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Abstract

Let ¥ = {wi (1)), be the classical system of the Walsh functions, 4 the multiplicative semigroup of
the functions represented by series of functions w, (¢) with non-negative coefficients which sum equals 1.
We study the arithmetic of .. The analogues of the weil-known Khinchin factorization theorems
related to the arithmetic of the convolution semigroup of probability measures on the real line are valid
in S . The classes of idempotent elements, of infinitely divisible elements, of elements without
indecomposable factors, and of elements without indecomposable and non-degenerate idempotent factors
are completely described. We study also the class of indecomposable elements. Our method is based
on the following fact: %% is isomorphic to the semigroup of probability measures on the group of
characters of the Cantor-Walsh group.

2000 Mathematics subject classification: primary 60B15, 43A25; secondary 42C10.
Keywords and phrases: probability measures on groups, Khinchin factorization theorems, infinite divisi-
bility, indecomposability, Walsh functions.

1. Introduction and statement of results

The arithmetic of the convolution semigroup & of probability measures on R” has
been studied intensively since the 1930s (see [9, 10]). Nevertheless, some important
problems, for example, the problem of the description of the class Io(£?) of measures
without indecomposable components, remain open. In the 1960s, Kendall, Davidson
[7, 8], and Urbanik [15] studied semigroups essentially different from &2, but with a
similar arithmetic. Many other examples of such semigroups were considered later by
Bingham, Kennedy, Kingman, Lamperti, Ostrovskii, Ulanovskii (see the expository
paper [10]) and by the author [4, 13, 14]. For some of these semigroups, the above
mentioned problem has been completely solved.
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The aim of this paper is to study a new example of this kind. Let us denote by
rr=r{),i=012,...,t € [0, 1], the classical Rademacher functions (see, for
example, [, Chapter 2, Section 2}) defined as

ri(t) = sign(sin(2'mt)).

Let us agree that r; is equal to 1 at the discontinuity points. The Walsh functions are
all finite products of Rademacher functions. We set (see [5, Chapter 4, Section 6])

lU0=‘/f(;=roEl
(l) wl:‘wll:rls
wy =Yy =h, wy= Y5 =nn,
Wy =Y =1, Ws=YI=nrn, We=1Y; =nrn, w =yYi=rnnn, ...

For each s € N, the Walsh functions of the sth series ¥/ (j = 1,2,...,2" ") are
products of the function r; and all functions of the preceding series. Let us note
that ¢! = r, for all s € Ny := N U {0}. The Walsh functions form an orthogonal
and normalized system on the interval [0, 1] with respect to the Lebesgue measure
(IS, Chapter 4, Section 5]). Obviously, r2(t) = 1, w,f(t) = 1forall k € Ny. Itis
evident that the product of two Walsh functions is a Walsh function as well. The set
of all Walsh functions is an abelian group with respect to the multiplication with unity
wo = Y, = 1. Every element of this group is inverse to itself. We introduce the
following notation:

W = {w)2, 1s the group of the Walsh functions with the discrete topology,

Sy is the multiplicative semigroup of all functions f (¢), ¢ € [0, 1], represented in
the form

) fF@O =) aw), =0, > a=1.
k=0 k=0

We endow %% with the topology of uniform convergence on [0, 1}.

Our aim is to study the arithmetic of #4 . Let us give the main definitions. The
functions wy, k € Ny are degenerate elements of the semigroup %% . A function
f € Sy is called idempotent if f2 = f w, for some k € N,. A function f € Sy
is infinitely divisible if for every n € N there exist f, € % and k € Ny such that
f = (f)"wi. A function f, € Py is called a factor of f € Sy if there exists
f2 € S such that f = f,f,. A function f € ¥y is called indecomposable if
f # w, for all k € Ny and if all factors of f are of the forms w; and f w; only. We
introduce the following notation:

1d(%y) is the class of all idempotent functions of .y ;

I (&) is the class of all infinitely divisible functions of . ;
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Iy(F¥ ) is the class of functions without indecomposable and non-degenerate idem-
potent factors;

io(yy/) is the class of functions without indecomposable factors;

N(F) is the class of indecomposable functions.

In Section 2 we show that .y is isomorphic to the semigroup of probability
measures on the group of the characters of the Cantor-Walsh group. Therefore we
may use results about the factorization of the probability measures on locally compact
abelian groups. From the results of Parthasarathy, Rao and Varadhan [11, 12] it
follows that three theorems given below are valid in Py,

THEOREM 1 ([12]). Every function f € %y can be represented in the form f =
fr1faf 3, where f| is the maximal idempotent factor of f, f, € Io(» ), f3 is a product
of the empty, finite or countable set of indecomposable functions (in the first case
f3 =1, and in the third case the infinite product converges uniformly on [0, 1]).

THEOREM 2 ([12, 2, Corollary 4.7]). I,(Fy) C I(Fy).

Theorem 1 and Theorem 2 are analogues of the Khinchin theorems [9, pages 79,
88], related to the arithmetic of the semigroup 4.

THEOREM 3 ([11]). The class N (¥ ) is a dense Gs-set in Sy with respect to the
topology of uniform convergence on [0, 1].

The main results of our paper are characterizations of the classes 1d(Fy ), [ (P ),
io(yy), I (F%) and a test for the membership of N (% ).

THEOREM 4. The class 1d(Fy) consists of all functions f representable in the
form '

f=w []05+05w),

w;eK

where j € Ny and K is an arbitrary finite subgroup of ¥#'.

THEOREM 5. The class I (%) consists of all functions f representable in the form

f =fiexp (Z cr(wy — 1)) )
par

where ¢, > 0, 302 ¢ < 00, f1 € 1d(Fy).

Theorem 5 is an analogue of the well-known Lévy-Khinchin formula [9, page 9]
of the characteristic function of an infinitely divisible probability measure on R.
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THEOREM 6. The class Iy(.#y) consists of all functions f representable in the form

f=aw+ (1 —-a)w, a€l0,1], [, keN,.
COROLLARY 1. 1d(Fy) N Iy(Fy) = {0.5w; + 0.5w; : I, k € No}.
THEOREM 7. Iy(Fy) = {aw; + (1 — @)w; : @ € [0,0.5) U (0.5, 11,1, k € No}
= {wiexp(c(w; —1)): ¢ >0,i,j € Ng}.

It should be mentioned that in the semigroups studied earlier and different from &,
the class I, is rather small. Theorem 7 shows that Io(.# ) is rather large.
The following theorem gives a test for the membership of N (S ).

THEOREM 8. Let

s—1

(3) f = as,j Vfi + am,i‘l’,i, = (p + am.ilpp;v

s=0 j=1

3
N

-
il

where n < m, a,,; > 0 and the sum @(t) contains at least two non-zero terms. Then

f € N(F%).

2. Probabilistic interpretation of the semigroup .¥

The semigroup .#» has an interesting probabilistic interpretation. We first intro-
duce (following [1, Section 14.1]) some notation and definitions.

Let us write € for the set {—1, 1}N of all mappings w : N — {—1,1}. (In[1] ¥
is defined as the set of all mappings from Z to {—1, 1}. It is more convenient for us
to consider N instead of Z.) The set ¥ is a compact abelian group with respect to
the pointwise multiplication and the usual product topology. Every element of € is
inverse to itself. We refer to € as the Cantor-Walsh group.

Let us describe the set € of all characters of €. It is easy to see that for alln € N
the mapping p, : € — {—1, 1} defined as

pn(@) = w(n)

is a character of the group ¥, called the nth Rademacher character. It is proved in
[1, Section 14.1.3], that €™* is the set of all finite products of Rademacher characters
and the function identically equal to 1. The set ¥* with the discrete topology is a
(topological) abelian group with respect to multiplication. Let us denote by & (w),
k € Ny, the elements of ¥*. Every function &, (w) is defined by p;(w) in the same
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manner as wy(¢) are defined by r;(z) in (1). The groups €* and # are isomorphic via
the bijection:

pn(w) Axd r,,(t), Ck(w) <« wk(t)'

Let €** be the group of all characters of €*. The duality theorem of Pontryagin ({3,
Section 24]) implies that ¥** and ¥ are isomorphic. Note that for every fixed k € N,
Zi(w) as a function of w € ¥ is an element of €*; and for every fixed w € €, & (w)
as a function of k is an element of ¥** ~ ¥.

Let us denote by M ' (€™*) the topological semigroup (with operation of convolution
and topology of weak convergence) of probability measures on ¥*. We now recall
the general definition of characteristic function. Let X be a second countable locally
compact abelian group, Y its group of characters, and let (x, y) stand for the value of
y € Y atx € X. Then the characteristic function £ of the probability measure y on
X is defined as follows:

Ay) = f (x, y)u(dx).
X

We apply this definition to the group X = %*. Since €* is countable, the characteristic
function fi(w) of the measure u € M!(¥*) is given by

@) =) abt@), a=pl&) =0, Y a=L1
k=0 k=0

Let us denote by M'(¥*) the multiplicative semigroup of characteristic functions of
all measures of M'(%*) with the topology of uniform convergence.

Since €* and # are isomorphic, we see that the semigroups M (¥*) and Sy are
isomorphic. Since M'(¥*) and M'(¥*) are isomorphic, we infer that

Sy is isomorphic to the semigroup M'(¥€*) of probability measures on the group
of characters of the Cantor-Walsh group.

Therefore, we can study the arithmetic of M'(%*) or M'(€*). In what follows we
use facts related to the arithmetic of probability measures on groups as detailed in [2].

3. Infinitely divisible and idempotent elements.
Proof of Theorem 4 and Theorem 5

Let us prove Theorem 4. It is known ([2, Section 2.14]) that the set of all idempotent
measures on a locally compact abelian group X coincides with the set of shifts of Haar
distributions on compact subgroups K of X. The characteristic function i (y) of the
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Haar measure mg is given by

1 yeA(Y,K)

0 otherwise,

mg(y) = |

where A(Y, K) = {y € Y : (x,y) = 1forall x € K}. Therefore, the characteristic
functions of idempotent measures have the form (xo, y)mg (y), where xo € X. In
the case X = ¥* we see that the characteristic functions of idempotent elements
in M'(%*) have the form ¢; (w)mg(w), where j € Ny, K is an arbitrary compact
subgroup of ¥, and

1 if we A" K);

0 otherwise.

My (w) = {

Since the groups .#» and M! (¥¢*) are isomorphic, every element of the class 1d(Fy)
has the form f () = w; (£)T¢(¢), where j € Ny, K is an arbitrary compact subgroup
of #', and

1 if w;¢®)=1forall w; € K;
() = )
0 otherwise.

It is easy to see that the function 7 () can be represented in the form

=[] 05+05w).
w;eK
To complete the proof we observe that the compact subgroups of the discrete group
W are exactly all finite subgroups of #'. a
For the proof of Theorem 5 we need the following theorem which was proved by
Parthasarathy, Rao, Varadhan, Sazonov, and which gives the form of the characteristic
function of an infinitely divisible measure on a group X.

THEOREM 9 ([12], see also [2, Theorem 2.21]). The characteristic function {i(y) of
an infinitely divisible measure p on X can be represented in the form

A(y) = (xo, y)rig (y) exp (f ((x,y) =1 —ig(x,y))®(dx) — w(y)> ,
X

\{0}

where xo € X, mg is the Haar measure of a compact subgroup K of X, ® is a measure
on X such that ®(X \ V) < oo for all neighbourhoods V of zero of X, and for all
yey

@ f (1 = %i(x, y)d(dx) < 00,
X\{0}
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@ (y) is a continuous nonnegative quadratic form on Y, that is, a continuous nonneg-
ative function on Y such that

&) ey + y2) + o — y2) = 2(p(y1) + 9(y2)) forall y,,y, €Y,

g(x, y) isafunctionon X x Y (g is independent of 1) such that the following conditions
are valid:

(@) g(x,y) is continuous with respect to the variables x and y;

(b) sup,cx SUp,c4 18(x, y)| < 00 for all compact sets A C Y;

© glx,y1+y)=gx,n)+gx,y)forallx € Xandy,y, €Y, g(—x,y) =
—gx,y)forallx e X,y € Y;

(d) for every compact subset A of the group Y there exists a neighbourhood V, of
the zero element of X such that (x, y) = exp(ig(x,y)) forallx € Vyandy € A;

(e) for every compact subset A of Y, g(x,y) — 0asx — 0 € X uniformly with
respecttoy € A.

REMARK 1. If every element of X is inverse to itself, then g(x, y) = 0. Indeed, if
—x = x for all x € X, then the second condition in (c) gives g(x, y) = —g(x, y).

REMARK 2. If every element of Y is inverse to itself, then ¢(y) = 0. Taking
y1 = y2 = 0in (5) we have ¢(0) = 0. Taking y, = y, = y in (5) we have
o(y +y) + ¢(0) = 4¢(y). Since y = —y we conclude that 4¢(y) = 2¢(0) = 0.

We apply Theorem 9 to the case X = ¥*. Itis easy to see that g(x, y) = O satisfies
(a)~(e). Indeed, (d) follows if we take for V, the set consisting of one function
Zo(w) = 1. This set is open since the topology is discrete, and the other conditions are
trivial. By Remark 1 the function g(x, y) = Ois unique. Since ¥ = €** is isomorphic
to ¥ and using Remark 2, we see that (5) is valid only for the ¢(y) = 0. We note
now that if ¢ is a measure on €* and ®({&;}) = &, &k € Ny, then the condition
(X \ V) < oo for every neighbourhood V of zero holds if and only if Z:‘;l Cp < O0.
The latter condition implies (4).

Therefore, the characteristic function £ of an infinitely divisible measure p €
M(€*) has the form

(@) = f(w) exp (Z crGi(@) — 1)) :
k=1

where ¢; > 0, Z:‘;l ¢ < 0o and i (w) is the characteristic function of an idempotent
measure i, € M'(¥*). Since M!(¥*) and .#y are isomorphic, we obtain Theorem 5.
O
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4. Functions without indecomposable factors.
Proof of Theorem 6 and Theorem 7

We need some lemmas.
LEMMA 1. Foralli e Nandce R,
exp(c(w; — 1)) = a + Bw;,
where @ = e “coshc¢, § = e “sinhc.

PROOF. Since w?(#) = 1, we have

o0 2m o0 m+l

explew; — 1)) =e—cz;) (2m Y ZO Cm+
=e “coshc+ e “sinhcw;, = a + Bw,. O
LEMMA 2. Let
¢ :=exp(c;(wi — 1) +c(w; = 1) —e(ww; — 1)), ¢,c,e>0.
Then there exists €9 = €o(c;, ¢j) such that ¢ € Sy forall € € (0, &).
PROOF. By Lemma 1
= (a + Bw)(y + dw;)(v — ow,w;),

where «, B, ¥, 8, v = € coshe, 0 = ¢° sinhe > 0, and hence

= (ayv — Bdo) + (Byv — ado)w;
+ (@év — Byo)w; + (Bdv —ayo)w,w;.

Taking &9 = eo(c;, ¢;) so small that all coefficients in parentheses in the last formula
are positive for 0 < £ < g, we have ¢ € Sy . g

LEMMA 3. Let
A=explei(wi — D+ci(w; — 1), ¢,¢;>0,i,jeN, i#j.

Then A ¢ I,(Fy).
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PROOF. Let us write A = @y, where

¢ = exp(ci(w; — 1) + ¢;(w; — 1) — e(ww; — 1)),
¥ =exp(e(wiw; — 1)), &>0.

Since w;w; € # and applying Theorem 5, we have ¢ € I(F¥). So, ¥ € Fy.
According to Lemma 2, ¢ € % for ¢ > 0 small enough. Therefore, ¢ is a factor of
A. Letus prove that ¢ ¢ I (% ). If this is not the case, then ¢ can be represented as

exp (ic,-(w,- - 1)) , ¢ =0, ici < 00.
i i=1

i=1

This is a consequence of positivity of ¢, Theorem 4 and Theorem 5. But w;w; = wy for
some k # 0, i, j, and we have a contradiction to the uniqueness of the decomposition
as a series of the Walsh functions. By Theorem 2, ¢ ¢ Io(.%y), and hence A ¢
Io(Fy). (.

LEMMA 4. Let
£:=(0.5+05w)(054+05w;), ijeN, i#j.
Then & ¢ Io(Fy).

PROOF. We note that § = 1 forw; = 1, w; = 1 and & = 0 otherwise. We also note
that the function A in Lemma 3 satisfies the condition: A = 1for w; = 1, w; = 1.
Therefore, £ = £1. Lemma 4 follows now from Lemma 3. O

LEMMA 5. Let
n:=(0.54+05w)exp(c;(w; — 1)), ¢ >0, ijeN, i#j.
Then n ¢ Io(Fy).
PROOF. We have
0.5+ 0.5w; = (0.5 + 0.5w;) exp(ci(w; — 1))

for all ¢; > 0. To prove this identity, it is sufficient to substitute +1 and —1 for w;.
Therefore, we can write n in the form

n=(0.5+05w)A,

where A is the function of Lemma 3. Lemma 5 follows now from Lemma 3. O
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LEMMA 6. Let
¢ :=aw, + (1 —a)wy,

where0<a <1, mkeNy,m#k Thenf € io(.S’,y/). In addition,

(1) ifa #0.5, thent € Iy(Fy);
() ifa=0.5,then¢ € L,(Fy) \ Io(Fy).

PROOF. The case @« = O or @ = 1 is trivial. Let us consider 0 < o < 1. Let
¢ = &8, where &y, & € Sy, & # wy. First we note that the expansion of ¢ into the
series of the Walsh functions contains exactly two nonzero terms. Indeed, if there are
three or more terms, then the series expansion of ¢ also contains three or more terms.
This gives a contradiction. We have used here that if i # j, then w;w, # w; w,. We
have proved that

H=aw,+(1-a)w,, O<a<l, p#gq.

Later on we use the following fact. A convex linear combination of two distinct Walsh
functions is equal to zero at some point if and only if the coefficients of this linear
combination are both 0.5.

(1) Assume a # 0.5. Then we have £(t) # O for all + € [0, 1]. Therefore,
Z1(t) # 0, and hence a # 0.5. We can assume without loss of generality thata > 0.5.
By Lemma 1 we conclude that

Hi=wy(a+ (1 —a)wyw,)
=w,(a+ (1 —-a)w;) =w,explc(w; - 1)), ¢>0.
By Theorem 5, ¢, € I(F%). Therefore, ¢, is decomposable. Since &;(¢) # O for
t € [0, 1], ¢, is not a non-degenerate idempotent function, and hence ¢ € I)(Fy ).
(2) Assume o = (.5. Then the function ¢ has zeros on [0, 1] and the coefficient a in

the definition of {; can be equal to 0.5. In this case also the function &, = 0.5w,40.5w,
is decomposable. This follows from the representation

& = 0.5w, + 0.5w, = w, (0.5 + 0.5w;) = w, (0.5 + 0.5w,)*.

Therefore, ¢ € I~0(.5/’,g/). But ¢ is a non-degenerate idempotent element for o« = 0.5,
and hence & ¢ Io(S). ]

PROOF (of Theorem 6 and Theorem 7). Let f € io(Yy). According to Theo-
rem 2, Theorem 4 and Theorem 5 we have

f=w; ] ©5+0.5w)exp (Z ce(we — 1)) :
k=1

w; ek
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where j € Ng, ¢ = 0, E:‘;l ¢ < 00, and X is a finite subgroup of W. It follows
from Lemma 3 that only one coefficient ¢, can be non-zero, for otherwise f has an
indecomposable factor. Lemma 4 implies that either K = {wp} or K = {wo, w;},
for otherwise f has an indecomposable factor. It follows from Lemma 5 that the
case K = {wy, w;} is possible only if ¢; = O for all k € N, for otherwise f has an
indecomposable factor. Therefore, if f € I,(#y), then either f =w;(0.5+0.5w,)
or f = w; exp(ci(w; — 1)). According to Lemma 1 f = aw, + (1 — a)w; where
0<a <1, mke Ny, m # k. Theorem 6 and Theorem 7 now follow from
Lemma 6. d

REMARK 3. Theorem 7 can also be deduced from known general theorems on
decomposition of the generalized Poisson distribution on groups. Let E, be the
probability measure on X concentrated at the point x € X. For every measure ¢ on
X the generalized Poisson distribution is defined by the formula

b P
e(®) :=exp(—P(X) | Eo + @ + TR §

THEOREM 10 (Rukhin, see [2, Section 6, Proposition 6.6]). Let © = e(P), where:
dP=yE, ¥ >0xeX.

Then u € Iy(M (X)) if x is either element of infinite order or order 2 and . ¢
L(M(X)) if x is element of order p > 2.

THEOREM 11 (Fel’dman, see [2, Section 6, Proposition 6.11}]). Let & = y E,, +
VE,,, where y; > 0, x; # 0, 2x; =0,j = 1,2, x; # x,. Then u = e(P) ¢
Io(M(X)).

Since all elements of €*, except zero, have order 2 it follows from Theorem 10 that
exp(c(w; — 1)) € In(Fw), ieN, c¢>0.
It follows from Theorem 11 that

exp(ci(w; — 1) + Cj (wj - 1) ¢ I(Fy), c, cj > 0, i#j, ijeN
5. Indecomposable elements of .y . Proof of Theorem 8

We use the following notation.
W, := {¥}}*" is the set of Walsh functions of the mth series,
m—1 o0
Weem = Wis Woom == |J W;.
i=0 j=mt

The definition of the Walsh functions implies the following statement.
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REMARK 4. If w;, w; € W, then wiw; € Wiim. f w, € W,,w; € W, and
k < mthen w,w; € W,.

PROOF (of Theorem 8). Let f has the form (3). Assuming f ¢ N (&%) we have
f = fifa2, where f1, f2 € P, f1, f2 # wi, k € Ny. Without loss of generality we
may assume that the coefficient ¢, of the function ¥} (¢) = 1 in the series expansion
of f, is non-zero. We divide the proof of Theorem 8 into several steps.

(a) We note that f, does not contain any term from W, for otherwise condition
¢o,, 7 0 implies that f contains terms from W(. . This is a contradiction.

(b) f, contains exactly one term from W,,, namely v/ . If there are two such terms,
then the condition ¢o; # O implies that f contains two terms from W,,. This is a
contradiction. If £, does not contain any term from W,,, then it contains at least two
terms from W_.,. Hence, according to the condition a.; > 0, f, contains at least
one term from W, (see Remark 4). Then f contains at least two terms from W,,. This
is a contradiction.

{¢) f) contains at least one term from W,_,,, because f, contains at least two terms
in general.

(d) f, does not contain any term from W(..,,. Indeed, if there is such a term, then it
is contained also in f (see (c) and Remark 4).

(e) f,contains exactly one term from W,,. If there are two such terms then according
to (¢) f contains two such terms, but this is not the case. If there is no such term, then
f2 contains at least two terms from W,_,,,. Consequently, according to (b), f contains
two terms from W,,, which is not the case.

(f) f, contains exactly one term from W, namely y¢ = 1. If there are two such
terms, then according to (b) f has two terms from W,,.

(g) f) has exactly one term from W_,,. If there are two such terms, then according
to (e) f has two terms from W,,. This is not the case.

It follows from (a)—(g) that

fi=ay+byi n<m, and f,=c+dyl.
Then

f = acyt + bey;, + adyty, + bdyiyt.

Since f has only one term from W,, and since ¥*y! € W, (Remark 4), we have
¥t =1y, =1and [ = i. Therefore,

f = (ac + bd) + (bc + ad)¥,,

that is, f contains exactly two terms. This is a contradiction.
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We now present a sequence of functions from N (%) which is uniformly conver-
gent to a given function f € %4 . Let

f =ZZak'j1//i.

We consider two cases: (i) there are at least two terms in f, (il) f = Vfi-
In the first case we take

fnzzzaé'j¢i+%¢’:+1 Sn=nilzzak,j

=0 n k=0

Let n be so large that the sum in the definition of f, contains at least two terms.
According to Theorem 8, f, € N(F%). Itis evident that f, — f asn — o0
uniformly on [0, 1].

In the second case, we consider

2 i1 1
fn= (1 - ;) Vi + ;1/!,:+1 + ;wkl+2'

It follows from Theorem 8 that f, € N(&%). Evidently, f, —> f asn — o
uniformly. O
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