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Abstract

Coastlines worldwide are coming under increasing pressure due to climate change and human
activity. Data on shoreline change are essential for coastal managers and when no long-term
monitoring programs are implemented and shoreline change is typically on the order of less
than 1 m/yr., as observed in Ireland, aerial photography is the most valuable source of
information. Awell-established literature exists for automated vegetation extraction from digital
images based on the near infrared reflectance, but there is less research available on spectrally
limited colour photography. This study develops a methodology for automating vegetation line
extraction from a series of historical aerial photography of the Cork coastline in the South-West
of Ireland. The approach relies on the Normalised Green–Blue Difference Index (NGBDI),
which is versatile enough to discriminate disparate coastal vegetation environments, at different
resolutions and in various lighting and seasonal conditions. An iterative optimal threshold
process and the use of LiDAR ancillary datasets resulted in an automated vegetation line
measurement with uncertainties estimated to be between 0.6 and 1.2 m. Change rates derived
from the vegetation lines extracted present uncertainties in the range of ±0.27 m/yr. This robust
and repeatablemethod provides a valuable alternative to time-consuming and subjectivemanual
digitisation.

Impact statement

Coastlines worldwide require effective management, and accurate, timely data on shoreline
movements are an indispensable prerequisite to inform the decisions made by coastal managers.
Field coastal monitoring requires considerable human resources, it is spatially limited and time-
consuming, but significantly it cannot be done retrospectively. In places where no such
programmes have been undertaken, Earth Observation satellite data can be invaluable in
capturing temporal changes. But where shoreline changes, or movement of the vegetation line,
is typically on the order of less than 1mper year, as observed in Ireland, aerial photography is the
most valuable source of regional to national scale information. While it is common practice,
manual digitisation of shorelines is subjective and time consuming. Substantial literature is
available on automated vegetation feature extraction using near-infrared reflectance but,
research on more spectrally limited RGB (red-green-blue) colour photography, commonly
acquired by aerial platforms, is limited to very high-resolution Uncrewed Aerial Vehicles
(UAV) photography. In this paper, we demonstrate the viability of automated shoreline
detection on aerial orthophotography making use of Colour Vegetation Indices developed for
UAV photography. Historical archives of aerial photography are unevenly stocked with pho-
tography of varying quality and acquisition conditions, alongside limited spectral content,
making them challenging datasets to handle, but the methodology developed has proved
versatile enough to perform well at different resolutions, and in different lighting and seasonal
conditions, effectively discriminating diverse coastal vegetation environments. This research
provides a robust and repeatable method to extract shoreline change information from data-
limited archives.

Introduction

Following a worldwide pattern (UNEP, 2017), the highest concentrations of population and
activity in the Republic of Ireland are found in coastal areas with 1.9 million people residing
within 5 km of the coast, representing 40% of its population (CSO, n.d.). Human activities
coupled with a changing climate, associated with rising sea levels and an increase in storminess,
impact shoreline movements and can have major detrimental effects. Coastal erosion and
flooding can eventually lead to a loss of habitats and ecosystems, damage to a range of
infrastructure, and disruption to social and economic systems (IPCC, 2018). Coastlines
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worldwide require ongoing effective management, and accurate,
timely data on shoreline movement are an indispensable prerequis-
ite to inform the decisions made by coastal managers.

In recent years in Ireland there has been a growing interest from
stakeholders for accurate data on coastal change to better address
challenges faced by populations, infrastructures, and ecosystems.
This need was underscored in the Report of the Inter-Departmental
Group on National Coastal Change Management Strategy, pub-
lished in October 2023, which identified deficiencies, including the
lack of monitoring along the majority of the national coastline
(Department of Housing, Local government and Heritage and the
Office of Public Works, 2023). The most recent national coastal
erosion assessment undertaken in Ireland was the Irish Coastal
Protection Strategy Study (RPS/ICPSS, 2011). The shoreline pos-
ition was retrieved from manual digitisation of aerial photography
at different dates between 1973 and 2006 (RPS/ICPSS, 2011).
Annual retreat rates were derived assuming a linear retreat process,
and the change in position of the shoreline was measured at a very
coarse resolution of 1 km. This analysis is now outdated and must
be extended in time to account for shoreline change which has
happened since 2006. Despite these limitations and the dataset’s
focus on identification of retreating coastal segments, it has been
the only quantitative reference used by local authorities in Ireland
since 2011 (Flood and Schechtman, 2014; McKibbin, 2016; Lawlor
and Cooper, 2024).

Consistent archives of coastal movements over multiple dec-
ades are rare. In the United Kingdom, the East Riding Regional
Coastal Monitoring Programme established in the late 1990s, with
collections of beach cross-profiles at 75 different points along the
coast every six months, is an example of best practice (East Riding
of Yorkshire Council, 2006).Moreover, annual aerial photographs
from the past two decades, available through the Channel Coast
Observatory (CCO), provide a valuable resource for large-scale
shoreline change analysis, complementing localised and resource-
intensive field monitoring efforts. In places where no monitoring
programmes have been undertaken, maps are invaluable for
shoreline change analysis due to their historical significance.
However, historical maps in Ireland are infrequent and often lack
precision, preventing their inclusion in the study and necessitat-
ing a reliance on aerial photography. Ireland holds an archive of
national photography captured periodically since 1995. The spa-
tial and spectral resolution of aerial photography acquired world-
wide is very varied, but typically, the older the aerial photography,
the less detail is available, with the first national campaign in
Ireland only acquiring panchromatic photography for example.
Aerial photography acquired in three or more spectral bands are
now more common, and in Ireland, national photography was
acquired in the Red, Green, and Blue (RGB) parts of the electro-
magnetic spectrum up until 2013, after which the Near Infrared
(NIR) was included.

In this study, shoreline will refer to the dynamic boundary where
the land meets the sea, a line subject to change from natural and
human influences. The coastline encompasses the entire length of
land along the sea. Shoreline detection techniques are generally
classified into datum-based methods, which utilise LiDAR or other
elevation capture technologies to create digital terrain models
(DTMs), and proxy-based methods (Pollard, Brooks, and Spencer
2019). Datum-based methods are limited by infrequent image
capture and inconsistent spatial coverage (Pardo-Pascual et al.
2018), limitations which apply to Cork. Proxy-based methods rely
on the detection of visible indicators whether they are geomorpho-
logical, vegetation, water or human features (Toure et al. 2019). The

most frequently identified shoreline indicator from optical images
is the instantaneous waterline, as it is the most visually discernible
feature (McAllister et al. 2022). However, to use instantaneous
waterlines as indicators of shoreline change, they must be corrected
using estimates of beach slope and tidal height timeseries, which
can be challenging to obtain in areas with observation gaps (Muir
et al., 2024), such as along the Cork coastline. On the contrary, the
seaward edge of stable coastal vegetation, the vegetation line, serves
as a less variable shoreline proxy (Pollard et al., 2020), effectively
capturing changes without the bias introduced by tidal stages
(Toure et al., 2019). While the vegetation line may vary seasonally,
it was selected as shoreline proxy given the study area data limita-
tions. Although this proxy is ineffective on artificial or hard cliff
coasts, it is a valuable indicator of shoreline change in soft, sandy
environments, such as Cork, where storm energy gradients drive
coastal dynamics (Pollard et al., 2020; Devoy, 2008). Additionally,
remote sensing techniques for mapping vegetation have a well-
established research history (Ustin and Gamon, 2010). Vegetation
is traditionally mapped with indices using NIR and red reflectance.
The normalised difference vegetation index (NDVI) is the most
widely used metric when it comes to quantifying the health and
density of vegetation (Huang et al., 2021). However, historical aerial
photography do not commonly include NIR information.

The use of Colour Vegetation Indices (CVI) based only on RGB
data grew with the popularisation of UAV research. Most CVIs
were thereby designed for centimetre scale resolution photography.
UAVs can play a significant role in monitoring and managing
coastal ecosystems (Joyce et al., 2023), however they cannot be
acquired retrospectively to calculate historical change rates. This
research proposes a methodology to adapt the use of UAV-CVIs to
much coarser historical aerial photography for the purpose of
historical vegetation line identification.

Study area and data

Study area

The coastline of Ireland is very irregular with a bay-headland
configuration resulting from a high wave energy regime. Cork in
the South-West of the Republic of Ireland has 1,094 km of coastline
(Figure 1), and it is the county recording the highest proportion of
its population living within 100m of the coast (CSO, n.d.). Cork has
422 km of soft sandy coastline, and 91 km are at risk of erosion
based on the results of the Ecopro (1996) and Eurosion (Salman et
al., 2004) projects. The eastern part of Cork’s coastline is high-
lighted as more vulnerable due to its geomorphological attributes
and the higher recorded erosion rates in that area.

The methodology proposed to extract vegetation lines from
historical aerial photography and quantify shoreline change is
applied to the entire Cork coastline. However, five sites along the
coast have been chosen to validate the results of this study
(Figure 1). From East to West, Pilmore and Garryvoe beaches were
selected as two of the sites recording the highest retreat rates in
County Cork. Inchydoney and Owenahincha are two West Cork
beaches with large dune systems which make them very popular
beaches. Finally, Garinish Bay hosts three small sandy coves on the
Beara Peninsula in the western part of County Cork.

Aerial photography

Tailte Éireann is the Irish agency in charge of national mapping.
They completed their first full coverage of the Republic of Ireland
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RGB aerial photography dataset in 2000. From 2000 onwards,
national coverage orthophotography datasets have been delivered
periodically with increasing spatial and spectral resolutions
(Table 1).

Since field monitoring data exist only for a few sites for a single
season and satellite imagery are unsuitable due to the magnitude of
change observed, aerial images are the most valuable—and invari-
ably the only—source of historical coastal positions in Ireland.
Nevertheless, working with aerial photography in Ireland can be
highly challenging. Aligning the availability of survey aircraft on the
island with cloud-free weather conditions at times of high sun
angles in the summer season for the whole country is nearly
impossible. Achieving national coverage may entail flights span-
ning up to 5 years apart, occurring from March to November. The
exact time and date of acquisition for each photography is not
always available as these datasets have been produced by different
contractors over the years with different procedures and metadata
requirements.

Aerial photography are orthorectified by the data provider, with
each pixel having x and y co-ordinates representing its position on

the ground so that accurate measurements can be taken from them,
but the uncertainty varies between the datasets (Table 1, Column 5:
“Positional accuracy uncertainty (m)”).

Complementary datasets

Seaweed washed ashore and low-tide shallow waters might have
similar spectral signatures in the visible wavelengths to growing
vegetation, therefore ancillary datasets have been used to refine
the study area and mask areas prone to misclassifications in low-
lying areas. LiDAR coverage of the Cork coastline is limited in
frequency and spatial coverage, but several datasets are available,
each covering different sections of the coastline; the eastern Cork
coastline was surveyed as part of the Office of Public Works
(OPW) Blom Coastal Survey in 2006–2007, Cork Harbour, as
part of the OPW Flimap Survey in 2007 and the OPW Coastal
Aerial LiDAR survey covered the western part of the county’s
coastline in 2021. To mask out low-lying areas where misclassifi-
cation issues can arise, all areas under 2m of elevation to theMalin
Head datum on the different LiDAR Digital Surface Models

Figure 1. Study area’s location in Ireland and validation sites along Cork coastlinewith sandy shore environments highlighted in blue. Inset shows the location of County Corkwithin
the island of Ireland.

Table 1. Photography used in the analysis

Dataset name Date for Cork Spatial resolution (m) Spectral resolution
Positional accuracy
uncertainty (m) Optimal threshold

MapGenie Photography (1996–2000) 07/2000 1 RGB < 0.5 0.1

MapGenie Photography (2004–2006) 07/2005 1 RGB < 0.5 0.1

MapGenie Photography (2005–2012) 11/2011 03/2012 0.25 RGB < 0.5 0.08

MapGenie Photography (2013–2018) 04/2015
06/2018

0.25 RGB + NIR < 0.5 0.15
0.06

Coastal Aerial LiDAR Survey 20211 Autumn 2021 0.10 RGB + NIR < 0.1 0.15

1This dataset has been produced by the Office of Public Works and is only covering the South-Western coast of Ireland. It only covers the western part of the study area, west of Cork harbour.
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(DSMs) were merged to create a low-lying areas mask. This
threshold was determined through an iterative optimal thresh-
olding process, aimed at masking as much low-lying area as
possible without compromising the accommodation space for
the vegetation line.

The choice of the vegetation line proxy for shoreline position is
only relevant for soft coasts, which are more vulnerable to change
over time, and is not suitable for hard or artificial coasts unless they
are vegetated seaward. The previous coast classification work
achieved by the Eurosion (Salman et al, 2004) and the ICPSS
(RPS, 2011) projects served as guidelines to identify soft coastal
segments. These were further refined using the National Land
Cover Map (NLCM), created by Tailte Éireann and the Environ-
mental Protection Agency (EPA), and visual inspection using the
study photography database. This work resulted in a sandy shore
environments zone.

Methods

Selecting a suitable CVI

The use of vegetation indices is a common practice in remote-
sensing studies, as they minimise the influence of distorting factors
(Ruiz, 1995) as well as combining and maximising information
from specific bands or parts of the electromagnetic spectrum.
Several CVIs based on colour RGB photography have been pro-
posed to identify vegetation, primarily for data fromUAVs carrying
RGB cameras. These CVIs include the normalised green-red dif-
ference index (NGRDI) (Torres-Sanchez et al., 2013), the visible-
band difference vegetation index (VDVI) (Wang and Myint 2015),
the normalised green-blue difference index (NGBDI) (Wang and
Myint 2015) and the Red-green-blue vegetation index (RGBVI)
(Bendig et al. 2015).

The index chosen had to be versatile enough to perform well at
different resolutions, and in different lighting and seasonal con-
ditions to discriminate very different vegetation environments.
The three coves of Garinish Bay backed by grass vegetation and
the dunes from the sandspit of Inchydoney (Figure 1) were chosen
to test five different indices. The binary classifications of vegeta-
tion or no vegetation resulting from the different indices were
assessed using the widely recognised overall accuracy metric,
calculated as the total number of correctly classified pixels divided
by the total number of pixels in the reference data. Using the 2000
photography (1 m spatial resolution), the NGBDI (Equation (1))
outperformed the NGRDI by 30%, the RGBVI by 5% and the
VDVI by 9%, achieving 89% classification accuracy when com-
pared with manual photointerpretation. Using the 2018 photog-
raphy (0.25 m spatial resolution), the NGBDI was once again the
best performing index with an accuracy of 96%, similar to the 95%
performance of the RGBVI. Since the 2018 photography also
contained NIR data, the performance of the NGBDI was com-
pared to that of the commonly used Normalised Difference Vege-
tation Index (NDVI), with a very similar accuracy of 94%
achieved. Using the 2021 photography (0.1 m spatial resolution),
all indices performed similarly with accuracies of 97–98%, with
the exception of the NGRDI, which had an accuracy of 79%. After
testing the different indices, the one which performed most con-
sistently across the different photography sets, gave the best
statistical accuracy and generated the most coherent vegetation
line was the NGBDI (Eq. 1).

NGBDI¼ Green‐Blueð Þ= Green+Blueð Þ (1)

The study’s regional scope, the limited uniformity of sandy
environments along the Cork coastline, and large variations in
data acquisition conditions precluded use of image classification
methods. The extensive training required, which would have to
be undertaken for each image set, would have negated the time-
saving benefits of developing an automated approach. To object-
ively differentiate between vegetation and non-vegetation pixels
for the varied environmental and acquisition conditions, an
iterative optimal threshold process was implemented, with dif-
ferent NGBDI thresholds tested, by visual examination of the
spectral signature of nearby pixels and defined according to the
resolution of the dataset as well as the seasonality of the
acquisition date.

At 1 m resolution, each pixel tends to represent a homogeneous
area. With clear boundaries and fewer mixed pixels, the distinction
between features is more pronounced and higher thresholds can be
applied. A threshold value of 0.1 was chosen for both the 2000 and
2005 datasets.

At 0.25 m resolution, more details are captured in the pho-
tography. Nevertheless, the increased level of detail may not fully
distinguish boundaries with intricate details and with more
mixed pixels, it becomes challenging to precisely delineate
boundaries. As a result, a more permissive threshold was needed
to ensure that features of interest were captured accurately.
Therefore, thresholds of 0.08 and 0.06 were chosen for the
2011–2012 and the 2018 datasets respectively. The 2015 photog-
raphy were treated separately from the 2018 photography given
the season difference (April 2015 versus June 2018). The 2015
photography covers the Eastern part of Cork coastline, which is
more homogeneous with linear beaches backed by grass vegeta-
tion and no large dune systems. In April, grass is reaching its
growing peak, and its green reflectance is very distinctive. These
conditions justify the choice of a higher 0.15 threshold for the
2015 photography.

At 0.1 m resolution, boundaries are more clearly defined, and
features can be easily captured on the 2021 photography. As a
result, a higher threshold of 0.15 was applied to this dataset.

From a binary photograph to a vegetation line

Applying the selected threshold to the NGBDI output resulted in
binary outputs of vegetation pixels and background pixels, which
had to be converted into a line feature for subsequent input to the
Digital Shoreline Analysis System (DSAS) (Himmelstoss et al.,
2021). The binary images were first polygonised then simplified
using a double buffer process. First, a positive buffer is applied,
extending the vegetation polygon by a distance corresponding to
the photography’s resolution. As a second step, a negative buffer is
performed, contracting the vegetation area by the same distance.
This process helps smooth the vegetation edge, simplifying its
geometry.

Polygons under 8m2were usually identified as seaweed residuals
or small patches of vegetation not suitable to be integrated into the
vegetation line. Based on this observation, all polygons under 8m2

and whose centroid lay within the National Land Cover Map’s
‘Exposed Sediments’ class were deleted. The remaining polygons
were agglomerated using an agglomeration distance of 10 m, a
minimum area of 80m2 and a minimum hole area of 10,000m2.
They were finally converted into line features, and only lines
within 50 m of the initial 2000 vegetation line were kept for the
DSAS analysis. Vegetation lines were thus created along the Cork
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coastline as proxies of shoreline position in 2000, 2005, 2011 or
2012, 2015 or 2018, and 2021. The full workflow can be seen in
Figure 2.

DSAS analysis

The DSAS is a freely available software application that works
within the Esri ArcGIS software and calculates change statistics
for a time series of shoreline vector spatial features (Himmelstoss
et al., 2021). The DSAS first requires a baseline to build transects
along which rates of change will be calculated. For consistency of
measuring change using the data available to this project, the
2000 vegetation line was selected. This baseline was categorised as
midshore, enabling transects to account for both retreat and
accretion. The maximum search distance was set to 30 m to allow
for large movements observed at sand spits, but without transects
intersecting each other in smaller coves. Transects were located at
10 m intervals and no smoothing distance was applied, as it
tended to place transects inappropriately parallel to the baseline.
No manual editing or omission of transects crossing the shore-
lines at oblique angles was performed, in order to make the
process as automated as possible and avoid manual intervention.
This approach was feasible because, unlike the overall sinuous
Cork coastline, the soft shore segments are relatively straight. All
statistics available were calculated for each transect. The Shore-
line Change Envelope (SCE) represents the distance between the
most seaward and the most landward shorelines that intersect a
specific transect. The end point rate (EPR) is calculated by
dividing the SCE by the time elapsed between the first and last
dated shorelines that intersect a given transect. A linear regres-
sion rate-of-change (LRR) statistic is calculated by fitting a least-
squares regression line to all shoreline points for a transect
(Himmelstoss et al., 2021).

Validation

As no pre-existing dataset was available to validate the vegetation
lines it was decided to manually digitise vegetation lines for each
available year at the five validation sites (Figure 1). Points were
generated every 25 cm along themanually digitised vegetation lines,
and at each point the distance between the manually and automat-
ically derived lines was recorded to calculate the Mean Absolute
Error (MAE).

Results

Validating the automated detection of vegetation lines

Vegetation lines were generated at every soft-shore site along the
Cork coastline for 2000, 2005, 2011 or 2012, 2015 or 2018, and 2021
(Figure 3). The OPWCoastal Aerial Survey acquired in 2021 is only
available for sites West from Cork Harbour, therefore, five vegeta-
tion lines were produced for the three sites West of Cork Harbour
(Figure 3) and only four lines for the two sites East of CorkHarbour
(Figure 1). The Mean Absolute Error (MAE) and its respective
standard deviation for each site is recorded in Table 2.

The July 2000 vegetation lines record MAEs below one pixel
across all sites, except for Inchydoney, where the MAE slightly
surpasses 1 m at 1.09 m due to some embryo dunes with vegetation
patches being omitted (Figure 4 - A). Given the relatively coarse
resolution of the orthophotography, the results accurately capture
the vegetation lines at each site.

The results for the July 2005 vegetation lines are similar, with
MAEs below one pixel across all sites. The best outcomes are
observed at Garryvoe beach with a MAE of 0.57 m coupled with a
minimal standard deviation of 0.64 m (Figure 4 – B). Garryvoe
beach is backed by glacial tills covered by agricultural fields. In
July, these grasslands display a very distinctive green reflectance,

Figure 2. Workflow schematic from historical aerial photography to shoreline change rates.
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making it relatively easy to distinguish them from the sandy
beach.

At the 0.25 m spatial resolution of the November 2011 and
March 2012 photography, several sites show their largest MAEs.
When remote sensing data are captured at a higher resolution, it
means that smaller and more complex details of the landcover
are captured. However, there is a critical point where the reso-
lution might not be sufficient to capture the full complexity of
the landcover features. Real-world features are indeed often
characterised by fractal patterns that exhibit details at various
scales. A discrepancy between the resolution and the complexity
of the landcover features may lead to misinterpretations or
incomplete delineation of landcovers. Inchydoney and Garryvoe
beaches have MAEs slightly over 1 m, and Owenahincha beach
records a 1.66 m MAE with a large standard deviation at 2.16 m.
For all these sites, the photography have been acquired inMarch,
which is quite early in the spring season, and the vegetation is not
yet at its greenest, adding complexity to its detection.

At Owenahincha Beach in 2012, the vegetation line alternates
between the most seaward vegetation and more landward vegeta-
tion similar to that observed at Inchydoney beach. The algorithm
misses the pioneer marram grass, which has low contrast with the
sand. This occurs at a resolution that introduces additional inac-
curacies, complicating precise boundary delineation. It is important
to note that although using manual digitisation as a validation
source in remote sensing is a legitimate approach, especially when
alternative validation sources are unavailable, it is subjective and
may introduce its own set of inaccuracies.

The results obtained for the national orthophotography mosaic
2013–2018 are quite heterogeneous. Just like Garryvoe beach,
Pilmore is a long linear beach backed by grasslands and 2015 is
the year where its MAE is the lowest at 0.38 m, or under two pixels
of this dataset (Figure 4 - D). Nevertheless, the issue related to
embryo dunes and pioneer vegetation patches is still present at
Inchydoney beach in 2018, giving a MAE close to 3 m (Table 2).

The last set of photography for 2021 is only available for the
three sites West from Cork Harbour. The spatial resolution is
enhanced to 0.1 m and the overall results are the best across the
different years. MAEs are below 0.75 m across all sites, and below
0.6 m at the three coves of Garinish Bay (Figure 4 - E). The

improved resolution captures additional complexity and intricate
details, allowing better differentiation between features, and reach-
ing the fractal analysis critical point where the complexity can fully
be captured.

Validating the resulting change rates

Although the validation of the extracted vegetation lines’ position
for each year is critical, it is crucial to establish the degree to which
positional errors, specific to each year, impact the resultant change
rates. For each of the five validation sites, a DSAS analysis was
performed using the manually digitised vegetation lines and com-
pared with the DSAS analysis based on the lines extracted using the
automated method (Figure 5).

The average MAEs for End Point Rates across all sites is 0.24 m/
yr. (Table 2). Given this result, EPRs within the range ± 0.25 m/yr.
may indicate a tendency towards stability rather than change.
When shoreline change lies within the error bounds, it is not
possible to indicate directional shoreline change (Pollard et al.,
2020).

The dune system at Owenahincha beach shows MAEs around
0.25 m (Table 2, Figure 5 – C). The difference between the average
rates calculated using both methods at Owenahincha is under
0.05 m/yr. Although it was one of the sites that showed the largest
errors when considering the positional accuracy of the individual
automated vegetation lines, the embryo dunes omitted one year are
either fully integrated into the dune system or washed away on the
next photography, making little difference to the overall rates of
vegetation line change.

Pilmore and Garinish Bay record the lowest MAEs (Table 2,
Figure 5 – D & E), and average rates at these sites show
good agreement between the automated and manual approaches,
with differences of less than�0.05m/yr. for Pilmore and 0.09m/yr.
for the three coves of Garinish bay (Table 2). At Garryvoe beach,
MAEs reach 0.37 m (Table 2) and even though retreat is indicated
by both approaches, the difference in the average rates is 0.27 m/yr.
(Table 2, Figure 5 – B). Unlike other sites, Garryvoe beach is backed
by agricultural land. In some seasons some of these fields were not
vegetated and no vegetation line could be extracted for the most
western field on the 2011 and 2015 photography covering Garryvoe

Figure 3. Vegetation lines produced with the automated method at Inchydoney beach between 2000 and 2021.
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beach, which explains why some lines erroneously veer north at the
west end of Figure 5 –B. As the final photography for this analysis is
from 2015, a large error for this date can have greater consequences
for the final EPR of this specific part of the vegetation line.MAEs for
the rest of the vegetation line at Garryvoe beach show good agree-
ments with the change rates derived from manual digitisation
(Figure 5 – B).

Discussion

A robust alternative to manual digitisation

Historical aerial photographs are often the only available evidence
of past coastal positions, but their disparate quality, conditions of
acquisitions, positional accuracy, and limited spectral contentmake
them challenging datasets to work with. This explains why many

Table 2. Accuracy of the vegetation lines produced with the automated method (m) as well as the accuracy of the change rates (m/yr) derived from these lines

Sites Years

Mean
Absolute
Error (m)

Standard
Deviation (m)

EPR Mean
Absolute

Error (m/yr)

Average EPR
(manual

lines, m/yr)

Average EPR
(automated

method, m/yr)
Average EPR

difference (m/yr)

Inchydoney 2000 1.09 1.72

0.18 0.14 0.11 �0.03

2005 0.78 0.91

2011–2012 1.06 1.16

2015–2018 2.92 2.84

2021 0.74 1.13

Average 1.42 1.99

Garryvoe 2000 0.76 0.83

0.37 �0.62 �0.35 0.27

2005 0.57 0.64

2011–2012 1.05 1.48

2015–2018 0.68 1.44

2021

Average 0.74 1.11

Owenahincha 2000 0.72 0.77

0.22 0.61 0.59 �0.02

2005 0.90 1.20

2011–2012 1.66 2.16

2015–2018 1.10 1.64

2021 0.44 0.82

Average 0.95 1.46

Pilmore 2000 0.98 1.5

0.15 �0.34 �0.40 0.05

2005 0.89 1.28

2011–2012 0.71 1.06

2015–2018 0.38 0.74

2021

Average 0.71 1.16

Garinish bay 2000 0.96 0.83

0.09 �0.18 �0.10 0.09

2005 0.88 0.79

2011–2012 0.90 1.25

2015–2018 1.04 1.64

2021 0.60 1.27

Average 0.87 1.24

Average across
all sites

2000 0.88 1.19

0.24 �0.10 �0.03 0.08

2005 0.76 0.97

2011–2012 1.07 1.48

2015–2018 1.24 1.83

2021 0.59 1.07

Average 0.99 1.53
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Figure 4. Validation of vegetation lines producedwith the automatedmethod, using custommanually digitised lines at Inchydoney beach in July 2000 (A), at Garryvoe beach in July
2005 (B), at Owenahincha beach in March 2012 (C), at Pilmore beach in April 2015 (D) and at Garinish bay coves in November 2021 (E). At Owenahincha Beach in 2012, the vegetation
line alternates between themost seaward vegetation andmore landward vegetation because the algorithmmisses the pioneermarramgrass, which has low contrast with the sand.
This occurs at a resolution that introduces additional inaccuracies, complicating precise boundary delineation.
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studies have relied onmanual digitisation. The last three national or
regional studies on coastal change in the Irish context made this
choice; the OPW (RPS/ICPSS, 2011), the Geological Survey Ireland
(GSI) (GSI, 2023) and the Northern Ireland Historical Shorelines

Analysis (NIHSA) project (Grottoli et al., 2023). In a publication
from 2021, Fabbri et al. report maximum digitising errors arising
from subjectivity of 0.3m for the Dune Foot Line and 0.85m for the
Stable Vegetation Line on UAV photography with a spatial

Figure 5. Validation of End Point Rates (EPR) derived automatically (b) against manually derived rates (a) at Inchydoney Beach (A), Garryvoe Beach (B), Owenahincha Beach (C),
Pilmore Beach (D), andGarinish Bay Coves (E). The evolution of the vegetation line is illustratedwith periodic lines automatically produced from the available aerial image datasets.
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resolution of 2–4 cm. The GSI’s National Assessment of Shoreline
Change Report published in 2023, reports uncertainties in vegeta-
tion line measurements of 1 m, for the 2000 and 2005 datasets and
0.5 m, for the 2005–2012 and 2013–2018 datasets. Although the
reported uncertainty for the two latter datasets (0.5 m) is slightly
better than the 0.99 m MAE given for the method presented here,
the uncertainty for the first two is comparable. Notably, the results
from the GSI correspond to the digitisation of County Dublin’s
coast where beaches tend to be longer and straighter than the
indented and varied coastline of County Cork. It is important to
emphasise the subjective nature of manual digitisation, whether
employed for a final product or validation purposes, especially in
environments involving fragmented vegetation lines in dune sys-
tems. The accuracy of the position or even the existence of a true
vegetation line may be subject to diverse interpretations from
experts of equal knowledge.

Prior to this work, Cork County Council relied exclusively on
ICPSS outcomes to guide discussions and management of coastal
risks. Of the five validation sites, only two had available outputs. For
Garryvoe, the ICPSS divided the area into two segments: the
western two-thirds indicated an erosion rate of 0.33 m/yr., while
the eastern third showed no erosion (0 m/yr). In contrast, the
automated method used in this study returned an average EPR of
�0.85 m/yr. for the western segment and � 0.25 m/yr. for the
eastern end. Pilmore Beach was covered by a single ICPSS segment,
indicating an erosion rate of 0 m/yr., whereas the automated
method revealed an average EPR of �0.40 m/yr.

Regarding sites not flagged by the ICPSS, no clear dynamic
patterns were observed at Garinish Bay coves, as the rates fall
within the margin of error. Owenahincha serves as an example of
best practice. After experiencing severe erosion in the 1970s
(Mullane and MacSweeney 1977), the introduction of gabions,
dune reshaping, and replanting stabilised the area, and this study
reveals the steadily advancing vegetation line, confirming the
resilience of the managed dunes. While local concerns about dune
erosion arose at Inchydoney, the analysis shows stable EPRs, with
the 2000 shoreline more landward than the 2021 line. The most
significant changes occur at the western end, where the tip of the
sand spit near the estuary is retreating. These findings challenge
perceptions of critical erosion while highlighting the limitations of
the EPR method. The steady retreat of the vegetation line since
2012 reveals a more complex, non-linear pattern of shoreline
dynamics, that could easily be missed without intermediate aerial
photographs.

While these findings provide valuable data on shoreline change,
they offer only a partial view. The next phase of the study will model
near-shore conditions and sediment transport, and these results
will be incorporated into a Coastal Vulnerability Index (CVI),
assessing hazard exposure and susceptibility along the Cork coast-
line and linking coastal dynamics more directly to vulnerable
receptors. Nevertheless, this first phase of the study provides a
more nuanced and location-specific understanding of shoreline
change, offering a significant improvement that enables Cork
County Council to make informed decisions based on actual
change data. Elementary GIS skills and minimal processing time
and power are sufficient to adapt and carry out this robust and
repeatable automated vegetation line detection method and prod-
uce ready-to-use and reliable change rates at a regional scale using a
DSAS. The transferability of the methodology elsewhere has been
proven by its ability to deal with very different coastal environments
along the Cork coastline without using site-specific thresholds. The
method could be readily applied at a national scale, particularly

since all the datasets used provide national coverage. Thismethod is
a good illustration of Vitousek et al.’s (2023) principle, where “data-
poor” archives, with spatiotemporally sparse data of disparate
quality are turned into highly sought-after “data-rich” coastal
science products. Another advantage of this method lies in the
limited data sources needed for the analysis. The addition of
ancillary data such as LiDAR and land cover, did not significantly
affect the results, but did reduce processing time with less manual
cleaning of the results required. While additional LiDAR and land
cover datasets for each photography time period, could potentially
help in rectifyingminormisclassifications, the overall impact on the
results is likely negligible.

Limitations and uncertainties

A simple time-efficient automatedmethod comes with limitations
and uncertainties which need to be clarified and considered when
using the results. Uncertainty calculations are essential when
interpreting shoreline change rates, regardless of the method used
to derive them. These calculations involve uncertainties related to
the photography positional accuracy ranging here from 0.5 to 1 m
(Table 1), and the automated measurement uncertainties, which
have been estimated to be between 0.6 and 1.2 m (Table 2) with a
mean 95% confidence interval of 0.98-1 m. The combination of
the photography positional accuracy and themeasurement uncer-
tainties can be calculated using the square root of the sum of the
two uncertainties squared (Hapke et al., 2011). This gives results
ranging from ±0.6 m for the 2021 dataset to ±1.3 m for the 2000
and 2005 datasets. Finally, the resulting shoreline change rate
measurement uncertainty has been estimated using a 95% confi-
dence interval to be ±0.27 m/yr., which is once again comparable
to the manual digitisation uncertainties presented by the GSI
(2023). It is still valuable to draw robust conclusions from shore-
line change with relatively higher error terms when calculated
over longer periods where the main shoreline processes can be
considered distinct from the errors (Pollard et al., 2020). The error
terms presented in this study are still much lower than the ones
presented in recent remote sensing studies on shoreline change
with 2.37 to 7.97 m for shorelines detected with VEdge_Detector
(Rogers et al. 2021) and 9.3 to 27.9 m for delineations from
VedgeSat (Muir et al. 2024). The difference is largely explained
by the resolution of the source images. VEdge_detector and
VedgeSat are working with satellite images with coarser resolu-
tions and therefore larger errors but over longer and denser
timeseries unveiling different coastal dynamic processes. Limita-
tions have been identified in relation to specific environments and
conditions. Dune system progression can take the form of small
embryo dunes which tend to be missed out by the automated
method. Change rates in these environments tend to be smoothed
by the method as early progression or washing away of the small
dunes generally occurs. Seasonality is an important parameter to
take into consideration while working with vegetation features
using visible wavelengths. It is always easier to capture vegetation
at its growing peak while it is at its greenest, although the timing of
this may differ for different vegetation species, and indeed even
between years depending on the weather. The marram grass in
dune systems and agricultural grasslands in Ireland do not display
the same phenology. Marram grass’ green appearance is altered in
July and August when it flowers, while grasslands reach their
seasonal peak in these months. Late autumn and early spring
photography give poorer results.
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The choice of a vegetation line to serve as shoreline-proxy is
not always ideal as some back beach environments might not
always be vegetated, cultivated areas can be ploughed for example
and these misclassifications have greater consequences if they
occur on the first or last photography in the timeseries. Extra care
and verification is needed in these instances. However, the vege-
tation line was chosen as the best proxy option for the available
data and its effectiveness in detecting storm-driven changes
(Pollard et al., 2020), which are a significant driver of shoreline
change along the Cork coastline (Devoy, 2008). Finally, spatial
resolution is a critical parameter in any remote sensing workflow.
This methodology is a good illustration of the importance of
recognising the fractal dimension of features of interest. An
improved resolution might not always improve results, and for
many sites the 0.25 m photography gives poorer results than the
1 m photography, while the 0.1 m photography gives the best
outcomes due to complex vegetation edges being captured more
precisely. This finding suggests that future data collection should
carefully consider the optimal resolution for capturing boundary
details. While higher resolutions may seem advantageous, they
can introduce inaccuracies at certain levels. Therefore, a lower
resolution might be acceptable for accurate boundary delineation
without sacrificing detail (e.g., 1-m photography, as used in this
research). Identifying the ideal frequency and timing of aerial
imagery acquisition is challenging, as aerial imagery is typically
collected for multiple purposes. Capturing shoreline change
using a vegetation line proxy is a specific application that would
benefit from annual acquisition, timed when the vegetation of
interest has the greatest contrast with its background. Though the
optimal timing may vary depending on the area and vegetation
type, this study demonstrates that valuable insights can still be
gained from aerial imagery even when acquisition conditions are
not ideal.

Conclusion

This research has demonstrated the viability of automated detec-
tion of vegetation lines on aerial orthophotography, making use of
CVIs developed for very high-resolution UAV photography. The
NGBDI proved to be versatile enough to distinguish the vegetation
line for very different temperate coastal vegetation environments
on photography with different spatial resolutions, acquired in
different light and seasonal conditions. In most instances, vegeta-
tion lines extracted using the automated method are within 1 m of
themanually digitised line, with ameasurement uncertainty similar
to that achieved by manual digitisation, even though the uncer-
tainty of the automated method is more variable across the dataset.
The uncertainty is determined to be ±0.27 m/yr. when looking at
the consequent shoreline change rates, which are the much-needed
end products. This automated method provides a reliable solution
for local authorities and coastal managers with limited data sources,
time, and remote sensing knowledge.
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