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Abstract

Let "W = {u>t(0)£i0 t * t n e classical system of the Walsh functions, «5V the multiplicative semigroup of
the functions represented by series of functions w^ (t) with non-negative coefficients which sum equals 1.
We study the arithmetic of 5f-#/. The analogues of the well-known Khinchin factorization theorems
related to the arithmetic of the convolution semigroup of probability measures on the real line are valid
in 5^iti- The classes of idempotent elements, of infinitely divisible elements, of elements without
indecomposable factors, and of elements without indecomposable and non-degenerate idempotent factors
are completely described. We study also the class of indecomposable elements. Our method is based
on the following fact: S^tf is isomorphic to the semigroup of probability measures on the group of
characters of the Cantor-Walsh group.

2000 Mathematics subject classification: primary 60B15,43A25; secondary 42C10.
Keywords and phrases: probability measures on groups, Khinchin factorization theorems, infinite divisi-
bility, indecomposability, Walsh functions.

1. Introduction and statement of results

The arithmetic of the convolution semigroup & of probability measures on W has
been studied intensively since the 1930s (see [9, 10]). Nevertheless, some important
problems, for example, the problem of the description of the class h{£?) of measures
without indecomposable components, remain open. In the 1960s, Kendall, Davidson
[7, 8], and Urbanik [15] studied semigroups essentially different from &, but with a
similar arithmetic. Many other examples of such semigroups were considered later by
Bingham, Kennedy, Kingman, Lamperti, Ostrovskii, Ulanovskii (see the expository
paper [10]) and by the author [4, 13, 14]. For some of these semigroups, the above
mentioned problem has been completely solved.
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366 I. P. Il'inskaya [2]

The aim of this paper is to study a new example of this kind. Let us denote by
r, = r,(f), i = 0, 1, 2 , . . . , t G [0, 1], the classical Rademacher functions (see, for
example, [5, Chapter 2, Section 2]) defined as

nit) = sign(sin(2;7r0).

Let us agree that r, is equal to 1 at the discontinuity points. The Walsh functions are
all finite products of Rademacher functions. We set (see [5, Chapter 4, Section 6])

Wo = iro
l = r0 = 1

a) ^ : J i i £ W3=r =
w4 = xj/^ = r3, Ws = x//2 — r3r\, w^ = x[f3 = r3r2, wj = i/^4 = r3r2r\, . . .

For each s e N, the Walsh functions of the sth series \j/{ (j = 1,2,... , 2s~x) are
products of the function rs and all functions of the preceding series. Let us note
that \ff] = rs for all s G No := N U {0}. The Walsh functions form an orthogonal
and normalized system on the interval [0, 1] with respect to the Lebesgue measure
([5, Chapter 4, Section 5]). Obviously, r2(t) = 1, w2

k(t) = 1 for all k e No. It is
evident that the product of two Walsh functions is a Walsh function as well. The set
of all Walsh functions is an abelian group with respect to the multiplication with unity
w0 = XJ/Q = I. Every element of this group is inverse to itself. We introduce the
following notation:

W :— {ift}^0 is the group of the Walsh functions with the discrete topology,
cSV is the multiplicative semigroup of all functions / (f), t e [0, 1], represented in

the form

(2) f{t) = 2_^akwk{t), ak>0, } ak = 1.
*r=0 k=0

We endow ^$V with the topology of uniform convergence on [0, 1].
Our aim is to study the arithmetic of <$V. Let us give the main definitions. The

functions wk,k G No are degenerate elements of the semigroup ^ V . A function
/ G «̂ V is called idempotent if f2 = fwk for some k e No. A function/ G ^ V
is infinitely divisible if for every n G N there exist /„ G «5V and k e NQ such that
/ = (fn)

nwk. A function fx G y^ is called a factor of / G ^ V if there exists
f2 G ^ V such that / = fyf2. A function / G ,5V is called indecomposable if
/ ^L wk for all k G No and if all factors of / are of the forms wk and / wk only. We
introduce the following notation:

is the class of all idempotent functions of <5V;
is the class of all infinitely divisible functions of ^^V;
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Jo(^V) is the class of functions without indecomposable and non-degenerate idem-
potent factors;

J is the class of functions without indecomposable factors;
is the class of indecomposable functions.

In Section 2 we show that y^ is isomorphic to the semigroup of probability
measures on the group of the characters of the Cantor-Walsh group. Therefore we
may use results about the factorization of the probability measures on locally compact
abelian groups. From the results of Parthasarathy, Rao and Varadhan [11, 12] it
follows that three theorems given below are valid in «^V.

THEOREM 1 ([12]). Every function f e ,5V can be represented in the form f =
/1/2/3. where f\ is the maximal idempotent factor off, f2 € /o(«5V), fz is a product
of the empty, finite or countable set of indecomposable functions {in the first case
/ 3 = 1, and in the third case the infinite product converges uniformly on [0, 1]).

THEOREM 2 ([12, 2, Corollary 4.7]). / 0(^V) C /(.5V).

Theorem 1 and Theorem 2 are analogues of the Khinchin theorems [9, pages 79,
88], related to the arithmetic of the semigroup &.

THEOREM 3 ([11]). The class N{y^) is a dense Gs-set in y^ with respect to the
topology of uniform convergence on [0, 1].

The main results of our paper are characterizations of the classes Id{y-^),
and a test for the membership of N{yw).

THEOREM 4. The class Id{y^) consists of all functions f representable in the
form

f = Wj Yl (0-5 + 0.5wt),

where j e No and K is an arbitrary finite subgroup of

THEOREM 5. The class I (J?V) consists of all functions f representable in the form

f = fi exp I ^ ck(wk - 1)1 ,

where ck > 0, Y17=i c* < °°> / i e Id(yyy).

Theorem 5 is an analogue of the well-known Levy-Khinchin formula [9, page 9]
of the characteristic function of an infinitely divisible probability measure on R.
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THEOREM 6. The class 7 0 ( ^ V ) consists ofallfunctions f representable in the form

f = aw, + (1 - a)wk, or € [ 0 , 1 ] , /, k e No.

COROLLARY 1. 7<f (<*V) n 7 0 ( ^ V ) = {0.5iu, + 0.5u>t :l,ke No).

THEOREM 7. 70(^V) = [aw, + (1 - «)io t : a e [0,0.5) U (0.5,1], /, k e No}
= {io, exp(c(u;y - 1)) : c > 0, j ,y € No) .

It should be mentioned that in the semigroups studied earlier and different from &
the class 70 is rather small. Theorem 7 shows that 70(,5V) is rather large.

The following theorem gives a test for the membership of N(y^).

THEOREM 8. Let

n 2 - 1

= E E
j=0 ;=1

where n < m, am,, > 0 and the sum <p(t) contains at least two non-zero terms. Then
f 6 N(yw).

2. Probabilistic interpretation of the semigroup c^V

The semigroup i$V has an interesting probabilistic interpretation. We first intro-
duce (following [1, Section 14.1]) some notation and definitions.

Let us write <tf for the set {-1, 1}H of all mappings co : N - • ( - 1 , 1). (In [1] ^
is defined as the set of all mappings from Z to {—1, 1}. It is more convenient for us
to consider N instead of 2.) The set ^ is a compact abelian group with respect to
the pointwise multiplication and the usual product topology. Every element of *& is
inverse to itself. We refer to ^ as the Cantor-Walsh group.

Let us describe the set ^* of all characters of *€. It is easy to see that for all n e N
the mapping pn : ̂  —>• {—1, 1} defined as

pn(co) =co(n)

is a character of the group tf, called the nth Rademacher character. It is proved in
[1, Section 14.1.3], that *jf * is the set of all finite products of Rademacher characters
and the function identically equal to 1. The set f̂* with the discrete topology is a
(topological) abelian group with respect to multiplication. Let us denote by £t(<w),
k 6 No, the elements of ^*. Every function £*(&>) is defined by p;(a>) in the same
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manner as wk(t) are defined by /-,•(/) in (1). The groups If* and IP are isomorphic via
the bijection:

pn(co) o rn(t), &(a>) <+ wk(t).

Let 'if** be the group of all characters of cf*. The duality theorem of Pontryagin ([3,
Section 24]) implies that <f** and # are isomorphic. Note that for every fixed k 6 No,
£*(<w) as a function of co e f is an element of if*; and for every fixed co e f, £*(<«)
as a function of k is an element of *€** ~ 'if.

Let us denote by M'(^") the topological semigroup (with operation of convolution
and topology of weak convergence) of probability measures on cf*. We now recall
the general definition of characteristic function. Let X be a second countable locally
compact abelian group, Y its group of characters, and let (x, y) stand for the value of
v e Y at x e X. Then the characteristic function p, of the probability measure /x on
X is defined as follows:

f
Jx

= (x,y)ti(dx).
Jx

We apply this definition to the group X = 'if*. Since ̂ * is countable, the characteristic
function jx(u>) of the measure fi € Af'^f*) is given by

>o,
*=0 *=0

Let us denote by A/'C^"*) the multiplicative semigroup of characteristic functions of
all measures of A/1 (tf*) with the topology of uniform convergence.

Since f* and "W are isomorphic, we see that the semigroups A/'O^*) and ,^V are
isomorphic. Since M (tf*) and M 0«f*) are isomorphic, we infer that

^ V is isomorphic to the semigroup MlCif*) of probability measures on the group
of characters of the Cantor-Walsh group.

Therefore, we can study the arithmetic of M\f*) or M'C^*). In what follows we
use facts related to the arithmetic of probability measures on groups as detailed in [2].

3. Infinitely divisible and idempotent elements.
Proof of Theorem 4 and Theorem 5

Let us prove Theorem 4. It is known ([2, Section 2.14]) that the set of all idempotent
measures on a locally compact abelian group X coincides with the set of shifts of Haar
distributions on compact subgroups K of X. The characteristic function mK (y) of the
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Haar measure mK is given by

[l yeA(Y,K);

10 otherwise,

where A(Y, K) = {v 6 K : (x, y) = 1 for all x e Jf). Therefore, the characteristic
functions of idempotent measures have the form (x0, y)mK(y), where Xo € X. In
the case X = #* we see that the characteristic functions of idempotent elements
in M1^*) have the form £j(a))mK((o), where j € Mo, K is an arbitrary compact
subgroup of tf, and

^ ( l if coeA(V*, AT);

10 otherwise.

Since the groups ,5V and A/1 Ô 7*) are isomorphic, every element of the class /d(*5V)
has the form / (f) = Wj (t)rK(t), where j e No, K is an arbitrary compact subgroup
of W, and

[ l if wi(t) = 1 for all w, € K;

10 otherwise.

It is easy to see that the function rK (t) can be represented in the form

U>i€K

To complete the proof we observe that the compact subgroups of the discrete group
IP are exactly all finite subgroups of W. •

For the proof of Theorem 5 we need the following theorem which was proved by
Parthasarathy, Rao, Varadhan, Sazonov, and which gives the form of the characteristic
function of an infinitely divisible measure on a group X.

THEOREM 9 ([12], see also [2, Theorem 2.21]). The characteristicJunction p,(y) of
an infinitely divisible measure \x on X can be represented in the form

P-iy) = (xo,y)mK(y)expl / ((x,y)- 1 - ig(x, y))<f>(dx) - <p(y)) ,
\./X\(0) /

where x0 € X, mK is the Haar measure of a compact subgroup K ofX, 4> is a measure
on X such that 4>(X \ V) < oo for all neighbourhoods V of zero ofX, and for all
y eY

(4) [ (l-m(x,y))<t>(dx)<oo,
Jx\{0)
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<p(y) is a continuous nonnegative quadratic form on Y, that is, a continuous nonneg-
ative function on Y such that

(5) <p(y\ + y2) + (piy\ - y2) = 2(<p(,yi) + (p(y2)) for all yu y2 € Y,

g(x,y)is a function onXxY(g is independent offi) such that the following conditions
are valid:

(a) g(x, y) is continuous with respect to the variables x and y;
(b) sup^x s u p ^ \g(x, y)\ < oofor all compact sets A c Y;
(c) g(x, y, + y2) = g{x, yr) + g(x, y2)forallx e X andyu yi e Y, g(-x, y) =

-g(x,y)forallx eX,y e Y;
(d) for every compact subset A of the group Y there exists a neighbourhood VA of

the zero element ofX such that (x,y) = exp(ig(x, y))for all x € VA and y e A ;
(e) for every compact subset A of Y, g(x,y) -*• 0 as x -*• 0 € X uniformly with

respect toy € A.

REMARK 1. If every element of X is inverse to itself, then g(x, y) = 0. Indeed, if
—x = x for all x e X, then the second condition in (c) gives g(x, y) = —g(x, y).

REMARK 2. If every element of Y is inverse to itself, then <p(y) = 0. Taking
yi = y2 = 0 in (5) we have #>(0) = 0. Taking yt — y2 = y in (5) we have
<P(y + y) + 0>(O) = 4^00- Since y = — y we conclude that 4cp(y) = 2<p(0) = 0.

We apply Theorem 9 to the case X = *&*. It is easy to see that g(x,y) = 0 satisfies
(a)-(e). Indeed, (d) follows if we take for VA the set consisting of one function
£0(w) s= 1. This set is open since the topology is discrete, and the other conditions are
trivial. By Remark 1 the function g(x, y) = 0 is unique. Since Y = ^** is isomorphic
to <€ and using Remark 2, we see that (5) is valid only for the <p(y) = 0. We note
now that if <t> is a measure on *€* and <£({&}) = ck, k e Ho, then the condition
<t>(X \ V) < oo for every neighbourhood V of zero holds if and only if YlT=i c* < °°-
The latter condition implies (4).

Therefore, the characteristic function /x of an infinitely divisible measure \x e
ilf'tff) has the form

where ck > 0, J2T=i c* < °° anc^ Ai(<w) is the characteristic function of an idempotent
measure fi{ e Mx&*). Since Ml(^*) and , 5 ^ are isomorphic, we obtain Theorem 5.

•
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4. Functions without indecomposable factors.
Proof of Theorem 6 and Theorem 7

We need some lemmas.

LEMMA 1. For all i G N and e e l ,

exp(c(u;, - 1)) = a +

where a = e~c cosh c, ft = e~c sinh c.

PROOF. Since w] (t) = 1, we have

g + , £ „ ,
= e~c cosh c + e~c sinh cwt = a + /3wt. D

LEMMA 2. Let

<p : = e x p ( c , ( w , — 1) + cj (wj — 1) — s(iViWj — 1 ) ) , ct, ct•,, e > 0 .

f/iere exw/i s0 = £o(c/, c,) such that <p G ̂ V /o/" a// £ G (0, £0).

PROOF. By Lemma 1

(p — (a + Pwj)(y + <5tu,)(v - crwiWj),

where a, fi, y, S, v = e* cosh £, a — ee sinh £ > 0, and hence

<p = (ayv — fiSa) + (/Syv —

+ (a8v —

Taking s0 = £o(c,, Cj) so small that all coefficients in parentheses in the last formula
are positive for 0 < e < s0, we have <p e S^w. •

LEMMA 3. Let

X := exp(c,(^, - 1) + cj(wj - 1)), c,, cj > 0, ij e N, i ^Lj.

Then X £
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PROOF. Let us write A. = <p\fr, where

<p = exp(c,(u;, - 1) + cj (wj - 1) - eiwtWj - 1)),

iWj — 1)), £ > 0.

Since WiWj e W and applying Theorem 5, we have V e / (^V)- So, rjr e y^.
According to Lemma 2,<p& 5^w for e > 0 small enough. Therefore, cp is a factor of
A.. Let us prove that cp £ I (J^w)- If this is not the case, then cp can be represented as

( 00 \ 00

Y^ ci(w- - 1) I . Ci>0, ^2 Ct < 00.
i=l / i=l

This is a consequence of positivity of >̂, Theorem 4 and Theorem 5. But w,-wy- = uitfor
some k ^ 0, i, y, and we have a contradiction to the uniqueness of the decomposition
as a series of the Walsh functions. By Theorem 2, <p £ /o(«$V), and hence X £

•
LEMMA 4. Let

£ := (0.5 + 0.5iu,) (0.5 + 0.5u>;), iJ

Then $

PROOF. We note that £ = 1 for wt = 1, to; = 1 and £ = 0 otherwise. We also note
that the function A. in Lemma 3 satisfies the condition: A = 1 for w,; = 1, wj = 1.
Therefore, £ = |A.. Lemma 4 follows now from Lemma 3. •

LEMMA 5. Let

r) : = (0.5 + 0.5wj)exp(Cj(Wj - 1 ) ) , c,- > 0 , /,;' e N , i^j.

Then r, i 70(^V).

PROOF. We have

0.5 + 0.5to,- = (0.5 + 0.5w,)exp(c,(u;, - 1))

for all c, > 0. To prove this identity, it is sufficient to substitute +1 and —1 for wt.
Therefore, we can write JJ in the form

r) = (0.5 + 0.5u;,) A.,

where A. is the function of Lemma 3. Lemma 5 follows now from Lemma 3. •
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LEMMA 6. Let

f :=awm + (1 -a)wk,

where 0 < a < 1, m, k € No, m ^ fe. 77ten £ e 70G5V). 7n addition,

(1) ifa^O.5,then^€lo(y^y,
(2) i/a = 0.5, ffcen £ € /0(^V) \ 70(^V).

PROOF. The case a = 0 or a = 1 is trivial. Let us consider 0 < a < 1. Let
£ = ^£2, where £,, £2 e ^ V , £i ^ tut. First we note that the expansion of ^ into the
series of the Walsh functions contains exactly two nonzero terms. Indeed, if there are
three or more terms, then the series expansion of £ also contains three or more terms.
This gives a contradiction. We have used here that if i ^ j , then WiWk ^ WjWk. We
have proved that

fi = awp + (1 — a)wq, 0 < a < 1, p ^ <?.

Later on we use the following fact. A convex linear combination of two distinct Walsh
functions is equal to zero at some point if and only if the coefficients of this linear
combination are both 0.5.

(1) Assume a # 0.5. Then we have f (f) ^ 0 for all t e [0, 1]. Therefore,
£, (t) / 0, and hence a ^ 0.5. We can assume without loss of generality that a > 0.5.
By Lemma 1 we conclude that

f! = wp(a + (1 - a)wpwq)

= wp(a + (1 - a)Wi) = wp exp(c(ui, - 1)), c > 0.

By Theorem 5, ^ e 7(^V). Therefore, fi is decomposable. Since £i(f) ^ 0 for
r € [0, 1], f i is not a non-degenerate idempotent function, and hence £ e I0(yyr).

(2) Assume a = 0.5. Then the function £ has zeros on [0, 1] and the coefficient a in
the definition of ̂  can be equal to 0.5. In this case also the function £i = 0.5tup+0.5u;?

is decomposable. This follows from the representation

Kx = 0.5u>p + O.5io, = wp (0.5 + 0.5u>i) = wp (0.5 + 0.5u;,)2.

Therefore, £ € ^(c^V). But £ is a non-degenerate idempotent element for a = 0.5,
and hence t, i 70(^V). •

PROOF (of Theorem 6 and Theorem 7). L e t / e 70(,5V). According to Theo-
rem 2, Theorem 4 and Theorem 5 we have
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where j e No, ck > 0, YlT=i c* < °°> an(^ ^ is a finite subgroup of W. It follows
from Lemma 3 that only one coefficient ck can be non-zero, for otherwise / has an
indecomposable factor. Lemma 4 implies that either K = {w0} or K = {w0, u;,},
for otherwise / has an indecomposable factor. It follows from Lemma 5 that the
case K = [w0, wt} is possible only if ck = 0 for all k e N, for otherwise / has an
indecomposable factor. Therefore, if/ € Ioi^r), then either/ = Wj(0.5 + O.5io,)
o r / = Wj exp(Ci(u)j — 1)). According to Lemma 1 / = awm + (1 — a)wk where
0 < a < l , m , / f c e NO, m ^ k. Theorem 6 and Theorem 7 now follow from
Lemma 6. •

REMARK 3. Theorem 7 can also be deduced from known general theorems on
decomposition of the generalized Poisson distribution on groups. Let Ex be the
probability measure on X concentrated at the point x e X. For every measure <J> on
X the generalized Poisson distribution is defined by the formula

:= exp(-ct>(X)) ^ - + • • • + ? ^ - + • • • ) .

THEOREM 10 (Rukhin, see [2, Section 6, Proposition 6.6]). Let /x = e(<f>), where
<P = xfrEx, rp- > 0, x € X.

Then \i € 70(M(X)) if x is either element of infinite order or order 2 and (i £
1O(M(X)) ifx is element of order p > 2.

THEOREM 11 (Fel'dman, see [2, Section 6, Proposition 6.11]). Let <D = fiEXl +
if2EX2, where X/TJ > 0, XJ ^ 0, 2x; = 0,j = 1,2, JCI ^ x2. Then fi =

Since all elements of ^*, except zero, have order 2 it follows from Theorem 10 that

exp(c(u;, - 1)) e / 0 (^V), i € N, c > 0.

It follows from Theorem 11 that

exp(c,(w, -l) + cj (wj - 1)) i 70(.*V), cit cj > 0, i jL j , i, j € N.

5. Indecomposable elements of ^V. Proof of Theorem 8

We use the following notation.

Wm := {^f'm}f=l is the set of Walsh functions of the /nth series,
m—\

j ; W(>m):= \J Wj.
j=0 y=m+l

The definition of the Walsh functions implies the following statement.
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REMARK 4. If wt, wj e Wm, then WjWj e W(<m). If w, € Wm,Wj e Wk, and
k < m then WtWj G Wm.

PROOF (of Theorem 8). Le t / has the form (3). Assuming / £ N{y-r) we have
/ = f\f2, where f\,f2 G «5V,/i , /2 ^ u>k, k G No. Without loss of generality we
may assume that the coefficient co,i of the function ^ (0 s 1 in the series expansion
of/2 is non-zero. We divide the proof of Theorem 8 into several steps.

(a) We note that/i does not contain any term from W(>m), for otherwise condition
co,i 7̂  0 implies that/ contains terms from W(>m). This is a contradiction.
(b) / i contains exactly one term from Wm, namely ifr'm. If there are two such terms,

then the condition co,i ^ 0 implies that / contains two terms from Wm. This is a
contradiction. If/i does not contain any term from Wm, then it contains at least two
terms from W(<m). Hence, according to the condition ami > 0, f2 contains at least
one term from Wm (see Remark 4). Then/ contains at least two terms from Wm. This
is a contradiction.
(c) fi contains at least one term from W(<m) because f{ contains at least two terms

in general.
(d) f2 does not contain any term from W(>m). Indeed, if there is such a term, then it

is contained also in / (see (c) and Remark 4).
(e) f2 contains exactly one term from Wm. If there are two such terms then according

to (c) / contains two such terms, but this is not the case. If there is no such term, then
f2 contains at least two terms from W(<m). Consequently, according to (b), / contains
two terms from Wm, which is not the case.
(f) f2 contains exactly one term from V^<m), namely ^ s l . If there are two such

terms, then according to (b) / has two terms from Wm.
(g) f\ has exactly one term from WJ<m). If there are two such terms, then according

to (e) / has two terms from Wm. This is not the case.

It follows from (a)-(g) that

fi = ay\rk
n + b\/f'm, n < m, and f2 = c + d\fr'm.

Then

Since / has only one term from Wm and since V̂ VoL € Wm (Remark 4), we have
\fr* = \jr^ = 1 and I = i. Therefore,

/ = (ac + bd) + (be + a

that is, / contains exactly two terms. This is a contradiction.
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We now present a sequence of functions from Af(^V) which is uniformly conver-

gent to a given function / e «5*V- Let

We consider two cases: (i) there are at least two terms in / , (ii) / = r//J
k.

In the first case we take

i = 0 .

Let n be so large that the sum in the definition of / „ contains at least two terms.

According to Theorem 8, / „ e Af (<5V). It is evident that / „ - > • / as n ->• oo

uniformly on [0, 1].

In the second case, we consider

+ * + *

It follows from Theorem 8 that / „ € N{&•#)• Evidently, / „ - * / as n -> oo

uniformly. •
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