0, @ - Fr(v;,) ).

The {v} coincide with the {v;} in the case where Vjp is an ordinary Demazure
module V;(w).

3.2. INDEPENDENCE OF {p,}

Let wj = Wmax(ij, . . ., i), the longest Weyl group element which can be generated

from a tail subword of i. Then clearly Vim C V;,(w1) ®---® V;, (w;). We will write
) = %" By Proposition 14, the vectors

{ngll) R --® VSI?L

where each m; = (t; > ---) varies over all LS-chains with w; > 7, form a basis of
Viu(w1) @@ V), (wr).

PROPOSITION 16. For a standard tableau Il = (ny, ..., n,), let us write viy € Vi in
terms of the above basis of V, (w1) ®---Q V;,(w,). Then we have the triangular
relation:

Vo = vgtll) R --® vg’) + Z o' Vgll) R ® vg,)’
O<Il

where @ = (04, ..., 0,) runs over all tableaux less than 11 in lexicographic order.
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Proof. (cf. [20, Proof of Lemma 3]). We use induction on r, the number of letters in
i. For r =1, there is nothing to prove. Now suppose r = 2, and we know the
Proposition for the word (i, ..., ). Let s =s; and take IT' =5(IT), where

n=(m,....,n), I'=Gm),. .. sm), Gy, ..., m),
and
o =3(m) = s(m), ) = s(m), ..., S(w1) = s(mj).

By induction, we may assume

v = Vi @ Vi) @ Q@ Vi) Q@ Vi, + Z XV ® Vg, ®--&Q vy,
o<Ir

where ® = (71, 0, ..., 0,). Then
v = F) (vp),
where /} = hy + - -+ + hy for

wtm; — wts(my)
h=————442" ...,y , hy
o, O, o,

Wty — Wts(m ) _ wtm — wts(my)

The terms of vy are obtained by distributing the /; operations Ffl‘ arbitrarily among
the r factors of each term in vyy.

We find the maximal term in vry by repeatedly applying Lemma 15. By hypothesis
(i1) of the Lemma, the maximal first factor of a term in vy is F,-ll”(vs(nl)) = Vn,;
the maximal second factor is v,,; and so on through the (k — 1)th factor. Now,
assuming the previous maximal factors have been achieved, we apply hypothesis
(i) of the Lemma to find that the maximal kth factor is E!]’A’ (Vs(m)) = Vpip- But then
all /, operations F;, have been used, and the subsequent terms are unchanged from

i I:‘

Recall that the set {pr7} inside V", consists of monomials in any basis {p,} of the V'}
which is triangular with respect to {v;}.

COROLLARY 17. (i) The set {vr1}, where Il runs over the standard tableaux of shape
(A1, -y A), is linearly independent in Vip.

(i) The set {pn}, where I1 runs over the standard tableaux of shape (11, ..., ),
restricts to a linearly independent set in V.

Proof. Part (i) follows immediately from the triangularity of the set {vp} with
respect to the basis (V) ®---® v)}. Part (ii) follows similarly, using in addition
the triangularity of {p,} with respect to {v.}. O
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4. Spanning

The independence of the set {pn} in V7§, along with the Demazure formula for
standard tableaux (Section 2.3), gives a lower bound for the dimension of V7}.
In this section, we use geometry to find an upper bound for this dimension which

coincides with the lower bound, showing that {pr} is a basis.

4.1. THE DEMAZURE MODULE AS A SPACE OF SECTIONS

We relate the generalized Demazure module Vi, and the Bott—Samelson variety Z;
via a succession of three mappings (see [23]). First, let U; denote the one-dimensional
unipotent subgroup of G whose Lie algebra is kF;. We have an embedding

¢1: Ui[ X"'XUi,v_)(le X"'XPi’_)/Br:Zi

whose image defines a Zariski-dense open cell in Z;.

Second, let ?i D B be the maximal parabolic subgroup whose Weyl group is
generated by all the simple reflections except s;. Let Gr(i) = Gr(i, G) := G/ﬁ,- be
the G-Grassmannian, and define the multiple G-Grassmannian

Gr(i) := Gr(y) x - - x Gr(i,),

on which G acts diagonally (simultaneously on each factor). The Bott-Samelson
variety embeds B-equivariantly into this space:

- Z; — Gr(i)
Pro-oop) = (1P pip2Pe. .. pip2 i Py).

(The configuration variety Z;, can be realized as the projection of Z; C Gr(i) to
those factors of Gr(i) for which m; > 0.) 5

Third, for a weight A = m;, define a line bundle on Gr(i) as £, := G X kj, so that
Ly, 1s the minimal ample line bundle on Gr(7). We thus obtain a line bundle
Lim:=L), ®- --®L,; on Gr(i), which is very ample (resp. semi-ample) precisely
when all m; > 0 (resp. all m; = 0). The restriction of £; m to Z; C Gr(i) is easily seen
to be isomorphic to the line bundle £;y, on Z; defined in Section 1.4. Recall that
we may identify H°(Gr(i), £;) = V7, so that Gr(i) — P(HY(Gr(i), £,)*) = P(V)),
g/ﬁi — g-v,. Thus we have the natural map

b5 Gr(i) - PV, ®--®V;,)
@ Pi,-- 8P) = g1V, ®...08V,,.

Now, composing ¢; o ¢,, we have a map
Zi— PV, ®--®@V,),

whose image is by definition Z; p,. If we compose all three mappings ¢; o ¢, o ¢, we
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see that:

PV, ®---® V;,) D Spany(Zim)
= Span ( U;; (v, @ Uy, (v, ®- - - U;,v;, ) )
= P(u;,(v;, ®u;,(v;,®- - -w;, v;,- )
= P( Vlm)

That is, we have the map ¢ = ¢ 0 ¢5: Z; - P(Vim) whose image spans P(Vim).
Dually, we have the injective linear map ¢*, which factors as:

ViTm — HO(Zi,m» Ei,m) — HO(Zia Ei,m)-

4.2. GEOMETRIC DEMAZURE FORMULA

We now use Demazure’s character computations with P!-fibrations [3] to finish our
proof of Theorems 4, 5, and 6, on the model of [20, § §].
Our proof proceeds by induction on r, the number of letters in i. For » =0, all
statements are trivial. Now let r > 1, i =iy, and i’ = (ip, ..., i), m' = (ma, ..., m,).
From the definitions, we easily see that H%(Z;, Lim) = H’(P;/B, £), where

E=P % & ®H(Zy, L w)) = P; % & ®Vi ),

a vector bundle over P;/B. (The last equality is by induction.) Now restrict the
P;-action on this vector bundle to an action of G; = SL,, the group whose Lie algebra
is generated by E;, F;. Take B; = BN G;, so that P;/B =~ G;/B; = P

The inclusion v;, ® Vy w C Vim dualizes to a short exact sequence of B;-modules
0 — Ker — Vi, > kj ® V7, — 0, which leads to a long exact sequence in
cohomology of bundles over P:

.= HI(P', G, % Ker) = H/(P', G, X Vim) — H'(P', &) -

Slnge Vim 18 a Gj-module, it 1nduces a trivial vector bundle, and H (Pl
G; X Vim) = 0. Since trivially H2(P', G; xKer) =0, we thus get:

H(PY & =0 fori>O0.

From the Leray spectral sequence of the fibration Z; — P;/B, and induction, it
follows that H'(Z;, Lim) = 0 for i > 0.

Now, the character ring of G; is R; =2 k[x], a polynomial ring in one variable, with
the quotient map R — R;, ¢ 4% From elementary computations with
SL,-bundles we have Demazure’s formula [3] for the G;-character char; of the
cohomology of &, in terms of the fiber of £ above ¢B; € G;/B;:

(ad X(

char; H'(P', &) — char; H'(P', £) = A, chari(&l.5,),

where A, : R; — R; is the map induced from A; : R — R. But the negative H'! term
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vanishes, and by specializing the polynomials to x = 1 we find

dim H(Z;, Lim) = dim H(P', &)
= A;chari(K}, ® Vi m)lyzi
= Ail (eAlAiz(e/lz © '))'e’izl s

where the last equality is by induction. However, we also know:

dim H%(Z;, Lim) > dim H*(Zim, Lim) by Section 4.2

> dim V7§, by Section 4.2
> dim Span(pyy | IT a standard tableau)

= #{standard tableaux} by Corollary 17
= A; (e"A,(e" - )y by Corollary 10

Comparing expressions, we conclude that all the above inequalities are in fact
equalities, meaning

HZi, Lim) = H (Zim, Lim) = Vi = Span(pn),

and the Demazure character formula holds for all four of these spaces. This implies
the projective normality of Z; and Z;,, with respect to L;, by [4, Ch II, Ex 5.14].

Finally, the vanishing of the higher cohomology of £;, over Z;, follows from a
standard argument involving the map ¢ : Z; — Zin (see, e.g. [20, § 8], [22, Prop-
osition 28]). Using H*(Zim, Lim) = H*(Zi, Lim), and the normality of Z; , we apply
Kempf’s Lemma [9] to deduce H'(Z; m, Lim) = H(Z;, Lim) for all i > 0. But we have
already shown that the right hand side vanishes.

This completes the proof of Theorems 4, 5, and 6.
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