THE ARITHMETIC OF A SEMIGROUP OF SERIES OF WALSH FUNCTIONS

I. P. IL'INSKAYA

(Received 1 July 1998; revised 12 October 1999)

Communicated by V. Stefanov

Abstract

Let $\mathscr{W} = \{w_k(t)\}_{k=0}^{\infty}$ be the classical system of the Walsh functions, $\mathscr{S}_{\mathscr{W}}$ the multiplicative semigroup of the functions represented by series of functions $w_k(t)$ with non-negative coefficients which sum equals 1. We study the arithmetic of $\mathscr{S}_{\mathscr{W}}$. The analogues of the well-known Khinchin factorization theorems related to the arithmetic of the convolution semigroup of probability measures on the real line are valid in $\mathscr{S}_{\mathscr{W}}$. The classes of idempotent elements, of infinitely divisible elements, of elements without indecomposable factors, and of elements without indecomposable and non-degenerate idempotent factors are completely described. We study also the class of indecomposable elements. Our method is based on the following fact: $\mathscr{S}_{\mathscr{W}}$ is isomorphic to the semigroup of probability measures on the group of characters of the Cantor-Walsh group.

2000 Mathematics subject classification: primary 60B15, 43A25; secondary 42C10. Keywords and phrases: probability measures on groups, Khinchin factorization theorems, infinite divisibility, indecomposability, Walsh functions.

1. Introduction and statement of results

The arithmetic of the convolution semigroup \mathscr{P} of probability measures on \mathbb{R}^n has been studied intensively since the 1930s (see [9, 10]). Nevertheless, some important problems, for example, the problem of the description of the class $I_0(\mathscr{P})$ of measures without indecomposable components, remain open. In the 1960s, Kendall, Davidson [7, 8], and Urbanik [15] studied semigroups essentially different from \mathscr{P} , but with a similar arithmetic. Many other examples of such semigroups were considered later by Bingham, Kennedy, Kingman, Lamperti, Ostrovskii, Ulanovskii (see the expository paper [10]) and by the author [4, 13, 14]. For some of these semigroups, the above mentioned problem has been completely solved.

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

The aim of this paper is to study a new example of this kind. Let us denote by $r_i = r_i(t)$, $i = 0, 1, 2, ..., t \in [0, 1]$, the classical Rademacher functions (see, for example, [5, Chapter 2, Section 2]) defined as

$$r_i(t) = \operatorname{sign}(\sin(2^i\pi t)).$$

Let us agree that r_i is equal to 1 at the discontinuity points. The Walsh functions are all finite products of Rademacher functions. We set (see [5, Chapter 4, Section 6])

$$w_0 = \psi_0^1 = r_0 \equiv 1$$

$$w_1 = \psi_1^1 = r_1,$$

$$w_2 = \psi_2^1 = r_2, \quad w_3 = \psi_2^2 = r_2 r_1,$$

$$w_4 = \psi_3^1 = r_3, \quad w_5 = \psi_3^2 = r_3 r_1, \quad w_6 = \psi_3^3 = r_3 r_2, \quad w_7 = \psi_3^4 = r_3 r_2 r_1, \quad \dots$$

For each $s \in \mathbb{N}$, the Walsh functions of the sth series ψ_s^j $(j=1,2,\ldots,2^{s-1})$ are products of the function r_s and all functions of the preceding series. Let us note that $\psi_s^1 = r_s$ for all $s \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The Walsh functions form an orthogonal and normalized system on the interval [0,1] with respect to the Lebesgue measure ([5, Chapter 4, Section 5]). Obviously, $r_k^2(t) \equiv 1$, $w_k^2(t) \equiv 1$ for all $k \in \mathbb{N}_0$. It is evident that the product of two Walsh functions is a Walsh function as well. The set of all Walsh functions is an abelian group with respect to the multiplication with unity $w_0 = \psi_0^1 \equiv 1$. Every element of this group is inverse to itself. We introduce the following notation:

 $\mathcal{W} := \{w_k\}_{k=0}^{\infty}$ is the group of the Walsh functions with the discrete topology,

 $\mathscr{S}_{\mathscr{W}}$ is the multiplicative semigroup of all functions $f(t), t \in [0, 1]$, represented in the form

(2)
$$f(t) = \sum_{k=0}^{\infty} a_k w_k(t), \quad a_k \ge 0, \quad \sum_{k=0}^{\infty} a_k = 1.$$

We endow $\mathscr{S}_{\mathscr{W}}$ with the topology of uniform convergence on [0, 1].

Our aim is to study the arithmetic of $\mathscr{S}_{\mathscr{W}}$. Let us give the main definitions. The functions $w_k, k \in \mathbb{N}_0$ are degenerate elements of the semigroup $\mathscr{S}_{\mathscr{W}}$. A function $f \in \mathscr{S}_{\mathscr{W}}$ is called idempotent if $f^2 = f w_k$ for some $k \in \mathbb{N}_0$. A function $f \in \mathscr{S}_{\mathscr{W}}$ is infinitely divisible if for every $n \in \mathbb{N}$ there exist $f_n \in \mathscr{S}_{\mathscr{W}}$ and $k \in \mathbb{N}_0$ such that $f = (f_n)^n w_k$. A function $f_1 \in \mathscr{S}_{\mathscr{W}}$ is called a factor of $f \in \mathscr{S}_{\mathscr{W}}$ if there exists $f_2 \in \mathscr{S}_{\mathscr{W}}$ such that $f = f_1 f_2$. A function $f \in \mathscr{S}_{\mathscr{W}}$ is called indecomposable if $f \neq w_k$ for all $k \in \mathbb{N}_0$ and if all factors of f are of the forms w_k and $f w_k$ only. We introduce the following notation:

 $Id(\mathscr{S}_{\mathscr{W}})$ is the class of all idempotent functions of $\mathscr{S}_{\mathscr{W}}$; $I(\mathscr{S}_{\mathscr{W}})$ is the class of all infinitely divisible functions of $\mathscr{S}_{\mathscr{W}}$;

 $I_0(\mathscr{S}_{\mathscr{W}})$ is the class of functions without indecomposable and non-degenerate idempotent factors;

 $\tilde{I}_0(\mathscr{S}_{\mathscr{W}})$ is the class of functions without indecomposable factors;

 $N(\mathcal{S}_{\mathcal{W}})$ is the class of indecomposable functions.

In Section 2 we show that $\mathscr{S}_{\mathscr{W}}$ is isomorphic to the semigroup of probability measures on the group of the characters of the Cantor-Walsh group. Therefore we may use results about the factorization of the probability measures on locally compact abelian groups. From the results of Parthasarathy, Rao and Varadhan [11, 12] it follows that three theorems given below are valid in $\mathscr{S}_{\mathscr{W}}$.

THEOREM 1 ([12]). Every function $f \in \mathcal{S}_{W}$ can be represented in the form $f = f_1 f_2 f_3$, where f_1 is the maximal idempotent factor of f, $f_2 \in I_0(\mathcal{S}_{W})$, f_3 is a product of the empty, finite or countable set of indecomposable functions (in the first case $f_3 \equiv 1$, and in the third case the infinite product converges uniformly on [0, 1]).

Theorem 2 ([12, 2, Corollary 4.7]).
$$\tilde{I}_0(\mathscr{S}_{\mathscr{W}}) \subset I(\mathscr{S}_{\mathscr{W}})$$
.

Theorem 1 and Theorem 2 are analogues of the Khinchin theorems [9, pages 79, 88], related to the arithmetic of the semigroup \mathcal{P} .

THEOREM 3 ([11]). The class $N(\mathcal{S}_{W})$ is a dense G_{δ} -set in \mathcal{S}_{W} with respect to the topology of uniform convergence on [0, 1].

The main results of our paper are characterizations of the classes $Id(\mathscr{S}_{\mathscr{W}})$, $I(\mathscr{S}_{\mathscr{W}})$, $\tilde{I}_0(\mathscr{S}_{\mathscr{W}})$, $I_0(\mathscr{S}_{\mathscr{W}})$ and a test for the membership of $N(\mathscr{S}_{\mathscr{W}})$.

THEOREM 4. The class $Id(\mathscr{S}_{\mathscr{W}})$ consists of all functions f representable in the form

$$f = w_j \prod_{w_i \in K} (0.5 + 0.5w_i),$$

where $j \in \mathbb{N}_0$ and K is an arbitrary finite subgroup of W.

THEOREM 5. The class $I(\mathscr{S}_{\mathscr{W}})$ consists of all functions f representable in the form

$$f = f_1 \exp\left(\sum_{k=1}^{\infty} c_k(w_k - 1)\right),\,$$

where $c_k \geq 0$, $\sum_{k=1}^{\infty} c_k < \infty$, $f_1 \in Id(\mathscr{S}_{\mathscr{W}})$.

Theorem 5 is an analogue of the well-known Lévy-Khinchin formula [9, page 9] of the characteristic function of an infinitely divisible probability measure on \mathbb{R} .

THEOREM 6. The class $\tilde{I}_0(\mathscr{S}_{\mathscr{W}})$ consists of all functions f representable in the form

$$f = \alpha w_l + (1 - \alpha)w_k, \quad \alpha \in [0, 1], \quad l, k \in \mathbb{N}_0.$$

COROLLARY 1. $Id(\mathscr{S}_{W}) \cap \tilde{I}_{0}(\mathscr{S}_{W}) = \{0.5w_{l} + 0.5w_{k} : l, k \in \mathbb{N}_{0}\}.$

THEOREM 7.
$$I_0(\mathscr{S}_{\mathscr{W}}) = \{\alpha w_l + (1-\alpha)w_k : \alpha \in [0,0.5) \cup (0.5,1], l, k \in \mathbb{N}_0\}$$

= $\{w_i \exp(c(w_i-1)) : c \geq 0, i,j \in \mathbb{N}_0\}.$

It should be mentioned that in the semigroups studied earlier and different from \mathscr{P} , the class I_0 is rather small. Theorem 7 shows that $I_0(\mathscr{S}_{\mathscr{W}})$ is rather large.

The following theorem gives a test for the membership of $N(\mathscr{S}_{w})$.

THEOREM 8. Let

(3)
$$f = \sum_{s=0}^{n} \sum_{i=1}^{2^{s-1}} a_{s,i} \psi_s^i + a_{m,i} \psi_m^i = \varphi + a_{m,i} \psi_m^i,$$

where n < m, $a_{m,i} > 0$ and the sum $\varphi(t)$ contains at least two non-zero terms. Then $f \in N(\mathcal{S}_{W})$.

2. Probabilistic interpretation of the semigroup $\mathscr{S}_{\mathscr{W}}$

The semigroup $\mathscr{S}_{\mathscr{W}}$ has an interesting probabilistic interpretation. We first introduce (following [1, Section 14.1]) some notation and definitions.

Let us write $\mathscr C$ for the set $\{-1,1\}^{\mathbb N}$ of all mappings $\omega:\mathbb N\to\{-1,1\}$. (In [1] $\mathscr C$ is defined as the set of all mappings from $\mathbb Z$ to $\{-1,1\}$. It is more convenient for us to consider $\mathbb N$ instead of $\mathbb Z$.) The set $\mathscr C$ is a compact abelian group with respect to the pointwise multiplication and the usual product topology. Every element of $\mathscr C$ is inverse to itself. We refer to $\mathscr C$ as the *Cantor-Walsh group*.

Let us describe the set \mathscr{C}^* of all characters of \mathscr{C} . It is easy to see that for all $n \in \mathbb{N}$ the mapping $\rho_n : \mathscr{C} \to \{-1, 1\}$ defined as

$$\rho_n(\omega) = \omega(n)$$

is a character of the group \mathscr{C} , called the *n*th *Rademacher character*. It is proved in [1, Section 14.1.3], that \mathscr{C}^* is the set of all finite products of Rademacher characters and the function identically equal to 1. The set \mathscr{C}^* with the discrete topology is a (topological) abelian group with respect to multiplication. Let us denote by $\zeta_k(\omega)$, $k \in \mathbb{N}_0$, the elements of \mathscr{C}^* . Every function $\zeta_k(\omega)$ is defined by $\rho_i(\omega)$ in the same

manner as $w_k(t)$ are defined by $r_i(t)$ in (1). The groups \mathscr{C}^* and \mathscr{W} are isomorphic via the bijection:

$$\rho_n(\omega) \leftrightarrow r_n(t), \qquad \zeta_k(\omega) \leftrightarrow w_k(t).$$

Let \mathscr{C}^{**} be the group of all characters of \mathscr{C}^* . The duality theorem of Pontryagin ([3, Section 24]) implies that \mathscr{C}^{**} and \mathscr{C} are isomorphic. Note that for every fixed $k \in \mathbb{N}_0$, $\zeta_k(\omega)$ as a function of $\omega \in \mathscr{C}$ is an element of \mathscr{C}^* ; and for every fixed $\omega \in \mathscr{C}$, $\zeta_k(\omega)$ as a function of k is an element of $\mathscr{C}^{**} \simeq \mathscr{C}$.

Let us denote by $M^1(\mathscr{C}^*)$ the topological semigroup (with operation of convolution and topology of weak convergence) of probability measures on \mathscr{C}^* . We now recall the general definition of characteristic function. Let X be a second countable locally compact abelian group, Y its group of characters, and let (x, y) stand for the value of $y \in Y$ at $x \in X$. Then the characteristic function $\hat{\mu}$ of the probability measure μ on X is defined as follows:

$$\hat{\mu}(y) = \int_X (x, y) \mu(dx).$$

We apply this definition to the group $X = \mathscr{C}^*$. Since \mathscr{C}^* is countable, the characteristic function $\hat{\mu}(\omega)$ of the measure $\mu \in M^1(\mathscr{C}^*)$ is given by

$$\hat{\mu}(\omega) = \sum_{k=0}^{\infty} a_k \zeta_k(\omega), \quad a_k = \mu(\{\zeta_k\}) \ge 0, \quad \sum_{k=0}^{\infty} a_k = 1.$$

Let us denote by $\hat{M}^1(\mathcal{C}^*)$ the multiplicative semigroup of characteristic functions of all measures of $M^1(\mathcal{C}^*)$ with the topology of uniform convergence.

Since \mathscr{C}^* and \mathscr{W} are isomorphic, we see that the semigroups $\hat{M}^1(\mathscr{C}^*)$ and $\mathscr{S}_{\mathscr{W}}$ are isomorphic. Since $M^1(\mathscr{C}^*)$ and $\hat{M}^1(\mathscr{C}^*)$ are isomorphic, we infer that

 $\mathscr{S}_{\mathscr{W}}$ is isomorphic to the semigroup $M^1(\mathscr{C}^*)$ of probability measures on the group of characters of the Cantor-Walsh group.

Therefore, we can study the arithmetic of $M^1(\mathcal{C}^*)$ or $\hat{M}^1(\mathcal{C}^*)$. In what follows we use facts related to the arithmetic of probability measures on groups as detailed in [2].

3. Infinitely divisible and idempotent elements. Proof of Theorem 4 and Theorem 5

Let us prove Theorem 4. It is known ([2, Section 2.14]) that the set of all idempotent measures on a locally compact abelian group X coincides with the set of shifts of Haar distributions on compact subgroups K of X. The characteristic function $\hat{m}_K(y)$ of the

Haar measure m_K is given by

$$\hat{m}_K(y) = \begin{cases} 1 & y \in A(Y, K); \\ 0 & \text{otherwise,} \end{cases}$$

where $A(Y,K)=\{y\in Y:(x,y)=1\text{ for all }x\in K\}$. Therefore, the characteristic functions of idempotent measures have the form $(x_0,y)\hat{m}_K(y)$, where $x_0\in X$. In the case $X=\mathscr{C}^*$ we see that the characteristic functions of idempotent elements in $M^1(\mathscr{C}^*)$ have the form $\zeta_j(\omega)\hat{m}_K(\omega)$, where $j\in\mathbb{N}_0$, K is an arbitrary compact subgroup of \mathscr{C} , and

$$\hat{m}_K(\omega) = \begin{cases} 1 & \text{if } \omega \in A(\mathscr{C}^*, K); \\ 0 & \text{otherwise.} \end{cases}$$

Since the groups $\mathscr{S}_{\mathscr{W}}$ and $\hat{M}^1(\mathscr{C}^*)$ are isomorphic, every element of the class $Id(\mathscr{S}_{\mathscr{W}})$ has the form $f(t) = w_j(t)\tau_K(t)$, where $j \in \mathbb{N}_0$, K is an arbitrary compact subgroup of \mathscr{W} , and

$$\tau_K(t) = \begin{cases} 1 & \text{if } w_i(t) = 1 \text{ for all } w_i \in K; \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that the function $\tau_K(t)$ can be represented in the form

$$\tau_K = \prod_{w_i \in K} \left(0.5 + 0.5 w_i\right).$$

To complete the proof we observe that the compact subgroups of the discrete group \mathcal{W} are exactly all *finite* subgroups of \mathcal{W} .

For the proof of Theorem 5 we need the following theorem which was proved by Parthasarathy, Rao, Varadhan, Sazonov, and which gives the form of the characteristic function of an infinitely divisible measure on a group X.

THEOREM 9 ([12], see also [2, Theorem 2.21]). The characteristic function $\hat{\mu}(y)$ of an infinitely divisible measure μ on X can be represented in the form

$$\hat{\mu}(y) = (x_0, y)\hat{m}_K(y)\exp\left(\int_{X\setminus\{0\}} ((x, y) - 1 - ig(x, y))\Phi(dx) - \varphi(y)\right),$$

where $x_0 \in X$, m_K is the Haar measure of a compact subgroup K of X, Φ is a measure on X such that $\Phi(X \setminus V) < \infty$ for all neighbourhoods V of zero of X, and for all $y \in Y$

$$\int_{X\setminus\{0\}} (1-\Re(x,y))\Phi(dx) < \infty,$$

 $\varphi(y)$ is a continuous nonnegative quadratic form on Y, that is, a continuous nonnegative function on Y such that

(5)
$$\varphi(y_1 + y_2) + \varphi(y_1 - y_2) = 2(\varphi(y_1) + \varphi(y_2))$$
 for all $y_1, y_2 \in Y$,

g(x, y) is a function on $X \times Y$ (g is independent of μ) such that the following conditions are valid:

- (a) g(x, y) is continuous with respect to the variables x and y;
- (b) $\sup_{x \in X} \sup_{y \in A} |g(x, y)| < \infty$ for all compact sets $A \subset Y$;
- (c) $g(x, y_1 + y_2) = g(x, y_1) + g(x, y_2)$ for all $x \in X$ and $y_1, y_2 \in Y$, g(-x, y) = -g(x, y) for all $x \in X$, $y \in Y$;
- (d) for every compact subset A of the group Y there exists a neighbourhood V_A of the zero element of X such that $(x, y) = \exp(ig(x, y))$ for all $x \in V_A$ and $y \in A$;
- (e) for every compact subset A of Y, $g(x, y) \to 0$ as $x \to 0 \in X$ uniformly with respect to $y \in A$.

REMARK 1. If every element of X is inverse to itself, then $g(x, y) \equiv 0$. Indeed, if -x = x for all $x \in X$, then the second condition in (c) gives g(x, y) = -g(x, y).

REMARK 2. If every element of Y is inverse to itself, then $\varphi(y) \equiv 0$. Taking $y_1 = y_2 = 0$ in (5) we have $\varphi(0) = 0$. Taking $y_1 = y_2 = y$ in (5) we have $\varphi(y + y) + \varphi(0) = 4\varphi(y)$. Since y = -y we conclude that $4\varphi(y) = 2\varphi(0) = 0$.

We apply Theorem 9 to the case $X = \mathscr{C}^*$. It is easy to see that $g(x, y) \equiv 0$ satisfies (a)-(e). Indeed, (d) follows if we take for V_A the set consisting of one function $\zeta_0(\omega) \equiv 1$. This set is open since the topology is discrete, and the other conditions are trivial. By Remark 1 the function $g(x, y) \equiv 0$ is unique. Since $Y = \mathscr{C}^{**}$ is isomorphic to \mathscr{C} and using Remark 2, we see that (5) is valid only for the $\varphi(y) \equiv 0$. We note now that if Φ is a measure on \mathscr{C}^* and $\Phi(\{\zeta_k\}) = c_k$, $k \in \mathbb{N}_0$, then the condition $\Phi(X \setminus V) < \infty$ for every neighbourhood V of zero holds if and only if $\sum_{k=1}^{\infty} c_k < \infty$. The latter condition implies (4).

Therefore, the characteristic function $\hat{\mu}$ of an infinitely divisible measure $\mu \in M^1(\mathscr{C}^*)$ has the form

$$\hat{\mu}(\omega) = \hat{\mu}_1(\omega) \exp\left(\sum_{k=1}^{\infty} c_k(\zeta_k(\omega) - 1)\right),\,$$

where $c_k \ge 0$, $\sum_{k=1}^{\infty} c_k < \infty$ and $\hat{\mu}_1(\omega)$ is the characteristic function of an idempotent measure $\mu_1 \in M^1(\mathscr{C}^*)$. Since $M^1(\mathscr{C}^*)$ and $\mathscr{S}_{\mathscr{W}}$ are isomorphic, we obtain Theorem 5.

https://doi.org/10.1017/S1446788700001464 Published online by Cambridge University Press

4. Functions without indecomposable factors. Proof of Theorem 6 and Theorem 7

We need some lemmas.

LEMMA 1. For all $i \in \mathbb{N}$ and $c \in \mathbb{R}$.

$$\exp(c(w_i - 1)) = \alpha + \beta w_i,$$

where $\alpha = e^{-c} \cosh c$, $\beta = e^{-c} \sinh c$.

PROOF. Since $w_i^2(t) \equiv 1$, we have

$$\exp(c(w_i - 1)) = e^{-c} \sum_{m=0}^{\infty} \frac{c^{2m}}{(2m)!} + e^{-c} \sum_{m=0}^{\infty} \frac{c^{2m+1}}{(2m+1)!} w_i$$
$$= e^{-c} \cosh c + e^{-c} \sinh c w_i = \alpha + \beta w_i.$$

LEMMA 2. Let

$$\varphi := \exp(c_i(w_i - 1) + c_i(w_i - 1) - \varepsilon(w_i w_i - 1)), \quad c_i, c_i, \varepsilon > 0.$$

Then there exists $\varepsilon_0 = \varepsilon_0(c_i, c_j)$ such that $\varphi \in \mathscr{S}_{\mathscr{W}}$ for all $\varepsilon \in (0, \varepsilon_0)$.

PROOF. By Lemma 1

$$\varphi = (\alpha + \beta w_i)(\gamma + \delta w_j)(\nu - \sigma w_i w_j),$$

where α , β , γ , δ , $\nu = e^{\varepsilon} \cosh \varepsilon$, $\sigma = e^{\varepsilon} \sinh \varepsilon > 0$, and hence

$$\varphi = (\alpha \gamma \nu - \beta \delta \sigma) + (\beta \gamma \nu - \alpha \delta \sigma) w_i + (\alpha \delta \nu - \beta \gamma \sigma) w_i + (\beta \delta \nu - \alpha \gamma \sigma) w_i w_i.$$

Taking $\varepsilon_0 = \varepsilon_0(c_i, c_j)$ so small that all coefficients in parentheses in the last formula are positive for $0 < \varepsilon < \varepsilon_0$, we have $\varphi \in \mathscr{S}_{\mathscr{W}}$.

LEMMA 3. Let

$$\lambda := \exp(c_i(w_i - 1) + c_j(w_j - 1)), \quad c_i, c_j > 0, \ i, j \in \mathbb{N}, \ i \neq j.$$

Then $\lambda \notin \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$.

PROOF. Let us write $\lambda = \varphi \psi$, where

$$\varphi = \exp(c_i(w_i - 1) + c_j(w_j - 1) - \varepsilon(w_i w_j - 1)),$$

$$\psi = \exp(\varepsilon(w_i w_j - 1)), \quad \varepsilon > 0.$$

Since $w_i w_j \in \mathcal{W}$ and applying Theorem 5, we have $\psi \in I(\mathscr{S}_{\mathcal{W}})$. So, $\psi \in \mathscr{S}_{\mathcal{W}}$. According to Lemma 2, $\varphi \in \mathscr{S}_{\mathcal{W}}$ for $\varepsilon > 0$ small enough. Therefore, φ is a factor of λ . Let us prove that $\varphi \notin I(\mathscr{S}_{\mathcal{W}})$. If this is not the case, then φ can be represented as

$$\exp\left(\sum_{i=1}^{\infty}c_i(w_i-1)\right), \quad c_i\geq 0, \quad \sum_{i=1}^{\infty}c_i<\infty.$$

This is a consequence of positivity of φ , Theorem 4 and Theorem 5. But $w_i w_j = w_k$ for some $k \neq 0$, i, j, and we have a contradiction to the uniqueness of the decomposition as a series of the Walsh functions. By Theorem 2, $\varphi \notin \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$, and hence $\lambda \notin \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$.

LEMMA 4. Let

$$\xi := (0.5 + 0.5w_i)(0.5 + 0.5w_j), \quad i, j \in \mathbb{N}, \quad i \neq j.$$

Then $\xi \notin \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$.

PROOF. We note that $\xi = 1$ for $w_i = 1$, $w_j = 1$ and $\xi = 0$ otherwise. We also note that the function λ in Lemma 3 satisfies the condition: $\lambda = 1$ for $w_i = 1$, $w_j = 1$. Therefore, $\xi = \xi \lambda$. Lemma 4 follows now from Lemma 3.

LEMMA 5. Let

$$\eta := (0.5 + 0.5w_i) \exp(c_j(w_j - 1)), \quad c_j > 0, \quad i, j \in \mathbb{N}, \quad i \neq j.$$

Then $\eta \notin \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$.

PROOF. We have

$$0.5 + 0.5w_i = (0.5 + 0.5w_i) \exp(c_i(w_i - 1))$$

for all $c_i > 0$. To prove this identity, it is sufficient to substitute +1 and -1 for w_i . Therefore, we can write η in the form

$$\eta = (0.5 + 0.5w_i)\,\lambda\,,$$

where λ is the function of Lemma 3. Lemma 5 follows now from Lemma 3.

LEMMA 6. Let

$$\zeta := \alpha w_m + (1 - \alpha) w_k,$$

where $0 \le \alpha \le 1$, $m, k \in \mathbb{N}_0$, $m \ne k$. Then $\zeta \in \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$. In addition,

- (1) if $\alpha \neq 0.5$, then $\zeta \in I_0(\mathscr{S}_{\mathscr{W}})$;
- (2) if $\alpha = 0.5$, then $\zeta \in \tilde{I}_0(\mathscr{S}_{\mathscr{W}}) \setminus I_0(\mathscr{S}_{\mathscr{W}})$.

PROOF. The case $\alpha=0$ or $\alpha=1$ is trivial. Let us consider $0<\alpha<1$. Let $\zeta=\zeta_1\zeta_2$, where $\zeta_1,\zeta_2\in\mathscr{S}_{\mathscr{W}},\zeta_1\neq w_k$. First we note that the expansion of ζ_1 into the series of the Walsh functions contains exactly two nonzero terms. Indeed, if there are three or more terms, then the series expansion of ζ also contains three or more terms. This gives a contradiction. We have used here that if $i\neq j$, then $w_iw_k\neq w_jw_k$. We have proved that

$$\zeta_1 = aw_p + (1-a)w_q, \quad 0 < a < 1, \quad p \neq q.$$

Later on we use the following fact. A convex linear combination of two distinct Walsh functions is equal to zero at some point if and only if the coefficients of this linear combination are both 0.5.

(1) Assume $\alpha \neq 0.5$. Then we have $\zeta(t) \neq 0$ for all $t \in [0, 1]$. Therefore, $\zeta_1(t) \neq 0$, and hence $a \neq 0.5$. We can assume without loss of generality that a > 0.5. By Lemma 1 we conclude that

$$\zeta_1 = w_p (a + (1 - a) w_p w_q)$$

= $w_p (a + (1 - a) w_i) = w_p \exp(c(w_i - 1)), \quad c > 0.$

By Theorem 5, $\zeta_1 \in I(\mathscr{S}_{\mathscr{W}})$. Therefore, ζ_1 is decomposable. Since $\zeta_1(t) \neq 0$ for $t \in [0, 1], \zeta_1$ is not a non-degenerate idempotent function, and hence $\zeta \in I_0(\mathscr{S}_{\mathscr{W}})$.

(2) Assume $\alpha = 0.5$. Then the function ζ has zeros on [0, 1] and the coefficient a in the definition of ζ_1 can be equal to 0.5. In this case also the function $\zeta_1 = 0.5w_p + 0.5w_q$ is decomposable. This follows from the representation

$$\zeta_1 = 0.5w_p + 0.5w_q = w_p (0.5 + 0.5w_i) = w_p (0.5 + 0.5w_i)^2$$
.

Therefore, $\zeta \in \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$. But ζ is a non-degenerate idempotent element for $\alpha = 0.5$, and hence $\zeta \notin I_0(\mathscr{S}_{\mathscr{W}})$.

PROOF (of Theorem 6 and Theorem 7). Let $f \in \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$. According to Theorem 2, Theorem 4 and Theorem 5 we have

$$f = w_j \prod_{w_i \in K} (0.5 + 0.5w_i) \exp \left(\sum_{k=1}^{\infty} c_k (w_k - 1) \right),$$

where $j \in \mathbb{N}_0$, $c_k \ge 0$, $\sum_{k=1}^{\infty} c_k < \infty$, and K is a finite subgroup of W. It follows from Lemma 3 that only one coefficient c_k can be non-zero, for otherwise f has an indecomposable factor. Lemma 4 implies that either $K = \{w_0\}$ or $K = \{w_0, w_i\}$, for otherwise f has an indecomposable factor. It follows from Lemma 5 that the case $K = \{w_0, w_i\}$ is possible only if $c_k = 0$ for all $k \in \mathbb{N}$, for otherwise f has an indecomposable factor. Therefore, if $f \in \tilde{I}_0(\mathscr{S}_{\mathscr{W}})$, then either $f = w_j(0.5 + 0.5w_i)$ or $f = w_j \exp(c_i(w_i - 1))$. According to Lemma 1 $f = \alpha w_m + (1 - \alpha)w_k$ where $0 \le \alpha \le 1$, $m, k \in \mathbb{N}_0$, $m \ne k$. Theorem 6 and Theorem 7 now follow from Lemma 6.

REMARK 3. Theorem 7 can also be deduced from known general theorems on decomposition of the generalized Poisson distribution on groups. Let E_x be the probability measure on X concentrated at the point $x \in X$. For every measure Φ on X the generalized Poisson distribution is defined by the formula

$$e(\Phi) := \exp(-\Phi(X)) \left(E_0 + \Phi + \frac{\Phi^{2*}}{2!} + \dots + \frac{\Phi^{n*}}{n!} + \dots \right).$$

THEOREM 10 (Rukhin, see [2, Section 6, Proposition 6.6]). Let $\mu = e(\Phi)$, where $\Phi = \psi E_x$, $\psi > 0$, $x \in X$.

Then $\mu \in I_0(M(X))$ if x is either element of infinite order or order 2 and $\mu \notin I_0(M(X))$ if x is element of order p > 2.

THEOREM 11 (Fel'dman, see [2, Section 6, Proposition 6.11]). Let $\Phi = \psi_1 E_{x_1} + \psi_2 E_{x_2}$, where $\psi_j > 0$, $x_j \neq 0$, $2x_j = 0$, j = 1, 2, $x_1 \neq x_2$. Then $\mu = e(\Phi) \notin I_0(M(X))$.

Since all elements of \mathscr{C}^* , except zero, have order 2 it follows from Theorem 10 that

$$\exp(c(w_i-1)) \in I_0(\mathscr{S}_{\mathscr{W}}), \quad i \in \mathbb{N}, \quad c \ge 0.$$

It follows from Theorem 11 that

$$\exp(c_i(w_i-1)+c_j(w_j-1)) \notin I_0(\mathscr{S}_{\mathscr{W}}), \quad c_i, c_j > 0, \quad i \neq j, \quad i, j \in \mathbb{N}.$$

5. Indecomposable elements of $\mathscr{S}_{\mathscr{W}}$. Proof of Theorem 8

We use the following notation.

 $W_m := \{\psi_m^i\}_{i=1}^{2^{m-1}}$ is the set of Walsh functions of the mth series,

$$W_{(< m)} := \bigcup_{j=0}^{m-1} W_j; \quad W_{(> m)} := \bigcup_{j=m+1}^{\infty} W_j.$$

The definition of the Walsh functions implies the following statement.

REMARK 4. If $w_i, w_j \in W_m$, then $w_i w_j \in W_{(< m)}$. If $w_i \in W_m, w_j \in W_k$, and k < m then $w_i w_j \in W_m$.

PROOF (of Theorem 8). Let f has the form (3). Assuming $f \notin N(\mathscr{S}_{\mathscr{W}})$ we have $f = f_1 f_2$, where $f_1, f_2 \in \mathscr{S}_{\mathscr{W}}, f_1, f_2 \neq w_k, k \in \mathbb{N}_0$. Without loss of generality we may assume that the coefficient $c_{0,1}$ of the function $\psi_0^1(t) \equiv 1$ in the series expansion of f_2 is non-zero. We divide the proof of Theorem 8 into several steps.

- (a) We note that f_1 does not contain any term from $W_{(>m)}$, for otherwise condition $c_{0,1} \neq 0$ implies that f contains terms from $W_{(>m)}$. This is a contradiction.
- (b) f_1 contains exactly one term from W_m , namely ψ_m^i . If there are two such terms, then the condition $c_{0,1} \neq 0$ implies that f contains two terms from W_m . This is a contradiction. If f_1 does not contain any term from W_m , then it contains at least two terms from $W_{(< m)}$. Hence, according to the condition $a_{m,i} > 0$, f_2 contains at least one term from W_m (see Remark 4). Then f contains at least two terms from W_m . This is a contradiction.
- (c) f_1 contains at least one term from $W_{(< m)}$ because f_1 contains at least two terms in general.
- (d) f_2 does not contain any term from $W_{(>m)}$. Indeed, if there is such a term, then it is contained also in f (see (c) and Remark 4).
- (e) f_2 contains exactly one term from W_m . If there are two such terms then according to (c) f contains two such terms, but this is not the case. If there is no such term, then f_2 contains at least two terms from $W_{(< m)}$. Consequently, according to (b), f contains two terms from W_m , which is not the case.
- (f) f_2 contains exactly one term from $W_{(< m)}$, namely $\psi_0^1 \equiv 1$. If there are two such terms, then according to (b) f has two terms from W_m .
- (g) f_1 has exactly one term from $W_{(< m)}$. If there are two such terms, then according to (e) f has two terms from W_m . This is not the case.

It follows from (a)-(g) that

$$f_1 = a\psi_n^k + b\psi_m^i, n < m,$$
 and $f_2 = c + d\psi_m^l.$

Then

$$f = ac\psi_n^k + bc\psi_m^i + ad\psi_n^k\psi_m^l + bd\psi_m^i\psi_m^l.$$

Since f has only one term from W_m and since $\psi_n^k \psi_m^l \in W_m$ (Remark 4), we have $\psi_n^k = \psi_0^1 \equiv 1$ and l = i. Therefore,

$$f = (ac + bd) + (bc + ad)\psi_m^i$$

that is, f contains exactly two terms. This is a contradiction.

We now present a sequence of functions from $N(\mathscr{S}_{\mathscr{W}})$ which is uniformly convergent to a given function $f \in \mathscr{S}_{\mathscr{W}}$. Let

$$f = \sum_{k} \sum_{j} a_{k,j} \psi_{k}^{j}.$$

We consider two cases: (i) there are at least two terms in f, (ii) $f = \psi_k^j$. In the first case we take

$$f_n = \sum_{k=0}^n \sum_j \frac{a_{k,j}}{S_n} \psi_k^j + \frac{1}{n} \psi_{n+1}^1 \quad \left(S_n = \frac{n}{n-1} \sum_{k=0}^n \sum_j a_{k,j} \right).$$

Let n be so large that the sum in the definition of f_n contains at least two terms. According to Theorem 8, $f_n \in N(\mathscr{S}_{\mathscr{W}})$. It is evident that $f_n \to f$ as $n \to \infty$ uniformly on [0, 1].

In the second case, we consider

$$f_n = \left(1 - \frac{2}{n}\right)\psi_k^j + \frac{1}{n}\psi_{k+1}^1 + \frac{1}{n}\psi_{k+2}^1.$$

It follows from Theorem 8 that $f_n \in N(\mathscr{S}_{\mathscr{W}})$. Evidently, $f_n \to f$ as $n \to \infty$ uniformly.

Acknowledgements

I wish to express gratitude to Professor I. V. Ostrovskii for posing the problem and his attention to this work and to the referee for helpful comments on a preliminary version of this paper.

References

- [1] R. E. Edwards, Fourier series. A modern introduction, vol. 2 (Springer, New York, 1982).
- [2] G. M. Fel'dman, Arithmetic of probability distributions and characterization problems on Abelian groups, Transl. Math. Monographs 116 (Amer. Math. Soc., Providence, R.I., 1993).
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. 1 (Springer, Berlin, 1963).
- [4] I. P. Il'inskaya (Trukhina), 'Arithmetic of a semigroup of series in Legendre functions of the second kind', Turkish J. Math. 21 (1997), 357-373.
- [5] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreien (Z subwencji funduszu kultury narodowej, Warszawa, 1935).
- [6] B. S. Kashin and A. A. Saakyan, Orthogonal series (Nauka, Moscow, 1984) (in Russian).
- [7] D. G. Kendall, 'Delphic semigroups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions', Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1967), 163–195.

- [8] ——, A tribute to the memory of Rollo Davidson (Willey and Sons, London, 1975).
- [9] Ju. V. Linnik and I. V. Ostrovskii, *Decomposition of random variables and vectors*, Transl. Math. Monographs 48 (Amer. Math. Soc., Providence, R.I., 1977).
- [10] I. V. Ostrovskii, 'The arithmetic of probability distributions', *Theory Probab. Appl.* 31 (1986), 1-24.
- [11] K. R. Parthasarathy, R. R. Rao and S. R. S. Varadhan, 'On the category of indecomposable distributions on topological groups', *Trans. Amer. Math. Soc.* 102 (1962), 200-217.
- [12] ——, 'Probability distributions on locally compact abelian groups', *Illinois J. Math.* 7 (1963), 337–369.
- [13] I. P. Trukhina, 'On a problem connected with the arithmetic of probability measures on spheres', Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 87 (1979), 143-158 (in Russian).
- [14] ——, 'Arithmetic of spherically symmetric measures in the Lobachevskii space', Teor. Funktsii Funktsional. Anal. i Prilozhen. 34 (1980), 136-146 (in Russian).
- [15] K. Urbanik, 'Generalized convolutions', Studia Math. 23 (1963), 217-245.

Kharkov State University
Department of Mathematics
4 Svobody Square
310077 Kharkov
Ukraine

e-mail: iljinskii@ilt.kharkov.ua