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ON CERTAIN COMMUTING FAMILIES OF RANK ONE
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1. Introduction

A study of nonselfadjoint algebras of Hilbert space operators was begun by
considering special types of such algebras, namely those determined by a commuting
family of rank one operators. A first step in this direction was made by Erdos in [1]
and is continued more extensively in [2].

Here we examine the algebra of bounded linear operators on I2 which have a specific
set of vectors in I2 as eigenvectors. We prove that this algebra is a maximal abelian
subalgebra of @(l2) determined by a commuting family of rank one operators, is
topologically isomorphic to the Hilbert space I2 and characterise those operators in it
which have simple eigenvalues. Moreover, we describe the compact operators in the
algebra and give a new class of compact operators which, although they have a
complete system of eigenvectors, do not allow spectral synthesis.

Examples of maximal abelian reflexive algebras are given in [1] and [2]. In the sequel
we give sufficient conditions for a compact operator in the algebra given in Section 6 of
[2] to be reflexive and admit spectral synthesis. Finally we prove that none of the
reflexive operators in the above mentioned algebras is subnormal or even similar to a
subnormal operator and hence these examples are not covered by the results of R. F.
Olin and J. E. Thomson in [5].

In this paper, the term Hilbert space will mean complex, separable, infinite
dimensional Hilbert space, subspace will mean closed linear subspace and operator will
mean bounded linear operator. We denote by &(H) the set of all operators on a Hilbert
space H. The inner product is denoted by < , >. For any sets si of operators and S£ of
subspaces we write Lat si for the set of subspaces of H which are invariant under every
member of si, and Alg S£ for the set of operators on H which leave every member of J£?
invariant. We denote the commutant of si by si'. If x and y are non-zero vectors, the
operator t-*(t,x}y is denoted by x®y. The strongly closed algebra generated by a
commuting family M of rank one operators is denoted by sf(0l). An algebra si is called
reflexive if si = Alg Lat si. An operator A is called reflexive if the weakly closed algebra
generated by A and the identity / is reflexive. If V is a subset of H, the closed linear
span of Kwill be denoted by els V. The range of an operator A is denoted by ran A

A sequence {xn}S° of vectors in a Hilbert space H is said to be complete if
cls{xn:«^ \} = H and is called a basis of H if for every xeH there exists a unique
sequence {an}f of scalars such that x = £anxn. The following terminology is taken from
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116 S. KARANASIOS

[4] (see also [2]). The sequence {xn}f is called minimal if xn$c\s{xm:nj^m} for every
n ^ l . A sequence {xn}f is minimal if and only if there exists a sequence {yn}? bi-
orthogonal to it; that is, a sequence such that <xn, ym > = 1 for n = m and =0 for n j= m. If
{xn}f is complete and minimal the bi-orthogonal sequence {yn}f is unique. The
sequence {xn}f is said to be strongly complete if it is complete and minimal and for
every xeH, xecls{xn:<x,_yn}#0} where {yn}f is the sequence bi-orthogonal to {xn}f.
Any basis is strongly complete; the converse is false (see [2], Section 6). A vector xeH
is called a root vector of Ae3${H) corresponding to the eigenvalue X, if {A — XI)nx = 0 for
some n. We shall say that Ae3S{H) allows spectral synthesis if for any invariant
subspace M of the operator A the set of root vectors of A contained in M is complete in
M. A compact operator A is called complete if the system of all its root vectors
corresponding to nonzero eigenvalues is complete in H and we shall say that A allows
strict spectral synthesis if its restriction to any invariant subspace is a complete operator.

2. The algebra £?'

Consider the set of vectors
sequence is {yn}f where

), n ^ l , in I1. Its unique bi-orthogonal

T
(nth place)

Clearly els {xn:n^ 1} = /2, and so {xn}S° is complete, and obviously minimal. If
Zo=(l>2>3>---) then since (zo,yn} = O for all n, zo$c\s{yn:n^l} and hence {yn}f is
not complete. Also since zo£cls{xn:<zo,yn>/0}, {xn}S° is not strongly complete.

In the following we examine the bounded linear operators on I2 having the sequence
{xn}f as eigenvectors. The following two results are taken from [2].

Let 8& be a commuting family of rank one operators on a separable Hilbert space H.
Let

Xo = cls {ran R :R e@}, Y0=c\s {ran R* :R e Si).

Proposition 1. / / either Xo = H or Y0 = H and 8R. is closed under multiplication by non-
zero scalars then M is maximal.

Proposition 2. / / Si is a maximal commuting family of rank one operators then any one
of the conditions Xo = H, Yo = H, Xo n Yo = (0) implies that!%' is abelian.

Let

(1)

where {xn}f, {yn}f are as defined above. The properties of the sequences {xn}J° and
{yn}f ensure that ^ is a commuting family and Proposition 1 shows it to be maximal.
If 0t' is the commutant of 01 then, since X0=cls{xn:n^ 1} = /2 and 8&' is maximal
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abelian if and only if it is abelian, we have by Proposition 2 that 3ft! is a maximal
abelian subalgebra of @){l2).

Let T effl'. Then each vector xn is an eigenvector of T. The converse is also true.
Indeed, suppose that there exists a sequence {!„}" of scalars such that Txn=lnxn where
T is a bounded operator on I2. Then

= 0

for every m,n and since cls{xn:n^l} = /2 we have T*ym = Imym. Hence

T(ym ® x J = ym ® Txm = Xm(ym ® x j

and

= T*ym ®xm = Xm(ym ® x j

for all m. That is, T commutes with all members of 2̂ and so T e f .
Let {</>„} 5° be the standard orthonormal basis for I2 and for Te&' consider the matrix

representation of T with respect to the basis {</>„} 5°. We can easily see, since each xn is
an eigenvector of T, that this matrix is of the form

ax a2 a3

0 s2 jcii

0 0 s3 ^a4 \a5 ...

0 0 0 sA i a 5 ...

where {an}f is a sequence of complex numbers and

The following result shows for which sequences {an}f of complex numbers the
corresponding operators on I2 are bounded.

Proposition 3. Let {an}f be a sequence of complex numbers and let s n = ^ = 1

nm=n+i
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118 S. KARANASIOS

then the map T:12^>12 such that

( £ 1 ; £ 2 , £ 3 , . . . , £ „ , . . . H O h , ^ , ^ , - • • > » ? , „ • • • )

defines a bounded linear operator on I2 if and only if a={an}f belongs to I2.

Proof. Suppose that T defined as above is a bounded operator. Then, since

and

E N2=
l

we have that {dn}fel2 and hence as I2.

Conversely, let a = {an}f el2 and let D be the diagonal operator defined by D(j)n = sn(j)n

n > l . Then

\s,\ =
" 1

E i
1/2

(2)

Hence {sn}J° is a bounded sequence and consequently D is a bounded operator. So it is

enough to show that A = T—D is bounded. But A maps x = (£l,£2,£3,...,^n,...) into

{>7i,»72,'/3>•••>'/...•••) where

1 S

Therefore

! = E E a
m

^E4 E k
l « \m=n+l
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COMMUTING FAMILIES OF RANK ONE OPERATORS 119

£|MlaNa1 ii
n = i n

7 C "

~~6

and so || ,411^(71 /̂6/6)11011. Hence T is bounded and using (2) we get

1^/6.

^ - I

\a\\. (3)

Corollary 4. 77ie algebra M' and the Hilbert space I2 are topologically isomorphic
(where $&' is considered with the norm topology).

Proof. Proposition 3 shows that there exists a linear one-to-one map \\i from I2 onto
3%'. So we have to show that both \j/ and \j/ ~1 are bounded. If T corresponds to a el2

and a = {an}5°, then

1

E K

and hence

= a

= sup{||Tjc||,xe/2,||x|| =

(4)
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120 S. KARANASIOS

Comparing (3) and (4) we have

n /6
||a||^||r||^—^—||a||

3

which implies the continuity of \\i and i/'"1.

Remark. Let ^ be a commuting family of rank one operators and let si(0t) be the
strongly closed algebra generated by 3%. It is proved in [2] that:

(i) les#{@) implies cls{ranR:.Re^}=cls{ranR*:Ke^} = H where / is the identity
operator.

(ii) jtf(M) is maximal abelian if and only if

Now if 3% is as in (1), then the corresponding strongly closed algebra srf{ffl) is not
maximal, since otherwise Iestf{ffi) and we must have cls{yn:n^ 1} = '2 which is not true.
Hence jrf{M) is a proper subset of M'.

Next we describe the compact operators of ^2'.

Proposition 5. Let T be the operator on I2 determined by the sequence {aa}f as in
Proposition 3. Then T is compact if and only i/sn->0 as n—>oo.

Proof. Suppose T is compact. Then, since each sn is an eigenvalue of T, we have
sn->0 as n-»oo.

Conversely, if D is the diagonal operator defined by D<j)n = sn(j)n, where {</>„}S° is the
usual basis for I1, then sn->0 as n-»oo implies that D is compact. Let A = T—D. It is
sufficient to show that A is compact. Define AN, N^.2 by ANx=y where, if x = {̂ n}J°
and y = {>Ur,

f 1 "

For every N, AN is finite rank operator and (A — AN)x = y where >7n=(l/n
and

_ f 0 ^
m~\am m^N + L

If b = {bn}f then by (3) in the proof of Proposition 3
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, . E K
J \m=N+l

Now as / 2 implies Y,m=N+i \am\2-*® a s N^-oo and therefore AN^>A in norm as N-*co.
Hence /4 is a norm limit of finite rank operators and therefore it is compact.

We can easily find a compact operator in ^2'. Let a1 = 1 and an = — l/(n— 1), n^2. Then
sn = l/n and hence sn-»0 as n->oo. So by Proposition 5 the operator T corresponding to
the sequence {an}S° is compact.

Corollary 6. Let T be the operator on I2 determined by the sequence {an}f as in
Proposition 3. Then T is compact if and only if the vector a = {an}f is orthogonal to the
vector zo = (l,j,j,...).

Proof. Obviously sn-*0 as n-*oo if and only if E*°=i (Vc)a* = 0 which is equivalent
to the fact that a is orthogonal to z0.

Remark. A simple calculation shows that for any TeM' the vector z0 is an
eigenvector of T with corresponding eigenvalue X^°=i(l/k)afc> where {an}f is the
sequence determining the operator T.

Let

1 1
= 0,0,...,

n+ln+T
T

(« + l)th place

We have the following:

Proposition 7. Let T be an operator on I2 determined by the sequence a = {an}f. Then
zn = z0 — xn is an eigenvector of T if and only if a is orthogonal to zn. When zn is an
eigenvector of T the corresponding eigenvalue is sB = E* = I (VO ak-

Proof. Since xn = z0-zn, Tz0 = (Vj°= t (1/fc) ak) z0 and Txn = snxn we have

Tzn = Tz0-Txn

1 \ / A 1

" 1 \ / °° 1
Y.rak)zn + [ X -r

k=lK / \k=n+lK
-rak )z0

(5)
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122 S. KARANASIOS

The last equality shows that Tzn = snzn if and only if (£"=„ +i(l//c)ajt)zo = {0};
equivalently X*°=n + i(V^)at = 0. This is also equivalent to a being orthogonal to zn, and
the proof is complete.

Proposition 8. Let T be an operator on I2 determined by the sequence a={an}f. If
sm¥^snfor m^n and the vector a={an}f is not orthogonal to any of the vectors zn, «^1
then T has simple eigenvalues.

Proof. It is enough to prove that the only eigenvectors of T are the non-zero scalar
multiples of the vectors xn, n ^ l and z0. Suppose Tx = Xx with x = (£1,£2,£3,...),
x£cls{z0} and let r be the smallest positive integer such that r^ r #( r+l )^ r + 1. Then

1 °°

Equivalently

Ar£r = rsrZr+ f am£m. (6)
m=r + l

Also

Equivalently

A(r+lKr+1=(r+l)sr£r + 1+ E a m C (7)
m=r+ 1

Subtracting (7) from (6) we get

which implies X = sr. Also

1
r +
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Equivalently

A(r + 2K, + 2 = (r + 2 R + 1& + 2 + £ am^m. (8)
m=r + 2

Subtracting (8) from (7) we have

that is

But 2 = sr and by hypothesis sr?=sr + 1. Therefore (r + l)^r + 1 ={r + 2)£r + 2- Using the fact
that sr^sr+k, k^.1 by induction we get

£ ± ^ + 1, ^ 1 . (9)

Now from (7) and l = sr we have £m=r + i am<^m=0 and from this, using (9)

and so <?, + 1(X^=r + 1(l//n)am) = O. Since by hypothesis X £ = r + 1(l/m)am=^0 we have
^r + 1 = 0 and consequently ^ r + t = 0 for all / c^ l . Therefore x is a scalar multiple of

Remark. The condition sn^sm for m^=n implies that the vector a = {an}f could be
orthogonal to at most one of the vectors zn, n2il, for if a is orthogonal to zn and zm

with n>m, say, then

00 1

0= I k

" 1 °° 1
= Z Tak+ Z r f l t

= Z
fc=m+l

which implies sn = sm.
We have the following:
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Corollary 9. Let T be an operator on I2 determined by the sequence {an}f. If sn¥=sm

for m^n then the only eigenvectors of T are the non-zero scalar multiples of the vectors
z0, xn, n^.1 and possibly one of the vectors zn, n ^ 1.

Proof. Use Propositions 7 and 8 and previous remark.

Remark. If T is a compact operator in {%' then Tzo = 0 and hence ker(T) is not
trivial. If T satisfies also the conditions of Proposition 8 then ker(T) is the subspace
generated by the vector z0. Indeed, let Tx = 0 for some xel2, 0^x = (^u^2,£3,•••)• Then

r,n=sn^n+- f am£m=0 for all n ^ l .
n m=n + l

So ni=n2 implies aj (£2— T £ I ) = 0. Since {an}f is orthogonal to z0 we must have a ^ O
otherwise {an}f will be orthogonal to z1 contradicting our hypothesis. Therefore
£ 2 = ^ ^ . Also since {an}f is not orthogonal to any of zn, n ^ l , we have s n / 0 for every
n ^ l . Hence an induction argument shows that <^n=(l/n)^1 for all n ^ l . That is, x is a
multiple of z0.

Now we give a new class of compact operators which have simple eigenvalues and a
complete sequence of eigenvectors and do not allow strict spectral synthesis. We shall
use the following result from [4].

Theorem 10. Let A be a compact operator all of whose non-zero eigenvalues are
simple, and let {xn}i° be the corresponding sequence of eigenvectors. The operator A allows
strict spectral synthesis if and only if {xn}f is strongly complete. //ker(>l) = 0 the word
"strict" can be omitted.

Corollary 11. If T is a compact operator in 3/1' satisfying the conditions of Proposition
8, then T does not allow strict spectral synthesis.

Proof. Immediate by Theorem 10 and Proposition 8.

3. A reflexivity result

Let {</>„}? be, as usual, the standard orthonormal basis for I2. Put

n

L= Z 4>m and en = <t>n-<j>n + 1 for each n ^ l .
m = l

Then the sequences {fn}f and {en}f are bi-orthogonal and each is complete and
minimal. Moreover it is shown in [2] that {/n}J° is strongly complete and hence so is
{en}f. Also if

and jrf{3#) is the strongly closed algebra generated by 01, then $4{<%) = <%' is maximal
abelian. We shall use the following result from [2].
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Proposition 12. Let {an}f be a sequence of complex numbers and let sn=Y,m = i am- If

then the mapping i^,^,^,...,£„,...)->(ril,n2,13,...,nn,...) defines a bounded linear
operator A on I2 if and only if

(i) the sequence {sn}f is bounded,
and

(ii) s u p n n £ £ = n + 1 | a m | 2 < c o .
The operator A is compact if and only if

(iii) sn—>0 as n->oo;
and

(iv) nX£ = n + 1 | a m | 2 ->0asn->oo.

The matrix picture of this new operator is

«i «2 «3 aA a5

0 S2 CI3 #4 ^5

0 0 s3 a4 a5

0 0 0 s4 a5

0 0 0 0 s5

It is shown in [2] that the norm of A is at most

sup |s n |+ 6sup
/

6supnp £ |
\ n m=n+l

1/2

Proposition 13. Let A be a compact operator on I2 corresponding to a sequence {an}f
as in Proposition 12. If the sequence {sn}f of partial sums is real, strictly monotonic and
sngM/y/n, n^.1 where M is a positive constant then the operator A is reflexive and
admits spectral synthesis.

Proof. We may assume s n > 0 for all n since we can consider —A instead of A.
Define Kn = Y,"m = iSmRm for every neN, where Rm = em® fm, meN. Then Knes/(3$) for
every n e N and for each integer n ^ l , Kn corresponds, via the definition in Proposition
12, to the sequence {a'm}f with
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If {s'm}f is the corresponding sequence of partial sums, then

m (0 m>n

It follows from Proposition 12 that for each n

k m=k+l

1/2

(10)

Since A is a compact bounded operator in srf{3ti), there exists a positive constant Mt

such that kYjm=k + i \am\2<Ml for all fc^l. Also by hypothesis, if k^n,

Hence (10) implies

That is, the sequence {Kn}f of operators is norm bounded. Also for n>m

"•nJm =SmJm

and so far each fixed m, the sequence {Knfm}f converges to Afm. But the sequence
{/m}? is complete in I2 and {^n}J° is norm bounded. This implies that {Kn}f converges
strongly to A. Indeed, let x e I2. Then for a given e > 0 there exists an integer r such that

where A,EC, i=l ,2 , ...,r.

Let n>r. Then

l + l
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which implies ||Xnx —^x||->0 as n-*co, since {Kn}f is norm bounded. Hence

00

A = Z snRn
 m the strong operator topology.

n = l

We show now that the strongly closed algebra stf generated by A and the identity is
equal to s#(M). It is enough to show that Rnes# for every neN. Fix xel2. Then, since
^ = Z"=i snRm (strongly) and RmRn = SmnRn, we have

—
1

S i

5 1 \

0 0

.£
o

i /

f s

\i
k-l

\ k- 1

) '

00z<
n = 2

nR

nR

nx

nX (11)

Since Z"=i snRnx = Ax the sequence {Z™=t snRnx}™= t converges to zero and so it is
bounded. Hence the right hand side of (11) tends to zero as /c->oo. This implies that
Rles/. Now if we put A1 = A — s1R1 then

S2V2

('~1

Z SnRn

which implies ||(v41/s2)*x — i^xll^O as k^oo and therefore R2esi/.
Using induction we get Rnestf for all neN and so si = srf(3$). Since ^ is a commuting

family, we have lat M = lat $4(3%) and since ,s/(^2) is maximal abelian Theorem 5.3 in [2]
implies

{) = Alg Lat 0t = Alg Lat

Hence stf{(X) is reflexive and so is si'. Finally from Corollary 6.5 of [2] it is obvious that
A admits spectral synthesis.

Corollary 14. Let A be a compact operator on I1 determined by the sequence {an}f as
in Proposition 12. If {sn}f is real, strictly monotonic and Zn°=isn<co ^en A is reflexive
operator and admits spectral synthesis.

Proof. Since we can suppose sn > 0, n ̂  1 and since then nsn ^ Yl = 1 sk
Z* = 1 sk < °° there exists a constant M > 0 such that nsn ^ M for all n. Now use
Proposition 13.

Remark. It is shown in [2] that the sequence {Gk}f, where

K m = l n = l

Z Z R.
> m = i n = 1
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tends strongly to the identity / . Since Gkesrf{0%), k^.1 for any Ae$2(01) the sequence
{AGk}f converges strongly to A. In particular if A is a compact operator in stf(<%) the
sequence {AGk}f converges to A in the norm topology, (see [6, Corollary 4.4, p. 25]).
Hence every compact operator in s4{3%) is a uniform limit of finite rank operators in the
algebra.

4. Subnormality and the algebra s-i^')

Let J5" be a set of vectors in a separable Hilbert space H and let ^(J*) be the algebra
of bounded linear operators on H having the set 3F of vectors as eigenvectors. That is,

= {A e J*(H):for all / e F , there exists XfeC with Af=Xff}.

It is clear that ^(J5") is a weakly (and hence a strongly) closed subalgebra of
containing the identity operator /.

A necessary condition for an operator A e s#{&) with simple eigenvalues to be
subnormal is that J5" is orthogonal. To see this, suppose A is a subnormal operator in
s^{^) with simple eigenvalues. Then A has a normal extension. In other words there
exists a normal operator B on a Hilbert space K such that the Hilbert space H is a
subspace of K, invariant under B and the restriction of B to H is the operator A. Each
eigenvalue for A is also an eigenvalue for B with the same corresponding eigenvector.
Since the eigenvectors of a normal operator corresponding to different eigenvalues are
orthogonal, the set !F must be an orthogonal set. Also since H is separable J5" is at
most countable.

Now consider the algebras J/(</>), where <j> is the set of all characteristic functions
0« = X[a,i]> 0 ^ « < l in L"[O,1], ( l<p<oo) (see [1], p. 80), and s/(^) with #" = {/n:n^l}
where fn=YJm = i4)m ar>d {<t>m}T t n e standard basis for I2, as in Section 3. Then
s4(&r) = <%'= stf(M). Since <j> is uncountable and the vectors {/n:n^l} are not mutually
orthogonal it follows from the previous discussion that none of the known reflexive
operators in the algebras jrf{(j>) and J^{^) = $£(£%) is subnormal.

It is obvious that an operator A is reflexive if and only if S~1AS is reflexive for some
bounded invertible operator S. In the sequel we shall show that none of our reflexive
operators in the algebras s/(cj)) and si{0£) is similar to a subnormal operator.

Generally, if A is a reflexive operator similar to a subnormal one then there exists an
invertible operator S such that S/1S"1 is subnormal. Suppose that X is an eigenvalue of
A with corresponding eigenvector xk. Then,

'1){Sxi) = SAx)i = XSxk.

That is, SxA is an eigenvector of SAS'1 with corresponding eigenvalue X. Therefore if A
has simple eigenvalues, the vectors

{Sx:x is an eigenvector for A}

are mutually orthogonal.
Now let us consider the algebras s4{(j>) and JS^J5" ). If S is an invertible operator then

https://doi.org/10.1017/S0013091500022215 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022215


COMMUTING FAMILIES OF RANK ONE OPERATORS 129

the set { S ^ : ^ 6 ^ , a e [ 0 , l ) } is uncountable and so it is not orthogonal. Also the set of
vectors {S/n:/neJ%n^l} is not orthogonal. For otherwise {(S/n/||S/n||):n^l} will be a
complete orthonormal set. But then

must be an unconditional (permutable) basis for I2 (see [3], Theorem 2.2, p. 315). This is
impossible, by Theorem 3.1, p. 20, of [7]. Therefore there is no reflexive operator in any
of the algebras jrf{4>) and ,£/(#") with simple eigenvalues similar to a subnormal
operator.
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