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Abstract

Suppose that G = (V,E) is a finite graph with the vertex set V and the edge set E. Let ∆ be the usual graph
Laplacian. Consider the nonlinear Schrödinger equation of the form

−∆u − αu = f (x, u), u ∈ W1,2(V),

on the graph G, where f (x, u) : V × R→ R is a nonlinear real-valued function and α is a parameter. We
prove an integral inequality on G under the assumption that G satisfies the curvature-dimension type
inequality CD(m, ξ). Then by using the Poincaré–Sobolev inequality, the Trudinger–Moser inequality
and the integral inequality on G, we prove that there is a nontrivial solution to the nonlinear Schrödinger
equation if α < 2λ2

1/m(λ1 − ξ), where λ1 is the first positive eigenvalue of the graph Laplacian.
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1. Introduction

During the past several decades, the nonlinear Schrödinger equation of the form

−∆u + b(x)u = f (x, u), u ∈ W1,2(Ω), (1.1)

has been extensively studied. In (1.1), Ω v Rn, n ≥ 2, f (x,u) : Ω ×R→ R is a nonlinear
continuous function and b(x) ∈ C(Ω,R) is a given potential. This type of equation
provides a good model for developing new mathematical methods and has important
applications in science and engineering.

Most recently, the investigation of discrete weighted Laplacians and various
equations on graphs has attracted much attention. In [6], Grigoryan, Lin and Yang
proved that there exists a positive solution to{

−∆u − αu = |u|p−2u in Ω◦

u = 0 on ∂Ω
(1.2)
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on graphs for any p > 2 if

α < λ1(Ω), (1.3)

where

λ1(Ω) = inf
u.0, u|∂Ω=0

∫
Ω
|∇u|2 dµ∫

Ω
u2 dµ

.

In [7], the same authors obtained a Poincaré inequality and one type of Trudinger–
Moser embedding on finite graphs. Furthermore, they gave various conditions such
that the Kazdan–Warner equation ∆u = c − heu has a solution on finite graphs, where
c is a constant and h : V → R is a function.

In this paper we consider a class of nonlinear Schrödinger equations of the form

−∆u − αu = f (x, u), u ∈ W1,2(V), (1.4)

on a finite graph G. Here f (x, u) : V × R→ R is a nonlinear real-valued function, α is
a parameter and W1,2(V) is a Sobolev space. The Equation (1.4) can be viewed as one
type of discrete version of Equation (1.1).

We begin with some notation and settings. Let G = (V, E) be a weighted graph
where V denotes the vertex set and E denotes the edge set. We write x ∼ y if vertex x is
adjacent to vertex y. We use (x, y) to denote an edge in E connecting vertices x and y.
A graph G is called connected if, for any vertices x, y ∈ V , there exists a sequence
{xi}

n
i=0 that satisfies x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = y. Let ωxy be the edge weights with

ωxy = ωyx > 0. The degree of vertex x is given by the measure µ(x) =
∑

y∼x ωxy. If µ(x)
is finite for every vertex x of V , we say that G is a locally finite graph. If V contains
only finitely many vertices, we say that G is a finite graph. A finite graph is certainly
locally finite.

From [8], for any function u : V → R, the µ-Laplacian of u is defined by

∆u(x) =
1
µ(x)

∑
y∼x

ωxy[u(y) − u(x)]. (1.5)

The associated gradient form is

Γ(u, v)(x) = 1
2 {∆(u(x)v(x)) − u(x)∆v(x) − v(x)∆u(x)}. (1.6)

The length of the gradient for u is

|∇u|(x) =
√

2Γ(u, u)(x) =

( 1
µ(x)

∑
y∼x

ωxy(u(y) − u(x))2
)1/2

. (1.7)

The Ricci curvature operator Γ2 on graphs is obtained by iterating Γ:

Γ2(u, v)(x) = 1
2 {∆Γ(u, v)(x) − Γ(u,∆v)(x) − Γ(v,∆u)(x)}. (1.8)
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To compare with the Euclidean setting, for any function u : V → R, we write∫
V

u dµ =
∑
x∈V

µ(x)u(x).

From [4], all eigenvalues of the Laplacian −∆ on G = (V, E) are nonnegative and
the minimum positive eigenvalue, also called the first positive eigenvalue, is given by

λ1 = λG = inf
f⊥T1

∑
x,y∈V,y∼x(u(y) − u(x))2ωxy∑

x∈V u2(x)µ(x)
= inf

f⊥T1

∫
Ω
|∇u|2 dµ∫

Ω
u2 dµ

, (1.9)

where the nontrivial function u achieving (1.9) is called a harmonic eigenfunction of
−∆ on G with eigenvalue λ1 and T1 is the vector each of whose elements is the degree
of the corresponding vertex. (For more details, we refer to [4].) By [4, Lemma 1.10],
if u(x) is a harmonic eigenfunction achieving λ1 in (1.9), then, for any vertex x ∈ V ,

−∆u(x) =
1
µ(x)

∑
y∼x

ωxy[u(x) − u(y)] = λ1u(x).

In [8], Lin and Yau introduced the curvature-dimension type inequality CD(m, ξ).

Definition 1.1 (Curvature-dimension type inequality). We say that a graph G satisfies
the curvature-dimension type inequality CD(x,m, ξ) for some m > 1, ξ ∈ R and x ∈ V
if, for any function u : V → R,

Γ2(u, u)(x) ≥
1
m

(∆u(x))2 + ξΓ(u, u)(x).

We call m the dimension of the operator ∆ and ξ the lower bound of the Ricci curvature
of the operator ∆. Furthermore, we say that CD(m, ξ) is satisfied if CD(x,m, ξ) is
satisfied for all x ∈ V .

It is easy to see that, for m < m′, the operator ∆ satisfies the curvature-dimension
type inequality CD(m′, ξ) if it satisfies the curvature-dimension type inequality
CD(m, ξ).

Lin and Yau [8] proved that any locally finite graph satisfies either CD(2, 2/d − 1)
if d is finite, or CD(2,−1) if d is infinite, where d = supx∈V supy∼x µ(x)/ωxy.

In addition to the curvature-dimension type inequality, we introduce the well-known
Trudinger–Moser inequality. From [2, 9], when p > 2,

exp( β|u|p/(p−1)) ∈ L1(Ω)

and there exists a constant C = C(p, β) which depends only on p and β such that

sup
||u||

W1,p
0 (Ω)

≤1

∫
Ω

exp( β|u|p/(p−1)) dx ≤ C|Ω|, if β ≤ βp, (1.10)

where p > 2, u ∈ W1,p
0 (Ω), ||u||W1,p

0 (Ω) =
(∫

Ω
|∇u|p dx

)1/p, βp = p(ωp−1)1/(p−1) and ωp−1

is the measure of the unit sphere in Rp. In Section 2, we will give a Trudinger–Moser
inequality on finite graphs in Lemma 2.6 as a discrete version of (1.10).

The next definition is motivated by the Trudinger–Moser inequality.
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Definition 1.2 [5]. Suppose that f (x, t) : V × R→ R. We say the function f has
subcritical growth at +∞ if, for all β > 0 and p > 2,

lim
t→+∞

f (x, t)
exp( β|t|p/(p−1))

= 0. (1.11)

Suppose that G = (V, E) is a connected finite graph that satisfies the curvature-
dimension type inequality CD(m, ξ). Firstly, we state the Poincaré–Sobolev inequality
and the Trudinger–Moser inequality on G and we prove an integral inequality on
G (in Theorem 1.3). Then, by using the three inequalities and the Mountain-Pass
theorem, we prove that there exists a nontrivial solution to the nonlinear Schrödinger
type equation (1.4) if α < 2λ2

1/m(λ1 − ξ), extending the result (1.3) for (1.2).
We give some notation before we state our main theorems. Throughout, Lp(V)

denotes the Banach space with the norm ||u||Lp =
( ∫

V |u|
p dµ

)1/p. Furthermore, we
define a Sobolev space and a norm on it by

W1,p(V) =

{
u : V → R |

∫
V

(|∇u|p + |u|p) dµ <∞
}

and

||u||W1,p(V) =

( ∫
V

(|∇u|p + |u|p) dµ
)1/p

.

We can now state our main theorems.

Theorem 1.3. Suppose that G = (V, E) is a finite graph that satisfies the curvature-
dimension type inequality CD(m, ξ) and u is a harmonic eigenfunction of −∆ with
eigenvalue λ1. Then

2λ2
1

m(λ1 − ξ)

∫
V

u2 dµ ≤
∫

V
|∇u|2 dµ.

Remark 1.4. For u a harmonic eigenfunction of −∆ on G with eigenvalue λ1, we define
a function space

H = {u ∈ W1,2(V) | −∆u = λ1u}.

By Theorem 1.3, when α < 2λ2
1/m(λ1 − ξ), we can define a norm onH by

||u||1,α =

( ∫
V

(|∇u|2 − α|u|2) dµ
)1/2

.

By Remark 1.4, we obtain the following theorem.

Theorem 1.5. Suppose that G = (V, E) is a finite graph that satisfies the curvature-
dimension type inequality CD(m, ξ). Assume that f : V × R→ R satisfies the following
hypotheses.

(H1) For any x ∈ V, f (x, t) is continuous in t ∈ R, and f (x, −t) = − f (x, t) for all
(x, t) ∈ V × R.
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(H2) For all (x, t) ∈ V × [0,+∞), f (x, t) ≥ 0 and f (x, 0) = 0.
(H3) f (x, t) has subcritical growth at +∞ , that is, f satisfies (1.11).
(H4) There exists some p > 2 such that limt→0+ f (x, t)/tp−1 = 0 for all x ∈ V.
(H5) (Ambrosetti–Rabinowitz condition) There exist constants q > 2 and s0 > 0 such

that if |u| ≥ s0, then 0 < qF(x, u) < u f (x, u) for any x ∈ V, where F(x, u) =∫ u
0 f (x, t) dt.

Then, for any p > 2 and

α <
2λ2

1

m(λ1 − ξ)
,

there exists a nontrivial solution u ∈ H to (1.4).

Remark 1.6.

(1) In (1.2), when Ω = V , we consider the problem

−∆u − αu = |u|p−2u, u ∈ W1,2(V). (1.12)

We can easily prove that there exists a nontrivial solution to (1.12) for any p > 2 if

α < λ1, (1.13)

where λ1 is defined as in (1.9). Taking f (x, t) = |u|p−2u in Theorem 1.5 and in (1.4), by
Theorem 1.3, we can also prove that there exists a nontrivial solution to (1.12) for any
p > 2 if

α <
2λ2

1

m(λ1 − ξ)
.

(2) By Lemma 2.1 in Section 2, λ1 ≥ mξ/(m − 1). We can easily check that when
mξ/(m − 1) ≤ λ1 < mξ/(m − 2), we have 2λ2

1/m(λ1 − ξ) > λ1. For example, consider
a connected path with two vertices a and b. It has a nonzero eigenvalue λ1 = 2 and
satisfies CD(2, 1). We can check that 2λ2

1/m(λ1 − ξ) = 4 > λ1 = mξ/(m − 1) = 2. So
Theorem 1.5 gives a significant improvement to the result (1.13) for (1.12).

The paper is organised as follows. In Section 2 we introduce some preliminary
results which are useful for the proof of our main theorems. In Sections 3 and 4 we
prove our main theorems.

2. Preliminaries

In this section we introduce some preliminary results which will be used to prove
our main theorems.

Lemma 2.1 [3, Theorem 2.1]. Suppose that G = (V, E) is a finite graph that satisfies
the curvature-dimension type inequality CD(m, ξ) where m > 1 and ξ > 0, and the
Ricci curvature of G is at least ξ. Then any positive eigenvalue λ of −∆ satisfies
λ ≥ mξ/(m − 1).
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Remark 2.2. Let m > 1 and λ1 be the first positive eigenvalue of −∆. From Lemma
2.1, λ1 ≥ mξ/(m − 1) > ξ when ξ > 0, while λ1 > ξ when ξ ≤ 0. So for m > 1 and ξ ∈ R,
we always have λ1 > ξ.

Let (X, || · ||) be a Banach space and J : X → R be a functional. Following [6], we
say that J satisfies the (PS )c condition for some real number c, if any sequence of
functions uk : X → R such that J(uk)→ c and J′(uk)→ 0 as k→ +∞ has a convergent
subsequence ukn → u in X.

Lemma 2.3 (The Mountain-Pass theorem (Ambrosetti and Rabinowitz) [1] and [6,
Theorem 9]). Let (X, || · ||) be a Banach space, J ∈ C1(X,R), e ∈ X and r > 0 such
that ||e|| > r and b = inf ||u||=r J(u) > J(0) > J(e). If J satisfies the (PS )c condition with
c = infγ∈Γ maxt∈[0,1] J(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}, then c is
a critical value of J.

Since V is a finite graph, W1,p(V) is a finite-dimensional space. The next lemma
comes from [6, Theorem 8, together with Theorem 7] and [7, Lemma 5].

Lemma 2.4 [6]. Let G = (V, E) be a finite graph. The Sobolev space W1,s(V) is pre-
compact for constant s > 1, that is, if {uk} is bounded in W1,s(V), then there is a
subsequence {ukn} such that ukn → u in W1,s(V).

The next lemma follows from Lemma 2.4 and [7, Lemma 6]. The proof is very
similar to the proof of [7, Lemma 6].

Lemma 2.5 (Poincaré–Sobolev inequality). Let G = (V, E) be a finite graph. For all
u ∈ W1,s(V) with

∫
V u dµ = 0, the following Poincaré–Sobolev inequality holds for all

q ≥ 1 and s > 1: ( ∫
V
|u|q dµ

)1/q
≤ C

( ∫
V
|∇ u|s dµ

)1/s
. (2.1)

The Trudinger–Moser inequality in the next lemma follows from the Poincaré–
Sobolev inequality (2.1). The proof is very similar to the proof of [7, Lemma 7].

Lemma 2.6 (Trudinger–Moser inequality on finite graphs). Suppose that G = (V, E) is
a finite graph. For all functions u with

∫
V |∇u|p dµ ≤ 1 and

∫
V u dµ = 0, there exists a

constant C which depends only on p, β and V such that

sup∫
V |∇u|p dµ≤1

∫
V

exp( β|u|p/(p−1)) dµ ≤ C|V |, for any β > 1 and p > 2,

where |V | =
∫

V dµ(x) = Vol V is the volume of the graph G.
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3. Proof of Theorem 1.3

In this section we prove Theorem 1.3 using the curvature-dimension type inequality
CD(m, ξ) in Definition 1.1.

By (1.6)–(1.8),

Γ2(u, u)(x) = 1
2 {∆Γ(u, u)(x) − 2Γ(u,∆u)(x)}

= 1
4 ∆|∇u|2(x) − Γ(u,∆u)(x)

= 1
4 ∆|∇u|2(x) − 1

2 {∆(u(x)∆u(x)) − u(x)∆(∆u(x)) − (∆u(x))2}. (3.1)

On the other hand, by (1.5),

∆(u(x)∆u(x)) =
1
µ(x)

∑
y∼x

ωxy[u(y)∆u(y) − u(x)∆u(x)]

=
1
µ(x)

∑
y∼x

ωxy[u(y)∆u(y) − u(y)∆u(x) + u(y)∆u(x) − u(x)∆u(x)]

=
1
µ(x)

∑
y∼x

ωxyu(y)[∆u(y) − ∆u(x)] + ∆u(x) ·
1
µ(x)

∑
y∼x

ωxy[u(y) − u(x)]

=
1
µ(x)

∑
y∼x

ωxy[u(y) − u(x)][∆u(y) − ∆u(x)]

+
1
µ(x)

∑
y∼x

ωxyu(x)[∆u(y) − ∆u(x)] + (∆u(x))2

=
1
µ(x)

∑
y∼x

ωxy[u(y) − u(x)][∆u(y) − ∆u(x)] + u(x)∆(∆u(x)) + (∆u(x))2. (3.2)

By (3.1) and (3.2),

Γ2(u, u)(x) =
1
4

∆|∇u|2(x) −
1

2µ(x)

∑
y∼x

ωxy[u(y) − u(x)][∆u(y) − ∆u(x)]. (3.3)

If u is a harmonic eigenfunction that satisfies −∆u(x) = λ1u(x) then, by (3.3),

Γ2(u, u)(x) =
1
4

∆|∇u|2(x) −
1

2µ(x)

∑
y∼x

ωxy[u(y) − u(x)][λ1u(x) − λ1u(y)]

=
1
4

∆|∇u|2(x) +
λ1

2µ(x)

∑
y∼x

ωxy[u(y) − u(x)]2

=
1
4

∆|∇u|2(x) +
λ1

2
|∇u|2(x).
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Now consider∑
x∈V

µ(x)Γ2(u, u) =
1
4

∑
x∈V

µ(x)∆|∇u|2(x) +
λ1

2

∑
x∈V

µ(x)|∇u|2(x)

=
1
4

∑
x∈V

∑
y∼x

ωxy[|∇u|2(y) − |∇u|2(x)] +
λ1

2

∑
x∈V

µ(x)|∇u|2(x)

=
1
4

∑
x∈V

∑
y∼x

ωxy|∇u|2(y) −
1
4

∑
x∈V

∑
y∼x

ωxy|∇u|2(x) +
λ1

2

∑
x∈V

µ(x)|∇u|2(x)

=
1
2

∑
(x,y)∈E

ωxy|∇u|2(y) −
1
2

∑
(x,y)∈E

ωxy|∇u|2(x) +
λ1

2

∑
x∈V

µ(x)|∇u|2(x)

=
1
2

∑
(x,y)∈E

ωxy|∇u|2(y) −
1
2

∑
(y,x)∈E

ωyx|∇u|2(y) +
λ1

2

∑
x∈V

µ(x)|∇u|2(x)

=
λ1

2

∑
x∈V

µ(x)|∇u|2(x) =
λ1

2

∫
V
|∇u|2 dµ. (3.4)

Since G satisfies the curvature-dimension type inequality CD(m, ξ), that is,

Γ2(u, u)(x) ≥
1
m

(∆u(x))2 + ξΓ(u, u)(x),

it follows that∑
x∈V

µ(x)Γ2(u, u) ≥
1
m

∑
x∈V

µ(x)(∆u(x))2 + ξ
∑
x∈V

µ(x)Γ(u, u)(x)

=
1
m

∑
x∈V

µ(x)λ2
1(u(x))2 +

ξ

2

∑
x∈V

µ(x)Γ(u, u)(x)

=
λ2

1

m

∫
V

u2 dµ +
ξ

2

∫
V
|∇u|2 dµ. (3.5)

By (3.4) and (3.5),

λ1

2

∫
V
|∇u|2 dµ ≥

λ2
1

m

∫
V

u2 dµ +
ξ

2

∫
V
|∇u|2 dµ. (3.6)

By (3.6) and Remark 2.2, since λ1 > ξ,

2λ2
1

m(λ1 − ξ)

∫
V

u2 dµ ≤
∫

V
|∇u|2 dµ,

which completes the proof.

4. Proof of Theorem 1.5

In this section we prove Theorem 1.5 using Remark 1.4 and some of the lemmas
from Section 2.
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Let p > 2 and α < 2λ2
1/m(λ1 − ξ) be fixed. Throughout this section, u is a harmonic

eigenfunction of −∆ on G with eigenvalue λ1. By Remark 1.4, the function space

H = {u ∈ W1,2(V)| − ∆u = λ1u}

has the norm

||u||1,α =

( ∫
V

(|∇u|2 − α|u|2) dµ
)1/2

.

Furthermore, from [8, page 353)],
∫

V u dµ = 0 for all u ∈ H .
We now define a functional Jα :H → R by

Jα(u) =
1
2
||u||21,α −

∫
V

F(x, u) dµ.

By (H4), there exist two positive constants τ, δ > 0 such that if |u| ≤ δ then

| f (x, u)| ≤ τ|u|p−1. (4.1)

On the other hand, by (H3), there exist two positive constants c, β such that

| f (x, u)| ≤ c · exp( β|u|p/(p−1)), for all |u| ≥ δ. (4.2)

Then, by (4.2), for q > p,

F(x, u) ≤ c · exp( β|u|p/(p−1))|u|q, for all |u| ≥ δ. (4.3)

Combining (4.1) and (4.3),

F(x, u) ≤ τ
|u|p

p
+ c · exp( β|u|p/(p−1))|u|q.

By the Hölder inequality,

J(u) ≥
1
2
||u||21,α −

τ

p

∫
V
|u|p dµ − c

( ∫
V

exp( βp|u|p/(p−1)) dµ
)1/p( ∫

V
|u|qp′ dµ

)1/p′

,

(4.4)

where 1/p + 1/p′ = 1. By the Trudinger–Moser inequality in Lemma 2.6,∫
V

exp( βp|u|p/(p−1)) dµ =

∫
V

exp
(
βp||u||p/(p−1)

Lp

(
|u|
||u||Lp

)p/(p−1))
dµ < c|V |. (4.5)

By Lemma 2.5, there exists some constant C that depends only on p and V such that( ∫
V

up dµ
)1/p
≤ C

( ∫
V
|∇u|2 dµ

)1/2
. (4.6)

Since q > p > 2, by (4.4)–(4.6), we can find some sufficiently small r > 0 such that if
||u||1,α = r then

J(u) ≥
1
2
||u||21,α −Cp

(
τ

p
+ c|V |

)
||u||p1,α.
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Therefore,

inf
||u||1,α=r

J(u) > 0. (4.7)

By (H5) and [10, pages 141–143], there exist two positive constants c1 and c2 such
that

F(x, u) ≥ c1|u|q − c2.

For any t > 0,

Jα(tu) ≤
t2

2
||u||21,α − c1tq

∫
V
|u|q dµ − c2|V |.

Since q > p > 2, there exists some u1 ∈ H satisfying

Jα(u1) < 0 for ||u1||1,α > r. (4.8)

We now prove that Jα(u) satisfies the (PS )c condition for any c ∈ R. To see this,
suppose {uk} ⊂ H is such that J(uk)→ c and J′(uk)→ 0 as k→∞, that is,

1
2

∫
V

(|∇uk|
2 − αu2

k) dµ −
∫

V
F(x, uk) dµ = c + ok(1). (4.9)∫

V
(|∇uk|

2 − αu2
k) dµ −

∫
V

uk f (x, uk) dµ = ok(1)||uk||1,α. (4.10)

In view of (H5), it follows from (4.9) and (4.10) that {uk} is bounded in H , and the
(PS )c condition follows by Lemma 2.4. Combining (4.7), (4.8) and the obvious fact
that J(0) = 0, we conclude by Lemma 2.3 that there exists a function u ∈ H such that
J(u) = infγ∈Γ maxt∈[0,1] J(γ(t)) > 0 and J′(u) = 0, where

Γ = {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = u1}.

Hence there exists a nontrivial solution u ∈ H to the equation

−∆u − αu = f (x, u), u ∈ W1,2(V).
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