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Themeasurement of latent traits and investigation of relations between these and a potentially large set
of explaining variables is typical in psychology, economics, and the social sciences. Corresponding analysis
often relies on surveyed data from large-scale studies involving hierarchical structures and missing values
in the set of considered covariates. This paper proposes a Bayesian estimation approach based on the device
of data augmentation that addresses the handling of missing values in multilevel latent regression models.
Population heterogeneity is modeled via multiple groups enriched with random intercepts. Bayesian esti-
mation is implemented in terms of a Markov chain Monte Carlo sampling approach. To handle missing
values, the sampling scheme is augmented to incorporate sampling from the full conditional distributions
of missing values. We suggest to model the full conditional distributions of missing values in terms of
non-parametric classification and regression trees. This offers the possibility to consider information from
latent quantities functioning as sufficient statistics. A simulation study reveals that this Bayesian approach
provides valid inference and outperforms complete cases analysis and multiple imputation in terms of
statistical efficiency and computation time involved. An empirical illustration using data on mathematical
competencies demonstrates the usefulness of the suggested approach.

Key words: Item response theory, population heterogeneity, Markov chain Monte Carlo, classification
and regression trees, missing values.

1. Introduction

Models for measurement and structural analysis of latent traits have been developed among others
by Muthén (1979), Zwinderman (1991) and Adams et al. (1997). These latent regression models
(LRM) typically use a regression equation to assess the relationship between the latent trait and
additional covariates and link measurements to the latent trait via a model, possibly arising from
the context of item response theory (IRT; e.g., Embretson & Reise, 2000). As demonstrated by
Rijmen et al. (2003), and described extensively inWilson and De Boeck (2004), these models can
be conceptualized within the wider context of nonlinear mixed models. Since the derived likeli-
hood functions involve multiple integrals arising from the involved latent variables, a Bayesian
framework using Markov chain Monte Carlo (MCMC) techniques is eminently suited to provide
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inference, see e.g. Edwards (2010). The seminal article of Albert (1992) adopts data augmentation
(DA), see Tanner andWong (1987), within a Bayesian estimation approach formeasurementmod-
els with dichotomous items.1 Further work adopted Albert’s DA procedure for extended model
structures incorporating multilevel and clustered data structures (Aßmann & Boysen-Hogrefe,
2011; Fox, 2005; Fox & Glas, 2001; Johnson & Jenkins, 2005). Prominent applications of these
models arise in the context of large-scale assessment studies like the Programme for Interna-
tional Student Assessment (PISA; e.g., OECD, 2014), the Trends in International Mathematics
and Science Study (TIMSS; e.g., Mullis & Martin, 2013), the Programme for the International
Assessment of Adult Competencies (PIAAC; e.g., OECD, 2013b) or the National Assessment of
Educational Progress (NAEP; e.g., Allen et al., 1999).

However, surveyed information is often seriously afflicted by item nonresponse. Si and Reiter
(2013), for example, report less than five percent complete cases on a set of 80 background
variables in a data file of the Trends in International Mathematics and Science Study (TIMSS;
e.g., Mullis & Martin, 2013). Especially in multilevel contexts, such a large fraction of missing
values poses a challenge to efficient parameter estimation. An appropriate strategy for handling
missing values and corresponding model specification is required when analyzing the data. While
several studies deal with the impact of missing or omitted competence items (Köhler et al., 2015;
Pohl et al., 2014), there has been less work on missing values in background variables. By default,
the educational assessment studies cited above treat missing values in context questionnaires via
dummy variable adjustments, see e.g. OECD (2014). Aside from the obvious information loss,
dummy-variable adjustments formissingvalues can causebiased estimation, see Jones (1996).The
involved categorization of information may have negative side effects on the assumed functional
relationship, see also Grund et al. (2020) for a more detailed discussion. These results are in
line with a recent study by Rutkowski (2011) who found non negligible bias and misleading
interpretations at the population level when partially missing covariates are dummy coded.2

With the latent factor being of substantial interest, the Bayesian approach implemented in
terms of a MCMC algorithm using the DA device has the advantage to provide direct access to
the latent factors in terms of the posterior distribution.3 Furthermore, in the presence of missing
values in background variables, DA in the Bayesian context offers a conceptually straightforward
way to deal with missing values. The vector of unknown quantities can be augmented with the
missing values in covariates. Correspondingly, the MCMC sampling scheme incorporates the set
of full conditional distributions of the missing values. This approach has the advantage that the
modeling of the full conditional distributions can incorporate information available in form of a
latent variable serving in the considered model context as a sufficient statistic.4 These advantages
result in increased statistical efficiency and reduced computational costs as illustrated in this paper.
Such a handling of information is in principle also possible in the context ofMaximumLikelihood
estimation in terms of a chained equation approach via iteratively sampling from an assumed or
approximated set of full conditional distributions, see Grund et al. (2020) for a discussion in the

1Thereby DA facilitates efficient sampling from the posterior distribution via augmenting the posterior distribution
with quantities not necessarily being of primary interest, but possibly functioning as sufficient statistics and thus enabling
and operationalizing Rao-Blackwellization. As a byproduct DA enables smoother sampling from the posterior distribution
of the quantities of primary interest as either closed form sampling becomes available or the construction of an importance
or enveloping density is considerably simplified, see Carlin and Louis (1998).

2Note that also complete cases analysis, which excludes all observations having a missing value on any covariate
from estimation, beside the inefficient use of the sample information in situations with high rates of missing values may
result in biased estimation, especially when observations are missing at random (Little & Rubin, 2002, p. 41–44). Only
in missing completely at random situations possibly related to multiple matrix designs estimation may stay unbiased.

3When performing Maximum Likelihood based estimation typically implemented in terms of an Expectation Maxi-
mization algorithm, only point estimates are directly available but extra calculations are required to obtain corresponding
uncertainty measures.

4This may include information in terms of prevailing missing patterns, where Muthén et al. (1987) consider condi-
tioning on missing data patterns for improved estimation.
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absence of hierarchical structures. In addition, in data contexts with a large number of covariates
relative to the number of observations, the Bayesian approach incorporates shrinkage in terms of
the involved prior distributions and facilitates updating of information with regard to the modeled
relationships. Next, Bayesian estimators of parameters or functions thereof, like context effects
and uncertainty measures, are directly accessible without the use of combining rules.

TheDAprinciple has been successfully applied in different contexts ranging frommultivariate
panel models to social network analysis and educational large-scale assessments by Liu et al.
(2000), Koskinen et al. (2010), Blackwell et al. (2017) and Kaplan and Su (2018). Full conditional
distributions of missing values are typically operationalized in terms of a parametric modeling
approach as discussed by Grund et al. (2020) and Erler et al. (2016). Goldstein et al. (2014),
Erler et al. (2016) and Grund et al. (2018) provide a discussion in the context of linear regression
models for metrically scaled hierarchical data.

In this article,we extend theDAapproach towardsmissing values in covariate data in extended
hierarchical structures in LRMs for dependent variables with binary and ordinal scale.5 We
also illustrate that DA allows for direct access to a valid model specification for the missing
values incorporating information available in form of sufficient statistics as suggested by the
Hammersley–Clifford theorem, see Robert and Casella (2004). Further, specifying the full con-
ditional distributions of missing values in terms of sufficient statistics arising in the hierarchical
latent regression context has the potential to reduce the computational burden. The role of suffi-
cient statistics has also been stressed by Neal and Kypraios (2015) discussing situations, where
the augmented variables and sufficient statistics are discrete and the models of interest belong to
well known probability distributions. Our approach extends on this as we consider hierarchical
structures and identifying restrictions arising from the factor like model structures resulting in
complex posterior distributions.6 Consideration of full conditional distributions for handling of
missing values enriched with information from latent model structures extends also the sequen-
tial imputations approach discussed by Kong et al. (1994). Whereas the sequential imputations
approach builds on predictive distributions for missing values separating thereby the model for
the missing values in the covariate variables from the considered latent model structures, our
approach is based on smoothed, i.e. full conditional distributions incorporating information from
the latent model structures via the DA principle.7

In combination with modeling the full conditional distributions of missing values via non-
parametric sequential regression trees as suggested by Burgette and Reiter (2010) and Doove et
al. (2014), the DA approach suggested in this paper offers high flexibility in empirical applica-
tions to cope with nonlinear relationships, e.g. interaction terms, within a potentially large set
of covariates having different scales. The proposed modeling approach allows hence for tackling
research questions typically addressed in sociology, psychology, and economics in the field of
educational inequality and the role of institutions, see among others Carlsson et al. (2015), Pas-
saretta and Skopek (2021) and Cornelissen and Dustmann (2019). It simultaneously addresses the
uncertainty associated with the estimation of a latent trait variable and the imputation of missing
values in manifest covariate variables. The reciprocal dependence of outcomes and predictors is
reflected to the full extent by the Bayesian DA estimation algorithm. The benefits of the suggested
fully Bayesian approach arise in terms of methodological stringency and gains in statistical effi-
ciency. Illustration of the suggested approach is provided by means of a simulation study and an

5The considered model framework incorporates an enriched multilevel structure compared to Fox and Glas (2001),
whereas Aßmann et al. (2015) consider the case of Bayesian estimation for the homogeneous two-parameter normal ogive
LRM for binary outcomes only.

6In addition, the computational cost of the approach discussed by Neal and Kypraios (2015) grows exponentially with
the total number of observations, whereas our MCMC based approach is linearly related to the number of observations.

7The sequential imputations ofKong et al. (1994) resembles via use of predictive distributions an importance sampling
approach, while our approach based on full conditional distributions resembles an efficient importance sampling approach
as discussed by Richard and Zhang (2007).
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empirical application using the first wave of the starting cohort of ninth graders surveyed in the
German National Educational Panel Study—Educational Trajectories in Germany (NEPS), see
Blossfeld and Roßbach (2019). To highlight the benefits of considering sufficient statistics within
the suggested DA approach towards missing values in covariates, we provide a comparison with
a classical imputation setup, where the full conditional distributions of missing values are defined
on the basis of directly observable quantities only, see e.g. von Hippel (2007). As shown in the
simulations, the consideration of sufficient statistics accelerates the computation up to a third and
ensure the feasibility of specifying full conditional distributions in multilevel contexts.

The paper proceeds as follows. Section2 outlines the specification of the considered model
setup and provides the corresponding Bayesian sampling algorithm that deals with structures
reflecting heterogeneity and missing values in covariates via DA. Performance of the estimation
routine is demonstrated through a simulation study in Sect. 3, whilst Sect. 4 provides the empirical
illustration using data from the NEPS. Section5 concludes.

2. Model Setup and Bayesian Inference

2.1. Model Setup

Consider J measurement items observed on N individuals summarized in a N × J data
matrix Y = (y1, . . . , yN )′ with row vectors yi = (yi1, . . . , yi j , . . . , yi J ) for each i = 1, . . . , N
and j = 1, . . . , J . In case of binary measurements yi j denotes a random variable taking the value
yi j = 1 if in an educational assessment context respondent i is able to solve item j and the value
yi j = 0 otherwise. To analyze this kind of test items, Lord (1952, 1953) proposes an IRT model
generally known as the two-parameter normal ogive (2PNO) stating the probability (Pr) for a
correctly solved item as Pr(yi j = 1|θi , α j , β j ) = �(α jθi −β j ), where θi denotes a scalar person
parameter, α j is a item discrimination parameter and β j denotes the item difficulty or item fixed
effect. We adopt the standard normal cumulative distribution function �(·) as the link function,
as it offers computational advantages for MCMC based Bayesian estimation. Also, it allows
for an alternative representation in terms of a threshold mechanism, which was first formalized
in the context of individual level data by McKelvey and Zavoina (1975) and can be found for
multivariate binary variables inMaddala (1983, p. 138). Extending towards the analysis of ordered
polytomous item responses, see Samejima (1969), the observed item responses can be seen as a
ordered polytomous version of an underlying continuous variable y∗

i j = α jθi −β j +εi j , where the
independent and identically distributed error term εi j follows a standard normal distribution. Then
one can link the observed categorical and the underlying continuous variable using a threshold
mechanism, namely

yi j =
Q j∑

q=1

(q − 1)I
(
κ jq−1 < y∗

i j ≤ κ jq

)
, (1)

where κ j = (κ j0, κ j1, . . . , κ j Q j )
′ is the (Q j + 1)-dimensional vector of item category cutoff

parameters and I(·) denotes the indicator function. The resulting probability that respondent i
achieves grade q on item j , given his latent trait and item parameters, is hence implied by

Pr
(
yi j = q|θi , α j , β j , κ j

) = �
(
κ jq+1 − (α jθi − β j

))− �
(
κ jq − (α jθi − β j

))
,
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thus nesting the binary case as well. This probability can be represented as in terms of the latent
variables as

∫
f (yi j , y∗

i j |θi , α j , β j , κ j )dy∗
i j , where

f
(
yi j , y∗

i j |θi , α j , β j , κ j
) = 1√

2π
exp

{
−1

2

(
y∗

i j − (α jθi − β j
))2
}

I(κ j yi j < y∗
i j < κ j yi j +1

)
.

(2)

The necessary identifying restrictions for all parameters will be discussed jointly below.
IRT models are designed to directly link items and persons to a common scale. To enlarge

their scope, the focus of analysis was broadened towards structural analysis by Muthén (1979)
addressing the issue that persons may not only differ in terms of their competence, but also in
terms of covariates which are correlated with their competence. The standard framework assum-
ing θi , i = 1, . . . , N , to be identically and independently normally distributed can be extended
to incorporate a conditional mean operationalized as E[θi |Xi ] = Xiγ , i = 1, . . . , N . Thereby
X = (X ′

1, . . . , X ′
N )′ = (X (1), . . . , X (P)) in terms of row vectors Xi , i = 1, . . . , N and column

vectors X (p), p = 1, . . . , P denotes a matrix of N × P individual specific covariates and γ the
corresponding vector of regression coefficients. When hierarchical clustering in observations is
present, this needs to be incorporated in the model as well, as consideration of hierarchical data
structures is an important prerequisite for valid inference on the relationship between explaining
and latent variables. The multiple forms of population heterogeneity in educational research are
reviewed in Muthén (1989) and Burstein (1980), whereas Greene (2004b) provides a discussion
for economic applications of the panel probit model incorporating latent heterogeneity structures.
Population heterogeneity may be considered in terms of a nested multilevel structure thereby
assuming a composite population consisting of a finite number of G mutually exclusive groups
indexed by g = 1, . . . , G, where L = (L1, . . . , L N )with Li ∈ {1, . . . , G}, i = 1, . . . , N denotes
the individual group membership. Within these groups, separate LRMs may hold. Sample strati-
fication may be based on an explicitly observed cluster variable, e.g., gender or school type. This
type of modeling dates back to the early works ofMuthén and Christoffersson (1981) andMislevy
(1985), but without consideration of covariates except the cluster variable. Often, the specification
is theory driven with the aim to discover substantial differences of covariate effects and variances
for predefined groups. These differences are captured through the estimation of group-specific
latent trait distributions. Additionally, hierarchical structures may be related to random effects. As
in multilevel models there is a composite population consisting of clusters c = 1, . . . , C , where
the individual cluster membership is also known a-priori and is captured by S = (S1, . . . , SN )

with Si ∈ {1, . . . , C} for all i = 1, . . . , N . While fixed group-specific regression parameters are
suitable for a relative small number of groups, consideration of hierarchical structures with regard
to schools or classes often implies a prohibitively large number of parameters. Difficulties regard-
ing the computation and the statistical properties of the maximum likelihood estimator in this
context were studied by Greene (2004a).8 Thus, the introduction of identically and independently
normally distributed cluster-specific random effects ω = (ω1, . . . , ωC ) offers an appropriate
alternative or addition to the fixed effects approach. The most basic multilevel specification is
the random intercept latent regression item response model. Depending on the specific hierar-
chical structure under consideration, combinations of both approaches are possible and allow for
multiple hierarchical levels.

To illustrate, consider a model with nested hierarchical structure with Si = Si ′ implying
Li = Li ′ , i.e. individuals within the same cluster also refer to the same group, but not vice-versa,
given as

8The problem has been discussed extensively under the term incidental parameter problem in the statistics literature,
see Lancaster (2000) for a survey.
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θi = ωSi + XiγLi + εi . (3)

Thereby εi , i = 1, . . . , N , is independently normally distributed with mean zero and het-
eroscedastic variance σ 2

Li
. Likewise ωSi is independently normally distributed with mean zero

and heteroscedastic variance υ2
Li
. The assumed heteroscedasticity is hence a further way to

implement features of (nested) hierarchical structures.9 We summarize all model parameters
as ψ = ({α j , β j , κ j }J

j=1, {γg, σ
2
g , υ2

g}G
g=1). The implied conditional covariance structure with

regard to two elements of θ = (θ1, . . . , θN ) denoted with i and i ′ can be described as

Cov(θi , θi ′ |ψ, X, S, L) =

⎧
⎪⎨

⎪⎩

0, for i �= i ′ and Si �= Si ′ ,
υ2

Li
= υ2

Li ′ , for i �= i ′ with Si = Si ′ and Li = Li ′ ,

σ 2
Li

+ υ2
Li

= σ 2
Li ′ + υ2

Li ′ , for i = i ′ with Si = Si ′ and Li = Li ′ .

This covariance structure allows for group specific conditional variances but possibly similar or
different correlations within clusters. The corresponding likelihood function in case of completely
observed data is given as

f (Y |ψ, X, S, L) =
∫

f (Y, Y ∗, θ, ω|ψ, X, S, L)dY ∗dθdω. (4)

Thereby

f (Y, Y ∗, θ, ω|ψ, X, S, L) =
[

N∏

i=1

f (yi , y∗
i |θi , ψ) f (θi |Xi , ψ, ω, Si , Li )

]
f (ω|ψ, S, L), (5)

where f (yi , y∗
i |θi , ψ) =∏J

j=1 f (yi j , y∗
i j |ψ, θi ) with f (yi j , y∗

i j |ψ, θi ) as in Eq. (2),

f (θi |Xi , ψ, ω, Si , Li ) = (2π)−
1
2
(
σ 2

Li

)− 1
2 exp

{
− 1

2σ 2
Li

(θi − (ωSi − XiγLi ))
2

}
,

and f (ω|ψ, S, L) following a multivariate normal distribution with mean zero and covariance
matrix diag(υ2

L1
, . . . , υ2

L N
).

In case of completely observed data Y and X , the Bayesian model setup is then completed
by an appropriate prior distribution π(ψ). However, the estimation of IRT models is in general
plagued by an identification problem, where the classical identification strategies impose restric-
tions on the parameter space. For the given model, the identification problem can be described as
follows. First, the overallmeans of y∗

i j are implied by themeanvalues of θi ,β j , andκ j , aswell as the
signs of α j . The mean values of θi in turn arise from the regression coefficients γg in combination
with the observed covariates Xi . Second, the scaling of y∗

i j is implied by the scaling of θi and α j ,

where the scaling of θi arises from the variance parametersυ2
g andσ 2

g . The given interdependencies
lead to the fact that these parameters are not jointly identifiable. However, for given signs of α j and

9Note that extensions in the form of random coefficients within groups or homogeneous coefficients across groups
rendering the latent regression function as θi = ωSi + Xi γi Li + Wi λ + εi with γi Li following a multivariate normal
distribution with expectation μγLi

and covariance �Li and Wi denoting a set of covariates with homogeneous influence
are also possible as discussed in Aßmann et al. (2011).
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mean values for two of the three quantities θi , β j , and κ j , mean values for the remaining quantity
become identifiable. The same holds for the scaling issue, where for given signs of α j and a given
scaling for one of the two quantities θi and α j , the remaining scaling becomes identifiable. The
decision which mean and scaling parameters to fix is in principle arbitrary. However, for the con-
sidered hierarchical structures it is more convenient, also in terms of the implied sampling scheme,
to restrict the item parameters α j , β j , and κ j . The typical choice as discussed in the literature by
Fox (2010) and Albert and Chib (1997) imposes the following ordering and value constraints on
the parameter space. With regard to the threshold parameter the restrictions can be formulated in
terms of the condition

∏J
j=1 I(κ j0 = −∞, κ j1 = 0 < κ j2 < · · · < κ j Q j −1 < κ j Q j = +∞),

while for the item difficulties and discrimination parameters, we have I(
∑J

j=1 β j = 0) and

I(
∏J

j=1 α jI(α j > 0) = 1). Given these identifying restrictions, appropriate (conjugate) prior
distributions can be formulated as given in Table 1. In the light of the Clifford–Hammersley theo-
rem, see Robert and Casella (2004) for theorem and proof, the implied joint posterior distribution

f (θ, Y ∗, ω,ψ |Y, X, L , S) ∝ f (Y, Y ∗, θ, ω|ψ, X, S, L)π(ψ) (6)

is accessible in terms of the corresponding set of full conditional distributions. With Z =
{Y, X, S, L}, we have

f (θ, Y ∗, ω, ψ |Z) ∝ f (θ |Ỹ ∗, ω̃, ψ̃, Z)

f (θ̃ |Ỹ ∗, ω̃, ψ̃, Z)

f (Y ∗|θ, ω̃, ψ̃, Z)

f (Ỹ ∗|θ, ω̃, ψ̃, Z)

f (ω|θ, Y ∗, ψ̃, Z)

f (ω̃|θ, Y ∗, ψ̃, Z)

f (ψ |θ, Y ∗, ω, Z)

f (ψ̃ |θ, Y ∗, ω, Z)
, (7)

where the chosen sequence ordering θ, Y ∗, ω,ψ is arbitrary and ·̃ denotes any admissible point
of the indicated variable. The set of full conditional distributions resulting from Eq. (7) and
employed within an MCMC algorithm taking the form of an iterative sequential Metropolis-
Hastings (MH) within Gibbs sampling scheme to provide inference based on a sample from the
posterior distributions is given in detail in Sect. 2.2.

Next, we will discuss the handling of missing values. Given the factorization of the likelihood
described in Eqs. (2) and (5), handling of missing values in item responses Y = (Yobs, Ymis) is
directly possible by dropping the corresponding elements Ymis from the likelihood. That means,
per item j , only the observed yi j are used to estimate the parameters. An alternative approach of
handling missing values in Y may be to consider missing values as wrong answers. Our approach
is also fully compatible with von Hippel (2007) suggesting to consider draws of Ymis from the
posterior predictive distribution for the specification of the full conditional distributions of the
missing values of the covariate variables X but not using them for analysis.10

However, when facing partially observed X one has to think of an appropriate missing data
technique to facilitate estimation. In the following, we will denote X = (Xobs, Xmis). In the
context of the considered model structure, the latent variables and hierarchical structures take
the role of sufficient statistics and may play a crucial role for implementing appropriate models
defining the uncertainty associated withmissing values Xmis.We suggest to handle missing values
Xmis by means of DA, as this allows for advantageous use of the latent and hierarchical model

10This extends also towards missing-by-design values in item responses. Sampling of missing-by-design values Ymis
are implied by Eq. (1) in the paper, where y∗

i j follows then a normal distribution not subject to truncation as the truncation

is implied by the observed values in Y only. The completed Y ∗ and hence the completed Y might possibly be helpful
for sampling values in Xmis, as pointed out by von Hippel (2007). However, as illustrated and implied by the considered
model framework in the paper, θ serves takes a role of a sufficient statistic also for Y ∗, and thus consideration of sampled
Ymis values within the imputation of Xmis does not necessarily result in further gains in terms of statistical efficiency.
Given this, we point out that the suggested approach should be applied to data situations, where at least some elements of
yi are observed for each individual i = 1 . . . , N . Situations, where several competence domains are investigated can be
addressed via multivariate extensions of the suggested modeling framework.
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structures within the modeling of missing values by means of Rao-Blackwellization and due to
a lower dimensional representation of the relevant information also reducing the computational
burden.11 The advantages relate to gains in statistical efficiency in estimmation of ψ captured by
the bias, root mean square error, and coverage. Hence, the augmented posterior distribution

f (θ, Y ∗, ω,ψ, Xmis|Y, Xobs, S, L) ∝ f (Y, Y ∗, θ, ω|ψ, X, S, L)π(Xmis|Xobs, ψ)π(ψ),

incorporating an appropriate prior distribution π(Xmis|Xobs, ψ), is of interest and subject to
inference. The characterization in terms of the full conditional distributions given in Eq. (7) is
then extended as follows. With Z̃ = {Y, Xobs, X̃mis, S, L}, we have

f (θ, Y ∗, ω,ψ, Xmis|Y, Xobs, S, L) ∝ f (θ, Y ∗, ω,ψ |Z̃)
f (Xmis|θ, Y ∗, ω,ψ, Y, Xobs, S, L)

f (X̃mis|θ, Y ∗, ω,ψ, Y, Xobs, S, L)
, (8)

thereby augmenting the MCMC sampling scheme.12

The suggested sequential sampling is also well suited to deal with regression specifications
involving cross products of variables considered in X . Given an initialization of Xmis and thus the
involved cross products, missing values for one variable can be drawn. If this variable is involved
in cross products, these cross products are updated. This procedure is then repeated for each
variable in X . In order to establish highly flexible modeling of the distributions of Xmis and allow
for handling of a possibly large number of background variables, we adopt sequential recursive
classification and regression trees in combination with sampling via a Bayesian bootstrap (CART-
BB) for the construction of full conditional distributions, see Burgette andReiter (2010) andRubin
(1981).Modeling the full conditional distributions ofmissing values in thisway is compatiblewith
assuming prior distributions for themissing values proportional to the empirical densities observed
for each variable, see also Table 1.13 This choice is motivated by the flexibility of CART-BB to
handle variables of any scale and the potential to cope with nonlinear relationships among the
variables, see also Doove et al. (2014). The application of CART-BB to model the full conditional
distributions of missing values is particularly useful because the analyst does not need to specify
the full conditional distributions of missing values (imputation models) explicitly. The complete
set of full conditional distributions and further details referring to the augmented parameter vector
are provided in the following. We label the suggested Bayesian estimation approach using data
augmentation and sequential recursive partitioning classification and regression trees combined
with a Bayesian bootstrap for handling missing values in covariate variables as DART approach.

11Consideration of sufficient statistics may also serve as a guiding principle for model specification.
12Note that sampling from f (Xmis|θ, Y ∗, ω,ψ, Y, Xobs, S, L) will be based on sequential iterative sampling from

the set of univariate full conditional distributions for each variable X (p)
mis, p = 1, . . . , P , see also Sect. 2.2 for details.

13In combination with sampling from the empirical cumulative distribution function, i.e. sampling from the range
of observed values only, this ensures that the CART-BB approach towards full conditional distributions does involve
only proper prior distributions thus ensuring the existence of the integrating constant of the joint posterior distribution.
Furthermore, the existence of the joint posterior distribution and the corresponding integrating constant as implied by the
Eq. (8) is directly ensured in case the missing values relate to variables with finite sample spaces. In case the missing
values relate to variableswith theoretically possible countable infinite or uncountable infinite sample spaces, the CART-BB
algorithm constructs the empirical cumulative distribution function implied by the obtained partition based onmeasures of
homogeneity, e.g. the variance, and incorporates the restriction to the range of observed values as a modeling assumption.
Thus, the suggested approach may be most useful in situations with many categorical variables, as in our empirical
applications. For applications where the restriction to the range of observed values raises concerns, the suggested CART-
BB approach could be applied to the set of categorical values only and alternative modeling approaches for the missing
values for variables within continuous infinite support may be considered as well.
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2.2. Bayesian Inference

Bayesian inference is based on a posterior sample generated via the following MCMC algo-
rithm iteratively sampling from the set of full conditional distributions.14 The algorithm is based
on the blocking scheme y∗

11, . . . , y∗
N J , α1, β1, . . . , αJ , βJ , κ1, . . . , κJ , X (1)

mis, . . . , X (P)
mis , θ1, . . .,

θN , γ1, . . . , γG , σ 2
1 , . . . , σ 2

G , ω1, . . . , ω
2
C , υ2

1 , . . . , υ
2
G , where the initialization of all quantities

except y∗
11, . . . , y∗

N J is described in Table 1 and initial values for θ and ω are drawn from standard
normal distributions. An implementation of this MCMC sampling algorithm in R is available
within the supplementary material. The set of full conditional distributions can be described as
follows.

f (y∗
i j |·) The full conditional distributions of the random variables y∗

i j , i = 1, . . . , N and j =
1 . . . , J are independent and sampled from a truncated normal distribution with moments
μy∗

i j
= α jθi − β j and σ 2

y∗
i j

= 1, where the truncation sphere is (κ j yi j , κ j yi j +1).

f (α1, β1, . . . , αJ , βJ |·) Note that for the assumed model structure in absence of the identifying
restrictions all full conditional distributions of the item parameters ξ j = (α j , β j )

′, j =
1, . . . , J are mutually independent. In the presence of the identifying restrictions, however
an arbitrarily chosen single element, say ξ j ′ , is completely determined by the others J −1 item
parameters, i.e. ξ j ′ = ((

∏
j �= j ′ α j )

−1,−∑ j �= j ′ β j ). In this sense, the joint distribution of all
item parameters is defective, as the distribution of the element implied by the other elements
is not specified. Further, sampling from the full conditional distribution of item parameters
ξ j in absence of identifying restrictions can be characterized in terms of the linear regression
equation y∗

j = Hξ j + ε j , where H is a N × 2 auxiliary matrix consisting of θ and −ιN ,
where ιN denotes a N × 1 vector of ones. Since ε j is normally distributed, ξ j is proportional
to a bivariate truncated normal distribution with covariance matrix and mean vector

�ξ j = (H ′H + �−1
ξ j

)−1 and μξ j = �ξ j

(
H ′y∗

j + �−1
ξ j

νξ j

)
.

The positivity constraints on the item discrimination parameters causing the truncation are
handled via accept reject sampling. In each iteration sampling is performed until a draw is
accepted. The values of the hyperparameters νξ j and �ξ j are chosen as given in Table 1.
Note that for any possible subset containing J − 1 item parameters, the remainder item
parameters, say ξ j ′ , are implied by the assumed identifying restrictions.Although this element
is determined by all other elements, the data driven information contained within the above
regression is not incorporated in the characterization of these item parameters. Further, J
equivalent possibilities exist to characterize the redundant element. Hence, incorporating
these J alternative possibilities to draw from the full conditional distribution into a single
raw via averaging seems preferable in order to use all available data based information
and thus improve mixing and convergence issues. Given draws for α = (α1, . . . , αJ ) and
β = (β1, . . . , βJ ) averaging the J characterizations is possible in terms of the geometric

mean and the arithmetic mean resulting in α = (α1(
∏J

j=1 α j )
− 1

J , . . . , αJ (
∏J

j=1 α j )
− 1

J )

and β = (β1 − 1
J

∑J
j=1 β j , . . . , βJ − 1

J

∑J
j=1 β j ). We refer to this approach to handling

identifying restrictions as a kind of marginal data augmentation, see among others Imai and
van Dyk (2005).

f (κ j |·) Draws from the mutually independent full conditional distributions of the item
category cutoff parameters κ j are retained via a MH step following Albert and Chib

14The proposed Bayesian analysis and its MCMC implementation is further suited to incorporate information arising
from weighting factors. In case of non-stochastic weights, e.g. design weights, the variables entering the modeling can be
transformed accordingly, whereas in case of stochastic weights, e.g. non-response adjusted weights typically handled via
replication weights, the variables can be transformed within each MCMC iteration.
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(1997). To perform this sampling step it is convenient to consider a reparameteriza-
tion of the elements κ j2, . . . , κ j Q j −1, where κ jq = ∑q

w=2 exp{τ jw} for all j =
1, . . . , J and q = 2, . . . , Q j − 1. The threshold parameters can then be stated as
κ j = (−∞, 0, κ j2, . . . , κ j Q j −1,∞) = h(τ j ) = (h j0, h j1, h j2, . . . , h j Q j −1, h j Q j ) =
(−∞, 0, exp{τ j2}, exp{τ j2} + exp{τ j3}, . . . ,∑Q j −1

q=2 exp{τ jq},∞). Given the prior for κ j

this transformation induces a multivariate normal prior for τ j = (τ j2, . . . , τ j Q j −1) given as

π(τ j ) ∝
Q j −1∏

q=2

exp

{
− 1

2�2
κ jq

(
τ jq − νκ jq

)2
}

.

Hence, the posterior and thus full conditional distribution can be reformulated in terms of τ j .
To generate a draw from the full conditional of τ j , we choose as a proposal a multivariate
t-distribution with mean vector m j , covariance matrix Vj and Q j − 2 degrees of freedom,
where

m j = argmax
τ j

ln{ f (y j |ξ j , h(τ j ), ψ, θ)π(τ j )}

and Vj is the inverse of the Hessian of ln{ f (y j |ξ j , h(τ j ), ψ, θ)π(τ j )} evaluated at m j . Note
that f (y j |ξ j , h(τ j ), θ, ψ) =∏N

i=1[�(h jyi j +1 − (α jθi − β j )) − �(h jyi j − (α jθi − β j ))].
The probability of accepting candidate values τ cand

j is given as

aτ j = min

{
1,

f
(
y j |ξ j , h

(
τ cand

j

)
, ψ, θ

)
π
(
τ cand

j

)

f
(
y j |ξ j , h(τ j ), ψ, θ

)
π(τ j )

ft
(
τ j |m j , Vj , Q j − 2

)

ft
(
τ cand

j |m j , Vj , Q j − 2
)
}

.

The acceptance rates within the simulation study and the empirical application where found
to be at least 0.95. A draw for κ j is then implied by h(τ j ). The chosen hyperparameter values
for �2

κ jq
and νκ jq are given in Table 1.

f (X (p)
mis|·) Values of Xmis are sampled sequentially for each column vector X (p), p = 1, . . . , P

in two steps. Let X (\p)
com = (X (\p)

obs , X (\p)
mis ) denote the completed matrix of conditional vari-

ables in X except column p, with the operator \p meaning without p.15 First, a decision tree
is built for X (\p)

com conditional on the corresponding values of all remaining variables X (\p)
com as

well as conditional on θ, ω, S, L , and Y . A further possibility is to consider only subsets of
the conditioning variables θ , ω, S, L , and Y . To incorporate a priori uncertainty on the hyper-
parameters of the sequential partitioning regression trees, we build trees with a randomly
varying minimum number of elements within nodes. Every missing observation can then be
assigned to a node and thus a grouping of observations implied by the binary partition in
terms of the conditioning variables. The values within each node provide access to an empir-
ical distribution function serving as an approximation to the full conditional distribution of
a missing value and thus as the key element for running the data generating mechanism for
missing values. With prior distributions of missing values proportional to observed data den-
sities, draws from the empirical distribution function within a node correspond to draws from
the full conditional distributions of missing values. To account for the estimation uncertainty

15In case that also interaction terms are considered, (X (\p)
com ) also subsumes all columns referring to cross terms not

involving variable p. Cross terms involving variable p are hence not subject to modeling but updated each time an
underlying variable has been updated.
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of the full conditional distribution, the Bayesian bootstrap is applied to the assigned group of
observations, see Rubin (1981). Thereby, the uncertainty regarding the estimated empirical
distribution implied by the proposed set of observed values is fully considered.16

The considered approach further offers the flexibility to consider any function of observed
or augmented data within the set of conditioning variables as well. Next to the matrices Y ∗
and Y also statistics thereof might be considered. This may include draws of missing values
in Y or Y ∗ from the posterior predictive distributions as suggested by von Hippel (2007).
In case of restricting the analysis to observed values of Y only as in the empirical illustra-
tion, additionally missing categories might be considered. Note that this is the default of
the R function rpart within the implementation of the CART-BB algorithm, see Therneau
and Atkinson (2018). Further, also group specific or individual specific specifications of the
full conditional distributions could be adapted by consideration of group specific variables
within the set of conditioning variables only, i.e. create a binary partition only for those values
fulfilling the conditions Li = g or Si = c. The sampled Xmis values allow to refer to an
updated completed matrix of covariates in all other steps of the MCMC algorithm.

f (θi |·) The full conditional distributions for θi , i = 1, . . . , N are elementwise conditionally
independent. Let Bi = y∗

i + β. This allows for stating the conditional distribution of the
individual abilities as normal with moments

σ 2
θi

= (α′α + σ−2
Si

)−1 and μθi = σ 2
θi

(
α′ Bi + σ−2

Si
(ωSi + XiγLi )

)
. (9)

f (γg|·) To sample from the full conditional distributions of the regression coefficients, let DC

denote a N × C design matrix of zeros and ones. Each row of DC has a single entry 1
indicating the respondents’ cluster membership Si . The operator [g] selects the elements of
θ , respectively the rows of X and DC for which the condition Li = g holds. Further, let �ε

be a Ng × Ng diagonal matrix with elements σ 2
ε,g . Draws from the conditional distribution

of γg are obtained from a multivariate normal with covariance matrix and mean vector

�γg = (X ′[g]�−1
ε X[g] + �−1

γg

)−1 and μγg = �γg

(
X ′[g]�−1

ε (θ[g] − DC[g]ω) + �−1
γg

νγg

)
.

Note that values of hyperparameters νγg and �γg are chosen as given in Table 1.

f (σ 2
g |·) In each group g you find Cg clusters and Ng respondents. It holds that

∑G
g=1 Cg = C

and
∑G

g=1 Ng = N . Choosing a conjugate prior, the full conditional distribution of σ 2
g is

distributed inverse gamma with shape and scale parameters

aσ 2
g

= a0
σ 2

g
+ Ng/2, bσ 2

g
=
(

b0
σ 2

g
+ 1

2

(
θ[g] − DC[g]ω − X[g]γg

)′(
θ[g] − DC[g]ω − X[g]γg

))−1

,

where the values of the hyperparameters a0
σ 2

g
and b0

σ 2
g
are chosen as given in Table 1.

f (ωc|·) Let the operator [c] select the elements of θ , respective the rows of X belonging to
cluster c and Nc be the total number of persons in cluster c. The cluster-specific random

16Sampling from the empirical distribution function via the Bayesian bootstrap corresponds to running the data gener-
ating process of a parametric imputation model, with involved parameters being sampled from the estimated distributions
in order to fully account for the uncertainty of the data generating process, i.e. the uncertainty how the empirical cumulative
distribution function would look like if the missing values would be observed.
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intercepts ωc are conditionally independent and follow a full conditional distribution given
as a normal distribution with moments

σ 2
ωc

=
(
υ−2

Sc
+ Nc/σ

2
Sc

)−1
and μωc = σ 2

ωc

(
σ−2

Sc
(θ[c] − X[c]γSc)

′ιNc

)
.

The chosen values for hyperparameters are given in Table 1.
f (υ2

g |·) Given a conjugate prior and making use of the operator [g], υ2
ω,g is distributed inverse

gamma with shape and scale parameter

aυ2
g

= a0
υ2

g
+ Cg/2 and bυ2

g
=
(

b0
υ2

g
+ 0.5ω′[g]ω[g]

)−1
.

Note that values of hyperparameters a0
υ2

g
and b0

υ2
g
are chosen as given in Table 1.

Given this MCMC algorithm, parameter estimates and functions of interest thereof can be
readily obtained from theMCMCoutput denoted as {ψ(r), θ (r), ω(r)}R

r=1 with R denoting the num-
ber of iterations after burn-in. Deciding for an absolute loss function, the estimates are implied
by the medians of the posterior sample. Their calculation does not involve the application of any
combining rules as for other approaches to handle missing values. If relevant, also the MCMC
output with regard to the augmented quantities {Y ∗,(r), X (r) = (Xobs, X (r)

mis)}R
r=1 may be consid-

ered as well. To illustrate, given the hierarchical model structure, within group correlation may
as well be of interest, i.e.

Cor(θi , θi ′ |ψ, X, Si = Si ′ = g, i �= i ′) = ν2g

ν2g + σ 2
g

with the corresponding estimator given as

C̃or(θi , θi ′ |ψ, X, Si = Si ′ = g, i �= i ′) = median

{
ν
2(r)
g

ν
2(r)
g + σ

2(r)
g

}R

r=1

.

Next, the effects of changes in X on the individual competence level conditional on school type
g (CE) might be of interest. Additionally, also the relative effects to another school type g′ (RE)
or the conditional effects in standardized form (CSE), see e.g. Nieminen et al. (2013), can be
considered, i.e.

CEX,g = γg, REX,g,g′ = γg − γg′ , and CSEX,g = sd[X[g]]
sd[θ[g]] γg, (10)

where sd denotes the vector of standard deviations of the column vectors in X[g]. Also context
effects in the form of ceteris paribus effects can be considered, e.g. CP = E[θi |Xi , ψ, Li =
g] − E[θi |Xi , ψ, Li = g′] = Xi (γg − γg′) or CPA = E[θi |Xi , ψ, Li = g, Si = c, y∗

i , yi ] −
E[θi |Xi , ψ, Li = g′, y∗

i , yi ] = 1
C

∑C
c=1 μθi (Xi , Li = g, Si = c, ψ, ωc, y∗

i ) − μθi (Xi , Li =
g′, Si = c, ψ, ωc, y∗

i ), where μθi (·) is given in Eq. (9).

Downloaded from https://www.cambridge.org/core. 26 Jan 2025 at 22:41:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1508 PSYCHOMETRIKA

Estimates of conditional, relative and conditional standardized effects are readily available
as

C̃EX,g = median
{
γ (r)

g

}R

r=1
, R̃EX,g = median

{
γ (r)

g − γ
(r)

g′
}R

r=1
,

and ˜CSEX,g = median

{
sd[X (r)

[g]]
sd[θ(r)

[g] ]
γ (r)

g

}R

r=1

,

whereas for the context effects we have C̃P = median
{

X (r)
i (γ

(r)
g − γ

(r)

g′ )
}R

r=1
and

˜CPA = median

{
1

C

C∑

c=1

(
μθi

(
X (r)

i , Li = g, Si = cψ(r), ω(r)
c , y∗,(r)

i

)

−μθi

(
X (r)

i , Li = g′, Si = c, ψ(r), ω(r)
c , y∗,(r)

i

))}R

r=1
.

Note that measures of uncertainty, e.g. posterior standard deviation or highest posterior density
intervals, are likewise directly accessible without use of combining rules.

Finally, note that computation of the marginal data likelihood, i.e.

f (Y |Xobs, S, L) =
∫

f (Y |ψ, X, S, L) f (Xmis|Xobs, ψ) f (ψ)d Xmisdψ,

involved in Bayes factors to allow for non-nested model comparison is possible along the lines
suggested by Chib (1995), Chib and Jeliazkov (2001) and Aßmann and Preising (2020) in the
context of linear dynamic panel models.

3. Simulation Study

We assess the proposed strategy via a simulation study. To illustrate the possible gains arising
from the handling of missing values by means of DA, we consider as benchmarks estimation
without missing values, i.e., before any values have been discarded from the data sets (BD),
estimation of complete cases only (CC), and a third benchmark situationmimicking the situation of
handlingmissing values without latent structures, i.e., handling of missing values in an imputation
sense before estimating the model of interest (IBM). For the IBM benchmark, the full conditional
distributions of missing values are also constructed via CART-BB by using information from
observable variables only. For this, we consider

fIBM
(

X (p)
mis|X (\p)

com , Y, S, L
)

, p = 1, . . . , P.

The IBM strategy conditions on all observables (Y, Xobs, S, L) but not on latent model structures
like θ or ω.17 These three benchmarks are contrasted with the suggested Bayesian estimation

17The IBM benchmark is hence in line with a typical multiple imputation strategy, although no combining rules are
required as sampling is performed within the MCMC sampler. This ensures further that the comparison of the different
approaches is conditional on the same level of numerical precision as implied by the number of MCMC iterations after
burn-in.
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approach DART. Within the DART approach, we will add to the considered observable set of
conditioning variables also the latent variables θ and ω to assess the full conditional distribution
of Xmis, i.e.

fDART
(

X (p)
mis|X (\p)

com , Y, θ, ω, S, L
)

, p = 1, . . . , P.

Next, we will consider also a modified version of the DART approach, labeled DART-m. We
discard Y and S from the set of conditioning variables entering the CART-BB algorithm. This
illustrates that the latent variables θ and ω serve as a kind of sufficient statistics of Y and S. When
specifying the full conditional distributions of missing values Xmis the sufficient statistics allow
for incorporation of the relevant information but provide a more parsimonious representation of
this information leading to a noticeable reduction in computation time.

The simulation study is based on the following data generating process (DGP), where the
comparison is based on averaged estimation over S = 1000 replications referring to the same
DGP. The considered DGP satisfies the following conditions. The response matrix Y is simulated
assuming the model outlined in Eqs. (1), (2) and (3) with a sample setup of N = 4000 students
allocated equally to C = 20 schools which belong to either one of G = 2 school types. Thus,
there are 200 students per school and 10 schools per school type corresponding to a nested
hierarchical structure. The respondents face a test of altogether J = 20 items of which the first
18 are binary and the last two are ordinal with Q19 = Q20 = 4 categories. The J discrimination
and difficulty parameters are fixed across replications and were obtained once via drawing from
uniform distributions in the interval (0.7, 1.3) for discrimination and (− 0.7, 0.7) for difficulty
parameters respectively. To fulfill the identifying restrictions, the itemdifficulty anddiscrimination
parameters are transformed in terms of the geometric and arithmetic mean respectively, see also
Sect. 2.2 for details. Finally, the item category cutoff parameters for the two ordinal items are set
to κ19 = (0, 0.5, 1)′ and κ20 = (0, 0.7, 1.4)′.

We consider three covariates with two covariates X (p), p = 2, 3, capturing individual
differences in the latent trait θi . Adding a constant, the regressor matrix can be stated as
X = (ιN , X (2), X (3)). Since participants in large-scale studies are often heterogeneous, we also
map this circumstance in our simulation study. The chosen DGP leans towards the data situation
in empirical surveys such as the NEPS, as we consider heterogeneity between groups of indi-
viduals. Therefore X (2) is sampled from a Bernoulli distribution with Pr(X (2)

i,g=1 = 1) = 0.3 for

group 1 (g = 1) and Pr(X (2)
i,g=2 = 1) = 0.6 for group 2 (g = 2). X (3) is sampled from a normal

distribution with school specific means and a variance set to one. The overall means in group 1 are
chosen to be smaller compared to group 2. The corresponding parameters of the population model
are set to γ1 = (− 0.5, 0.4, 0.2)′, γ2 = (1, 0.2,− 0.2)′, σ 2

1 = 0.64, σ 2
2 = 0.36, υ2

1 = 0.81 and
υ2
2 = 0.49. The simulation study consists out of four missing scenarios. For scenarios 1 and 2 the

missing rates for X (2) and X (3) depend exclusively on the latent trait variable θ . As suggested by
a reviewer, dependence of the missing probability on the latent variable θ suggests to characterize
the mechanism to be approximately at random, since the latent variable θ becomes estimable in
the considered model framework via observable quantities. For scenario 3 missing probabilities
are determined by weighted sum scores depending on the observed variables X (2), X (3), and the
latent variable θ . The scenario 4 is similar to scenario 3, but missing in X (3) depends itself on X (3)

thus characterizing the mechanism to be not at random. For further details on the four described
missing scenarios, see Table 2.

Each of the repeated estimations is finally based on MCMC chains of length 25,000. After
discarding the first 5000 iterations as burn-in, inference is based on the remaining 20,000 simulated
draws from the joint posterior distribution. Convergence is monitored via the Geweke statistic,
the Gelman–Rubin statistics, and the effective sample size, see Geweke (1992), Gelman et al.
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Table 3.
Simulation study (scenario 1, missing rates: X1 = 19%, X2 = 26%, overall=33%)—True parameter values, mean
posterior medians and standard deviations, RMSEs and coverage ratios of structural parameter (regression coefficients,
variance parameters) over 1000 replications obtained from BD, CC, IBM and DART.

True Average Averaged standard deviation
BD CC IBM DART DART-m BD CC IBM DART DART-m

Runtimes (min) 92 65 340 366 229
Regression coefficient

γ0,1 − 0.500 − 0.503 0.009 − 0.516 − 0.508 − 0.511 0.260 0.206 0.261 0.263 0.262
γ1,1 0.400 0.398 0.288 0.330 0.356 0.360 0.044 0.052 0.048 0.057 0.058
γ2,1 0.200 0.199 0.141 0.154 0.174 0.173 0.046 0.056 0.047 0.054 0.056
γ0,2 1.000 0.989 1.064 0.984 0.985 0.985 0.217 0.204 0.218 0.217 0.217
γ1,2 0.200 0.201 0.181 0.196 0.199 0.199 0.032 0.034 0.033 0.034 0.034
γ2,2 − 0.200 − 0.199 − 0.178 − 0.186 − 0.189 − 0.194 0.037 0.038 0.037 0.037 0.038

Conditional variances
σ 2
1 0.640 0.638 0.459 0.649 0.644 0.644 0.028 0.029 0.029 0.029 0.029

σ 2
2 0.360 0.360 0.319 0.362 0.361 0.361 0.017 0.018 0.018 0.018 0.018

υ2
1 0.810 0.641 0.372 0.645 0.644 0.644 0.303 0.180 0.305 0.305 0.305

υ2
2 0.490 0.446 0.385 0.446 0.446 0.446 0.211 0.182 0.211 0.210 0.210

RMSE Coverage
BD CC IBM DART DART-m BD CC IBM DART DART-m

Regression coefficient
γ0,1 0.302 0.550 0.304 0.303 0.301 0.888 0.330 0.890 0.891 0.890
γ1,1 0.045 0.124 0.091 0.074 0.072 0.948 0.439 0.659 0.874 0.895
γ2,1 0.045 0.080 0.079 0.077 0.076 0.953 0.830 0.753 0.828 0.851
γ0,2 0.222 0.213 0.222 0.225 0.222 0.931 0.925 0.923 0.916 0.926
γ1,2 0.034 0.039 0.036 0.035 0.036 0.944 0.910 0.936 0.942 0.941
γ2,2 0.037 0.045 0.044 0.043 0.042 0.948 0.906 0.915 0.912 0.916

Conditional variances
σ 2
1 0.029 0.184 0.031 0.030 0.029 0.945 0.000 0.936 0.944 0.945

σ 2
2 0.018 0.045 0.018 0.018 0.018 0.944 0.401 0.944 0.943 0.942

υ2
1 0.295 0.455 0.295 0.294 0.294 0.917 0.504 0.920 0.922 0.922

υ2
2 0.147 0.153 0.147 0.147 0.147 0.986 0.984 0.987 0.989 0.986

G = 2; C = 20; N = 4000; J = 20; niter = 20,000 + 5000. RMSE = root mean square error; BD =
before deletion; CC = complete cases; IBM = multiple imputation before modeling based on observed data;
DART = data augmentation using sequential recursive partitioning based on all data and latent parameters.
DART-m = data augmentation using sequential recursive partitioning based on the sufficient statistics θ

and ω. Runtimes = mean runtimes per data set in minutes (Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences and Humanities).

(2013), and Vehtari et al. (2021), and the supplementary material for further information. The
convergence diagnostics indicate overall convergence.

Results for the four different missing scenarios are presented in Tables 3, 4, 5 and 6. They
provide the true parameter values used in the DGP, mean posterior medians and averaged standard
deviations over the 1,000 replications obtained for the BD, CC, IBM,DART, andDART-m sample
estimates with regard to the regression coefficients and conditional variance parameters. Beside
the averaged estimates, simulation results are also evaluated in terms of the root mean square error
(RMSE) and the coverage, i.e. the proportion of 95% highest posterior density regions (HDRs)
that contain the true DGP parameter values. For completeness, results on item characteristics
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Table 4.
Simulation study (scenario 2, missing rates: X1 = 40%, X2 = 50%, overall=59%)—True parameter values, mean
posterior medians and standard deviations, RMSEs and coverage ratios of structural parameter (regression coefficients,
variance parameters) over 1000 replications obtained from BD, CC, IBM and DART.

True Average Averaged standard deviation
BD CC IBM DART DART-m BD CC IBM DART DART-m

Runtimes [min] 92 46 364 381 286
Regression coefficient

γ0,1 −0.500 −0.505 0.453 −0.526 −0.523 −0.523 0.260 0.199 0.261 0.262 0.266
γ1,1 0.400 0.398 0.252 0.285 0.309 0.323 0.044 0.076 0.053 0.077 0.085
γ2,1 0.200 0.198 0.120 0.123 0.137 0.137 0.046 0.081 0.050 0.058 0.062
γ0,2 1.000 0.988 1.217 0.975 0.977 0.986 0.217 0.193 0.218 0.218 0.218
γ1,2 0.200 0.201 0.162 0.183 0.189 0.191 0.032 0.041 0.034 0.037 0.037
γ2,2 −0.200 −0.198 −0.160 −0.164 −0.172 −0.187 0.037 0.045 0.037 0.039 0.040

Conditional variances
σ 2
1 0.640 0.639 0.400 0.655 0.650 0.647 0.028 0.041 0.029 0.030 0.030

σ 2
2 0.360 0.360 0.287 0.364 0.363 0.362 0.017 0.021 0.018 0.018 0.018

υ2
1 0.810 0.643 0.291 0.648 0.646 0.647 0.304 0.147 0.307 0.305 0.307

υ2
2 0.490 0.444 0.331 0.445 0.445 0.445 0.210 0.158 0.211 0.210 0.210

RMSE Coverage
BD CC IBM DART DART-m BD CC IBM DART DART-m

Regression coefficient
γ0,1 0.302 0.970 0.308 0.309 0.312 0.891 0.003 0.880 0.888 0.889
γ1,1 0.044 0.168 0.140 0.127 0.121 0.950 0.501 0.448 0.742 0.833
γ2,1 0.045 0.113 0.121 0.117 0.110 0.954 0.839 0.566 0.665 0.717
γ0,2 0.222 0.283 0.225 0.226 0.224 0.932 0.819 0.928 0.918 0.926
γ1,2 0.034 0.056 0.043 0.042 0.042 0.944 0.844 0.885 0.914 0.920
γ2,2 0.037 0.060 0.059 0.056 0.051 0.948 0.855 0.787 0.839 0.872

Conditional variances
σ 2
1 0.029 0.244 0.034 0.032 0.032 0.945 0.004 0.901 0.926 0.928

σ 2
2 0.017 0.076 0.018 0.018 0.018 0.946 0.116 0.942 0.938 0.938

υ2
1 0.295 0.525 0.293 0.294 0.293 0.917 0.222 0.923 0.922 0.923

υ2
2 0.146 0.183 0.146 0.146 0.146 0.986 0.951 0.987 0.987 0.988

G = 2; C = 20; N = 4000; J = 20; niter = 20,000 + 5000. RMSE = root mean square error; BD =
before deletion; CC = complete cases; IBM = multiple imputation before modeling based on observed data;
DART = data augmentation using sequential recursive partitioning based on all data and latent parameters.
DART-m = data augmentation using sequential recursive partitioning based on the sufficient statistics θ

and ω. Runtimes = mean runtimes per data set in minutes (Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences and Humanities).

(item discrimination, item difficulty and item category cutoff parameters) are available in the
supplementary material. For the BD estimates we find overall unbiased results for all parameters.
The results indicate a correct implementation of the algorithm and further serve as a benchmark
to assess the relative performance of the different methods in the case of missing values. As
expected, the CC results show a huge bias, where the bias becomes larger as the proportion
of missing values increases. The results also show that the biases tend to be larger when the
probability of missing values in X (2) and X (3) depends only on θ , see Tables 3 and 4, and not
additionally on the covariates themselves, see Tables 5 and 6. Not unexpectedly, coverage rates
for CC are the lowest, see e.g. the parameters γ0,1 and σ 2

1 in Table 3.
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Table 5.
Simulation study (scenario 3, missing rates: X1 = 20%, X2 = 36%, overall=46%)—True parameter values, mean
posterior medians and standard deviations, RMSEs and coverage ratios of structural parameter (regression coefficients,
variance parameters) over 1000 replications obtained from BD, CC, IBM and DART.

True Average Averaged standard deviation
BD CC IBM DART DART-m BD CC IBM DART DART-m

Runtimes [min] 94 55 344 366 239
Regression coefficient

γ0,1 −0.500 −0.507 −0.642 −0.514 −0.513 −0.505 0.259 0.254 0.260 0.261 0.261
γ1,1 0.400 0.398 0.370 0.385 0.392 0.393 0.044 0.054 0.045 0.046 0.046
γ2,1 0.200 0.198 0.176 0.180 0.187 0.196 0.046 0.056 0.046 0.048 0.048
γ0,2 1.000 0.989 0.856 0.980 0.987 0.991 0.218 0.217 0.218 0.219 0.217
γ1,2 0.200 0.201 0.185 0.175 0.190 0.192 0.032 0.049 0.034 0.037 0.037
γ2,2 −0.200 −0.198 −0.201 −0.160 −0.185 −0.194 0.037 0.055 0.036 0.040 0.041

Conditional variances
σ 2
1 0.640 0.639 0.606 0.642 0.640 0.639 0.028 0.034 0.028 0.028 0.028

σ 2
2 0.360 0.360 0.346 0.365 0.362 0.361 0.017 0.025 0.018 0.018 0.018

υ2
1 0.810 0.642 0.594 0.643 0.644 0.643 0.303 0.282 0.304 0.304 0.305

υ2
2 0.490 0.444 0.418 0.445 0.445 0.445 0.209 0.199 0.210 0.210 0.209

RMSE Coverage
BD CC IBM DART DART-m BD CC IBM DART DART-m

Regression coefficient
γ0,1 0.302 0.318 0.301 0.299 0.301 0.897 0.863 0.895 0.910 0.890
γ1,1 0.044 0.062 0.049 0.047 0.047 0.950 0.915 0.936 0.950 0.951
γ2,1 0.045 0.061 0.057 0.056 0.055 0.956 0.934 0.886 0.907 0.911
γ0,2 0.223 0.256 0.223 0.224 0.222 0.932 0.891 0.937 0.928 0.931

γ1,2 0.034 0.050 0.045 0.040 0.039 0.947 0.946 0.864 0.935 0.946
γ2,2 0.037 0.056 0.060 0.051 0.051 0.950 0.948 0.750 0.870 0.884

Conditional variances
σ 2
1 0.029 0.048 0.029 0.029 0.029 0.945 0.841 0.935 0.940 0.943

σ 2
2 0.018 0.029 0.018 0.018 0.018 0.945 0.903 0.937 0.945 0.941

υ2
1 0.294 0.309 0.295 0.295 0.295 0.918 0.898 0.919 0.920 0.921

υ2
2 0.145 0.146 0.146 0.146 0.146 0.988 0.985 0.989 0.989 0.989

G = 2; C = 20; N = 4000; J = 20; niter = 20,000 + 5000. RMSE = root mean square error; BD =
before deletion; CC = complete cases; IBM = multiple imputation before modeling based on observed data;
DART = data augmentation using sequential recursive partitioning based on all data and latent parameters.
DART-m = data augmentation using sequential recursive partitioning based on the sufficient statistics θ

and ω. Runtimes = mean runtimes per data set in minutes (Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences and Humanities).

When comparing IBM toDART andDART-m, the differences are less pronounced. Neverthe-
less, it appears consistently across all four simulation studies that with using DART or DART-m
we achieve smaller biases. Further inspection of the RMSE for IBM,DART andDART-m suggests
no severe loss of statistical efficiency compared to BD, but with a small advantage for DART and
DART-m. These results are supported by the coverage rates meeting the 95% confidence level for
most of the parameters using DART, especially DART-m, whereas this becomes especially clear
with Scenario 2 in Table 4 showing the highest proportion of missing values. Here, we could only
achieve a coverage rate of around 50% for the parameters γ1,1 and γ2,1 using IBM, but obtain
higher coverage rates using DART and even better using DART-m.
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Table 6.
Simulation study (scenario 4, missing rates: X1 = 17%, X2 = 28%, overall = 40%)—True parameter values, mean
posterior medians and standard deviations, RMSEs and coverage ratios of structural parameter (regression coefficients,
variance parameters) over 1000 replications obtained from BD, CC, IBM and DART.

True Average Averaged standard deviation
BD CC IBM DART DART-m BD CC IBM DART DART-m

Runtimes [min] 93 60 340 363 227
Regression coefficient

γ0,1 −0.500 −0.508 −0.491 −0.512 −0.507 −0.507 0.262 0.258 0.262 0.260 0.262
γ1,1 0.400 0.398 0.388 0.378 0.390 0.392 0.044 0.055 0.045 0.047 0.047
γ2,1 0.200 0.198 0.193 0.179 0.191 0.196 0.046 0.058 0.046 0.048 0.049
γ0,2 1.000 0.988 0.966 0.980 0.984 0.988 0.217 0.218 0.218 0.219 0.218
γ1,2 0.200 0.201 0.199 0.189 0.197 0.198 0.032 0.042 0.033 0.035 0.035
γ2,2 −0.200 −0.198 −0.192 −0.174 −0.189 −0.195 0.037 0.047 0.036 0.038 0.039

Conditional variances
σ 2
1 0.640 0.639 0.618 0.643 0.640 0.639 0.028 0.035 0.028 0.028 0.028

σ 2
2 0.360 0.360 0.355 0.363 0.361 0.361 0.017 0.022 0.018 0.018 0.018

υ2
1 0.810 0.643 0.612 0.643 0.643 0.643 0.304 0.291 0.305 0.303 0.304

υ2
2 0.490 0.444 0.435 0.445 0.445 0.445 0.210 0.206 0.210 0.210 0.210

RMSE Coverage
BD CC IBM DART DART-m BD CC IBM DART DART-m

Regression coefficient
γ0,1 0.299 0.292 0.302 0.299 0.301 0.898 0.908 0.895 0.889 0.889
γ1,1 0.044 0.058 0.052 0.049 0.048 0.951 0.943 0.915 0.942 0.944
γ2,1 0.045 0.057 0.054 0.053 0.053 0.954 0.959 0.898 0.924 0.931
γ0,2 0.221 0.223 0.223 0.223 0.224 0.929 0.934 0.931 0.929 0.930
γ1,2 0.034 0.042 0.037 0.036 0.036 0.945 0.945 0.933 0.943 0.946
γ2,2 0.037 0.047 0.048 0.043 0.043 0.953 0.956 0.858 0.909 0.926

Conditional variances
σ 2
1 0.029 0.042 0.029 0.029 0.029 0.944 0.889 0.938 0.945 0.943

σ 2
2 0.018 0.023 0.018 0.018 0.018 0.945 0.947 0.942 0.946 0.946

υ2
1 0.295 0.304 0.295 0.295 0.295 0.918 0.899 0.920 0.917 0.920

υ2
2 0.146 0.146 0.146 0.146 0.146 0.988 0.988 0.985 0.989 0.989

G = 2; C = 20; N = 4000; J = 20; niter = 20,000 + 5000. RMSE = root mean square error; BD =
before deletion; CC = complete cases; IBM = multiple imputation before modeling based on observed data;
DART = data augmentation using sequential recursive partitioning based on all data and latent parameters.
DART-m = data augmentation using sequential recursive partitioning based on the sufficient statistics θ

and ω. Runtimes = mean runtimes per data set in minutes (Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences and Humanities).

Taking a look at the averaged standard deviations, these tend to be smaller for IBM, since
without the latent variables θ and ω drawn from the full conditional distributions in each iteration,
we do not consider an important source of variability affecting the uncertainty of the missing
values. Further, without consideration of θ and ω, the bias increases as shown by our simulation
results.

The advantages of the DART-m approach are particularly evident in the runtimes (mean
runtimes per data set in minutes) given in Tables 3, 4, 5 and 6. DART-m efficiently uses the
information from the latent variables θ and ω, which serve as sufficient statistics and therefore
can replace the item response Y and the school affiliation S. The resulting runtimes show that the
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Table 7.
Comparison of prediction accuracy of conditioning variables X .

Scenario I Scenario II Scenario III Scenario IV
X (2) X (3) X (2) X (3) X (2) X (3) X (2) X (3)

Root mean square error
IBM 0.5784 0.5689 0.5992 0.5793 0.6390 0.5728 0.6157 0.5728
DART 0.6014 0.5790 0.6240 0.5914 0.6660 0.5808 0.6436 0.5811
DART-m 0.6020 0.5837 0.6245 0.6012 0.6669 0.5825 0.6438 0.5826
Bias
IBM 0.3951 0.3790 0.4207 0.3924 0.4613 0.3766 0.4356 0.3750
DART 0.3913 0.3606 0.4182 0.3769 0.4596 0.3573 0.4351 0.3563
DART-m 0.3905 0.3520 0.4162 0.3661 0.4595 0.3483 0.4347 0.3476
Variance
IBM 0.1534 0.1459 0.1542 0.1466 0.1684 0.1512 0.1628 0.1523
DART 0.1903 0.1697 0.1975 0.1715 0.2203 0.1734 0.2112 0.1743
DART-m 0.1924 0.1814 0.2007 0.1921 0.2226 0.1820 0.2119 0.1824

Quantities are calculated as follows with bias = 1
S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1 |X ( j)
mis,k,∫ − X̃ ( j)

mis,k,∫ |, j = 2, 3,

variance = 1
S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1 (X ( j)
mis,k,∫ − X̂ ( j)

mis,k,∫ )2, j = 2, 3, and root mean square error =
1
S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1

√
(X ( j)

mis,k,∫ − X̃ ( j)
mis,k,∫ )2, j = 2, 3, with #X ( j)

mis denoting the number of miss-

ing values per variable, X ( j)
mis,k,∫ the kth missing value in variable j , and X̃ ( j)

mis,k,∫ and X̂ ( j)
mis,k,∫ denote true

(before deletion) and estimated values in repeated estimation ∫ respectively.

suggested DART-m approach saves up to one third of the computation time compared to the IBM
approach.

Similar effects can be seen when inspecting the properties of the sampled trajectories
{X (r)

mis}R
r=1. The properties arising from the different approaches can be assessed via calculat-

ing for each missing value the absolute and squared distance to the true (before deletion) and
estimated value. With the former providing bias and the latter the variance, we summarize the
finding per variable and aggregate over the missing values per variable and over the simulated
data sets. The same procedure is also done to obtain root mean square errors. Note that after
averaging over missing values per variable and over data sets, root mean square errors are not
exactly identical to variance plus squared bias. With regard to bias and variance we calculate

bias as 1
S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1 |X ( j)
mis,k,∫ − X̃ ( j)

mis,k,∫ |, variance as 1
S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1 (X ( j)
mis,k,∫ −

X̂ ( j)
mis,k,∫ )2, and root mean square error as 1

S
∑S

∫=1
1

#X ( j)
mis

∑#X ( j)
mis

k=1

√
(X ( j)

mis,k,∫ − X̃ ( j)
mis,k,∫ )2.

Thereby, #X ( j)
mis denotes the number of missing values per variable, X ( j)

mis,k,∫ the kth missing

value in variable j = 2, 3, and X̃ ( j)
mis,k,∫ and X̂ ( j)

mis,k,∫ denote true (before deletion) and estimated
values within repeated estimation ∫ respectively. The results are described in Table 7. As expected
and in line with the other simulation results presented, the suggested augmentation approaches
DART andDART-m show reduced bias although slightly increased variance compared to the IBM
approach. This in turn then causes the improved inference regarding the regression coefficients
both in terms of bias and coverage.

Downloaded from https://www.cambridge.org/core. 26 Jan 2025 at 22:41:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1516 PSYCHOMETRIKA

To summarize, the simulation illustrates that the combination of data augmentation and
sequential recursive partitioning offers a suitable solution for the treatment of missing covariates
in the context of LRMs, both with regard to estimation efficiency and computational burden.

4. Empirical Illustration

In order to illustrate the usefulness of the suggested Bayesian data augmentation approach in
empirical analysis, we provide exemplary applications using the scientific data use file of the Ger-
man National Educational Panel Study: Starting Cohort Grade 9, doi: 10.5157/NEPS:SC4:10.0.0,
see NEPS Network (2019), on mathematical competencies of ninth graders. Children of this
cohort have been surveyed in an institutional context. Data collection has taken place in schools
in Germany between fall 2010 and winter 2010/2011 based on a stratified sampling of schools
according to school types, see Aßmann et al. (2011). Both factors, the institutional setting of
schools in Germany as well as the stratified sampling approach, give reason to consider a differ-
entiated hierarchical data structure.

We chose the mathematical competency domain as an example for latent variable modeling
with person covariates. The relationship between mathematical competency and individual char-
acteristics is thereby structured by the type of secondary schooling.Mathematical competencywas
assessed in the first survey wave. The corresponding test comprises four content areas: quantity,
change and relationships, space and shape, and data and chance (Neumann et al., 2013), where a
total of 15,629 ninth graders have taken the considered test. For an overview and further results
on the mathematics test data see Duchhardt and Gerdes (2013). As most of the items have low
missing rates, the estimation within the empirical illustration is based on the likelihood involving
observed values of Y only and only students with a valid response to at least three mathemat-
ics test items are consider.18 From the J = 22 tasks that had to be solved in the test, 20 items
have a binary format and two are treated as ordinal items with four categories. In addition to the
test data, we consider two clustering variables (schooltype and school) and student covariates.
Merging mathematics test data and all student information together results in a final data set with
14,320 observations. The available school type variable (Bayer et al., 2014) was transformed to
cover four tracks of the German secondary education system: Hauptschule (HS; lower track),
Realschule (RS; intermediate track), Gymnasium (GYM; academic or upper track) and, for obser-
vations where a clear assignment to these tracks was not possible or unclear, we define a residual
category (OTHER). With 37% of students, GYM is the modal track. The school identifier school
assigns a unique number to each school and serves as a further clustering variable with a total of
532 schools. Table 8 provides the descriptive statistics on the sample and considered variables.
The illustration is provided in form of the following two model specifications.

The first model specification considers a small set of background variables with different
scales including cross terms, whereas the second model specification has an enlarged set of cat-
egorical background variables to illustrate that the suggested DART-m approach is feasible and
efficient in terms of computational cost and statistical efficiency. For the first model specification
(model I) we adapt a specification discussed by Passaretta and Skopek (2021) to assess the role of
schools in socioeconomic inequality of learning. Following a differential exposure approach, the
relationship of mathematical competency is analyzed with regard to the student variables gender,
parents’ socio-economic status (HISEI), school exposure (schoolexp), and age at time of assess-
ment (agetest).19 In line with literature, we expect more school exposure and higher assessment

18For ten items we have missing rates of less than 2%, less than 5% for another eight items, for three items we have
the range from 5% − 10% and only one item has a missing rate of 20%.

19Regarding socio-economic status, there are many operationalizations implemented in the NEPS. In line with recent
analyses of the PISA data (OECD, 2013a, p. 132), we took the highest occupational level of parents measured by the
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Table 9.
NEPS grade 9, mathematical competencies—parameter estimates of model I.

HS RS GYM OTHER

γg,Intercept 0.834∗ (0.441) 1.887∗ ∗ ∗ (0.525) 1.831∗∗ (0.756) 0.973 (1.166)
γg,Gender:1 − 0.215∗ ∗ ∗ (0.015) − 0.313∗ ∗ ∗ (0.015) −0.313∗ ∗ ∗ (0.016) − 0.268∗ ∗ ∗ (0.033)
γg,HISEI − 0.018 (0.102) − 0.118 (0.104) 0.212∗ (0.118) 0.134 (0.222)
γg,Age − 0.054 (0.038) − 0.112∗∗ (0.045) − 0.070 (0.060) − 0.056 (0.095)
γg,Experience − 0.030 (0.035) − 0.010 (0.045) − 0.017 (0.060) − 0.023 (0.094)
γg,HISEI×Age − 0.003 (0.009) 0.007 (0.009) − 0.010 (0.009) − 0.008 (0.018)
γg,HISEI×Experience 0.008 (0.008) 0.004 (0.009) − 0.004 (0.010) 0.002 (0.018)
σ 2

g 0.104 (0.005) 0.138 (0.005) 0.226 (0.007) 0.153 (0.012)
υ2

g 0.048 (0.006) 0.06 (0.008) 0.091 (0.011) 0.093 (0.025)
Within group
correlation

0.686 (0.028) 0.698 (0.028) 0.713 (0.026) 0.622 (0.060)

C = 532; N = 14320; NCC = 6748; J = 22. Median and standard deviation (in parentheses) of the
posterior distribution are reported.
*90% HDI; **95% HDI; ***99% HDI. Runtime: 35.6h.

Table 10.
NEPS grade 9, mathematical competencies—relative effects for structural parameter estimates of model I.

γg − γg′ HS–GYM RS–GYM OTHER–GYM

γg − γg′ , Intercept − 0.988 (0.876) 0.069 (0.923) − 0.855 (1.398)
γg − γg′ ,Gender : 1 0.097∗ ∗ ∗ (0.022) − 0.001 (0.022) 0.044 (0.037)
γg − γg′ ,HISEI − 0.231 (0.156) −0.332∗∗ (0.158) − 0.078 (0.253)
γg − γg′ ,Age 0.017 (0.071) − 0.042 (0.075) 0.012 (0.112)
γg − γg′ ,Experience − 0.013 (0.070) 0.008 (0.075) −0.006 (0.112)
γg − γg′ ,HISEI × Age 0.007 (0.013) 0.017 (0.013) 0.002 (0.020)
γg − γg′ ,HISEI × Experience 0.011 (0.012) 0.007 (0.013) 0.006 (0.020)

C = 532; N = 14320; NCC = 6748; J = 22. Median and standard deviation (in parentheses) of the
posterior distribution are reported.
*90% HDI; **95% HDI; ***99% HDI.

age to be positively correlated with mathematical competence, whereas the (un)balancing effect
of schools on competence is captured in terms of the cross terms between socioeconomic status
and age of testing as well as school exposure. A positive effect for the considered cross terms
would indicate that school experience accelerates competence more for students with higher socio
economic status. The total amount of missing data for the variables within this model specification
is to be considered as moderate to strong. Whereas the number of missing values in gender is
negligible, about one fifth of the values are missing for HISEI. For agetest almost no missing
values are present, whereas for school exposure the defining date of school entry was surveyed
in the parental interview with a missing rate of 42.9%, see Table 8. The ratio of students hav-
ing complete background information is 47.1% which corresponds to 6, 748 observations. The
second model specification (model II) considers an enlarged set of background variables and
contains gender (binary), generation status (4 categories), grade final report card mathematics (6

index ISEI-08 (Ganzeboom, 2010) and calculated a variable HISEI as the higher ISEI-08 score of either the students’
mother or the students’ father or the only available score. To calibrate the scale of the regression coefficient associated
with HISEI, the original values are divided by 100. HISEI ranges from 1.16 to 8.90 with higher values indicating a higher
level of occupational status. This variable in particular shows strong differences between the school types which can be
seen in Table 8. Age at assessment and school exposure are defined as the difference between date of assessment and date
of birth or date of school entry respectively.
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Table 11.
NEPS grade 9, mathematical competencies—relative effects for structural parameter estimates of model II.

γg − γg′ HS–GYM RS–GYM OTHER–GYM

γg − γg′ , Intercept − 1.452∗ ∗ ∗ (0.145) − 0.868∗ ∗ ∗ (0.184) − 0.860∗ ∗ ∗ (0.217)
γg − γg′ ,Gender : 1 0.133∗ ∗ ∗ (0.021) 0.033∗ (0.020) 0.103∗ ∗ ∗ (0.035)
γg − γg′ ,GenerationStatus : 1 0.185∗ ∗ ∗ (0.050) 0.157∗ ∗ ∗ (0.055) 0.071 (0.082)
γg − γg′ ,GenerationStatus : 2 0.068∗ (0.038) 0.048 (0.041) − 0.036 (0.063)
γg − γg′ ,GenerationStatus : 3 0.072∗∗ (0.034) 0.022 (0.034) − 0.037 (0.054)
γg − γg′ ,GradeMathematics : 2 0.339∗ ∗ ∗ (0.047) 0.170∗ ∗ ∗ (0.044) 0.195∗ ∗ ∗ (0.069)
γg − γg′ ,GradeMathematics : 3 0.468∗ ∗ ∗ (0.046) 0.238∗ ∗ ∗ (0.044) 0.314∗ ∗ ∗ (0.067)
γg − γg′ ,GradeMathematics : 4 0.529∗ ∗ ∗ (0.048) 0.307∗ ∗ ∗ (0.045) 0.375∗ ∗ ∗ (0.072)
γg − γg′ ,GradeMathematics : 5 0.592∗ ∗ ∗ (0.060) 0.342∗ ∗ ∗ (0.060) 0.303∗ ∗ ∗ (0.099)
γg − γg′ ,GradeMathematics : 6 0.412∗ (0.221) 0.308 (0.237) 0.033 (0.491)
γg − γg′ ,SchoolYearRepeated : 1 − 0.050∗ (0.030) − 0.083∗ ∗ ∗ (0.031) − 0.093 (0.058)
γg − γg′ ,Computer : 2 − 0.020 (0.023) − 0.018 (0.023) − 0.074∗ (0.040)
γg − γg′ ,Computer : 3 0.000 (0.134) − 0.065 (0.145) 0.117 (0.202)
γg − γg′ ,Room : 1 0.007 (0.044) 0.035 (0.048) − 0.068 (0.071)
γg − γg′ ,HCASMIN : 1 0.139 (0.147) 0.019 (0.189) − 0.017 (0.211)
γg − γg′ ,HCASMIN : 2 0.087 (0.137) 0.052 (0.176) − 0.040 (0.201)
γg − γg′ ,HCASMIN : 3 0.120 (0.142) 0.142 (0.180) 0.098 (0.208)
γg − γg′ ,HCASMIN : 4 0.126 (0.133) 0.097 (0.172) 0.010 (0.194)
γg − γg′ ,HCASMIN : 5 0.084 (0.137) 0.101 (0.176) 0.012 (0.202)
γg − γg′ ,HCASMIN : 6 0.108 (0.135) 0.034 (0.173) − 0.005 (0.198)
γg − γg′ ,HCASMIN : 7 0.180 (0.141) 0.156 (0.175) 0.051 (0.204)
γg − γg′ ,HCASMIN : 8 0.110 (0.140) 0.112 (0.175) 0.103 (0.198)

C = 532; N = 14320; NCC = 7708; J = 22. Median and standard deviation (in parentheses) of the
posterior distribution are reported.
*90% HDI; **95% HDI; ***99% HDI.

categories), school year repeated (binary), computer in your home (3 categories), homepos room
(binary), and highest parental education qualification (HCASMIN, 9 categories). We can see a
substantial heterogeneity within the covariate HCASMIN between the school types. For example,
we observe that 29.5% of the students in H S have parents in category 2 (basic vocational training
above and beyond compulsory schooling) but only 3.2% of the students in GY M , or the other
way round with category 8 (completed traditional, academically orientated university education)
which have only 3.1% of students in H S, but 32.2% for GY M . Most of the variables have a neg-
ligible amount of missing values. However, we have over 40% of missing values for the covariate
HCASMIN, as this information has been surveyed within the parental interview. Therefore the
ratio of students with complete background information drops to 57.3%, i.e. only 7708 complete
case observations.

For each of the twomodels, estimates are based on 25,000MCMC iterations, where a burn-in
phase of 5000 has been found sufficient to mitigate the effects of initialization within the empirical
analysis, see the supplementary material for corresponding results and further information con-
cerning the convergence diagnostics and the assessment of the Monte Carlo error for the obtained
point estimates.

Corresponding results for the two model specifications with regard to regression and condi-
tional variance parameters are given in Table 9 for model I and Table 12 for model II respectively.
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Expected a posteriori estimates of θi, i=1,...,N
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Notes: Hauptschule (HS ; lower track), Realschule (RS ; intermediate track), Gymnasium
(GYM ; academic or upper track) and, for observations where a clear assignment to
these tracks was not possible or unclear, we define a residual category (OTHER).

Figure 1.
NEPS grade 9, Gaussian kernel density estimates for the set of conditional variances on person level σ 2

g and school level

υ2
g and expected a posteriori estimates of scalar person parameter θi referring to mathematical competence in model I.

Tables 10 and 11 provide corresponding estimates on relative effects between school types.20

These tables provide the resulting estimates in terms of medians, standard deviations, and highest
posterior density coverage rates (HDI). The results regarding the structural relationships show
clear school type specific differences in the distribution of competencies, see upper panels of
Figs. 1 and 2. The highest mean scores are consistently found for GY M , followed by the other
school types RS, OT H E R, and H S. In the same way, the conditional variances on the person-
and the school-level, σ 2

g and υ2
g , differ across the different types of secondary schooling. However,

student’s idiosyncratic error terms, i.e. inter-individual differences not captured by the covariates,
constantly contribute more to the variability in mathematical competency than school belonging
over the different educational tracks, see lower panels of Figs. 1 and 2.

Regarding covariate effects, the models indicate interactions with the grouping variable. For
more details, let us first look at the effects of the additional personal covariates used in model I.
The negative effect of being female on mathematical competency (gender : 1) is shown to be
stable across all school types, but at varying degrees. The effects of school exposure and age at
testing are completely subsumed with the school type, i.e. in ninth grade these variables have no

20Results on item characteristics (discrimination, difficulty, and cut-off parameters) are available within the supple-
mentary material.
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Expected a posteriori estimates of θi, i=1,...,N
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Notes: Hauptschule (HS ; lower track), Realschule (RS ; intermediate track), Gymnasium
(GYM ; academic or upper track) and, for observations where a clear assignment to
these tracks was not possible or unclear, we define a residual category (OTHER).

Figure 2.
NEPS grade 9, Gaussian kernel density estimates for the set of conditional variances on person level σ 2

g and school level

υ2
g and expected a posteriori estimates of scalar person parameter θi referring to mathematical competence in model II.

effect beyond school type in contrast to gender. This completes the findings from the literature
discussing effects in primary schools, see Passaretta and Skopek (2021).

Next, we consider the structural parameter estimates of model II. Again, we see the negative
effect although slightly reduced of being female in all school types. Compared to students without
a migration background, a first-generation migration background has a substantial negative (99%
HDI not including zero) impact on mathematics competency across all school types. The negative
effects also prevail for amigration background of the second generation, while for third generation
migrants the negative effects are reduced (GYM andOTHER) or become not substantially different
from zero (HS and RS). For the covariate grade mathematics in the previous year, where grade
1 (very good) is the reference category, we see that a good result from the previous year has a
negative effect onmathematics competence compared to very good, wherewithworsening grades,
the effect accelerates. This pattern can be observed throughout all school types, where the overall
effect is strongest in the school type GYM. With regard to the covariate school year repeated, we
also find differences across the school types, where this variable has no impact for school types RS
and OTHER, but positively different from zero effect for school types HS and GYM. Not having
your own computer, but sharing one with other family is found to have no impact on individual
competence level across all school types, where we point at the possibility that this relationship
may have changed since 2010 substantially. Also having an own room has no substantial effect
given the considered set of covariate variables, except for school type RS. With regard to the
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variable HCASMIN, we find positive effects for higher HCASMIN levels for school type HS,
while no effects substantially different from zero are found for all other school types. However,
this variables further illustrates that the inspection of relative effects as defined in Eq. (10) with
corresponding results formodel specification II given in Table 11 is important to gauge differences
across schools correctly. The relative effects between the different school types for the variable
HCASMIN show no substantial differences between the school types. In this regard, the findings
relate to the school specific distribution of HCASMIN, compare Table 8. For this model, we also
calculated within group correlations, see bottom of Table 12. Although the groups show different
conditional variances, estimates show no evidence for differing within group correlations.

While this effects are in line with the results from the literature, the suggested Bayesian esti-
mation approach allows for effectively incorporating all available information, i.e. all information
andmodel features with regard to themeasurement model in terms of discrimination and difficulty
parameters, intra-class correlation, and school type heterogeneity are reflected within the corre-
sponding full conditional distributions. Given this, the results document a clear shift in means and
covariate effects aswell as unequal variances of the school type-specific density curves. The results
of these two empirical applications extend the findings of our simulation studies from Chapter 3.

5. Conclusion

To handle missing values this paper discusses a Bayesian estimation approach making use of
the device of data augmentation. Themissing values in conditioning variables are hence considered
along with the underlying continuous outcomes, the model parameters and the latent traits or
hierarchical structures in the MCMC sampling scheme involved in operationalizing the Bayesian
estimation. The DA device enables to provide the estimation of all these quantities in a statistically
efficient one-step procedure. The uncertainty stemming from partially missing covariate data is
directly incorporated into parameter estimation. At every iteration of the algorithm an imputed
versionof the covariate data is used to sample from the set of full conditional posterior distributions.
Vice versa, the iteratively updated parameter values resulting from posterior sampling can in turn
be consideredwithin the full conditional distribution ofmissing values. Thus, compared to existing
methods the novel method carries out parameter estimation while handling missing values in
background variables simultaneously. Taken together, there are several advantages resulting from
such an approach. First, it is statistically efficient in the sense that values for the latent trait, item
characteristics, and missing values of background variables are all provided at once, second, all
possible sources of uncertainty are taken into account, and third, the approach is especially well
suited to deal with latent variables corresponding to competencies or arising from hierarchical
structures, where the mutual dependence can be directly handled in terms of the full conditional
distributions inserted into the sampler.

The advantages show off in terms of statistical efficiency and the computational burden is
possibly eased, when latent quantities in the sense of sufficient statistics can be used to specify
the full conditional distributions of missing values. An empirical example using the NEPS further
demonstrates the broad applicability of the approach to a wide range of social science topics.
Besides permitting the estimation of competency scores and their correlations with the context
variables purified from measurement error, any number of completed data sets arising from the
MCMC output may also serve as multiple imputations of the missing background information.
Future research may investigate in detail the possibilities to perform nested and non-nested model
comparison via Bayes factors based on the marginal data likelihood. Also alternative models for
the full conditional distributions of missing values or automated variable selection based on the
spike-and-slab prior specification, see Ročková and George (2018), to determine which variables
have group specific influence andwhich variables have homogeneous influence across the different
groups, could be considered.
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