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Drift, diffusion and divergence
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Turbulent Taylor–Couette flow displays traces of axisymmetric Taylor vortices even at high
Reynolds numbers. With this motivation, Feldmann & Avila (2025) J. Fluid Mech, 1008,
R1, carry out long-time numerical simulations of axisymmetric high-Reynolds-number
Taylor–Couette flow. They find that the Taylor vortices, using the only degree of freedom
that remains available to them, carry out Brownian motion in the axial direction, with a
diffusion constant that diverges as the number of rolls is reduced below a critical value.
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1. Introduction
In 1923, Taylor published his ground-breaking experiment and linear stability calculation,
whose agreement demonstrated the validity of the Navier–Stokes equations. Since then,
Taylor–Couette flow has served as one of the protypical systems in fluid dynamics. In
the Taylor–Couette experiment, fluid is confined between two concentric cylinders which
rotate at different angular velocities. In laminar Taylor–Couette flow, the motion is purely
azimuthal and fluid particles at different radii do not mix. Increasing the angular velocity
difference past a critical value leads to the formation of Taylor vortices, toroidal rolls
in which circular motion in the meridional (r, z) plane redistributes fluid and angular
momentum between the radii.

Ever since Taylor described and explained the onset of axisymmetric Taylor-vortex flow,
an extravagant profusion of three-dimensional patterns of extraordinary variety, beauty
and complexity have been discovered experimentally and numerically (e.g. Andereck
et al. 1986; Weisshaar et al. 1991; Chossat & Iooss 1994; Altmeyer et al. 2012; Deguchi
& Altmeyer 2013; Akinaga et al. 2018). The mathematics of what is called variously
equivariant bifurcation theory, symmetry and pattern formation has been brought to bear
to predict and explain these spirals and ribbons, twists and waves, modulation and bursts.
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Turbulence in Taylor–Couette flow has also been studied, both at high Reynolds number
and in the transitional range at low Reynolds number (e.g. Coles 1965; Goharzadeh &
Mutabazi 2001; Prigent et al. 2002; Shi et al. 2013; Lemoult et al. 2016). But who
would have thought that there was something new to be learned about turbulence from
axisymmetric Taylor–Couette flow?

2. Summary of paper
It has long been known that the Taylor-vortex structure persists even far into the
turbulent regime, i.e. that turbulence is superposed on Taylor vortices (e.g. Lathrop et al.
1992; Dong 2007; Huisman et al. 2014; Grossmann et al. 2016); long-time averaging
accentuates the features of these ghostly vortices. Eckhardt et al. (2020) have argued
that, under certain hypotheses, transport of angular momentum by chaotic fluctuations
in axisymmetric Taylor–Couette flow reproduces the transport associated with the
axisymmetric component of turbulent solutions to the full three-dimensional equations.
This suggests that the axisymmetric problem could be viewed, not merely as a first step
towards turbulence (laminar → axisymmetric Taylor-vortex flow → three-dimensional
patterns → turbulence), but as a model for its mean (necessarily axisymmetric) properties.
Feldmann & Avila (2025) have carried out long-time axisymmetric simulations of
Taylor–Couette flow as a possible route towards studying turbulent structures.

Axisymmetric Taylor-vortex flow consists of an axial stack of toroidal vortices. The
vortices are approximately circular, so that the number of vortices is close to the axial-
length-to-radial-gap ratio Γ . Feldmann & Avila (2025) observe that the number of
vortices remains constant over the course of a simulation. Such a one-dimensional periodic
structure is highly constrained and so its possible dynamics are limited: the only remaining
possible motion is an axial jiggle or drift of the entire stack of vortices. Feldmann & Avila
(2025) find that, for a relatively long system, the rolls carry out diffusive drift (Brownian
motion) so that the variance of the phase grows linearly in time. Moreover, the effective
diffusion coefficient diverges following a power law as a threshold axial length (or number
of rolls) Γc is approached from above. For a shorter axial length, although there may be
an immediate adjustment of the position, the rolls quickly becomes quasi-stationary, with
only weak chaotic motion about a fixed location. For the parameters used by Feldmann &
Avila (2025), Γc = 10; see figure 1. The significance of this sharp threshold is unknown.

Although this is an interesting puzzle by itself, its importance is increased by its
generality. Many hydrodynamic systems are driven by an imposed gradient of some
quantity. Rolls appear as a means of redistributing this quantity: azimuthal or streamwise
velocity for Taylor–Couette, plane Couette or Poiseuille flow, temperature for Rayleigh–
Bénard convection, concentration for a binary fluid. Drift has been observed in these other
systems (Xi et al. 2006; Kreilos et al. 2014) and according to Feldmann & Avila (2025),
the drift appears to be of the same type.

Exploiting the analogy between axisymmetric Taylor–Couette flow and two-
dimensional Rayleigh–Bénard convection (Veronis 1970), Eckhardt et al. (2020) have
proposed a mapping from the two Reynolds numbers (inner and outer, or equivalently,
shear ReS and rotation RΩ (ReS ≡ Ud/ν and RΩ ≡ 2dΩ/U where d is the gap width
between the outer and inner cylinders, Ω is the angular velocity of the outer cylinder, and
U is the difference between the angular velocities of the inner and outer cylinders times
the inner cylinder radius.)) of Taylor–Couette flow (Dubrulle et al. 2005) to the single
Rayleigh number Ra of Rayleigh–Bénard convection. Feldmann & Avila (2025) have
provided support for this analogy by showing that the diffusion coefficient of the axial
drift was the same for different parameter pairs (ReS, RΩ) yielding the same value of Ra.
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Figure 1. Temporal evolution of radial velocity along an axial line at mid-gap. The aspect ratio Γ of axial
length to radial gap corresponds to the number of vortices. For Γ = 8, after an initial transient, the vortices
do not move, while for Γ = 10, they move very quickly in one direction. For Γ = 12 and 24, the vortices
sporadically change their direction of motion. From Feldmann & Avila (2025).

This demonstrates the interest in axisymmetric Taylor–Couette flow from a scientific
point of view. However, the imposition of axisymmetry also has the great advantage of
economy. Measuring diffusion coefficients of the axial drift requires extremely long times,
especially if other parameters are varied as well, i.e. the number of rolls and the Reynolds
numbers. Feldmann & Avila (2025) have been able to measure these diffusion coefficients
because axisymmetric simulations require only a small fraction of the time that would be
required to simulate the three-dimensional flow.

One might associate axial drift (motion of the phase) with axial flux (motion of fluid
particles). To investigate this, Feldmann & Avila (2025) have compared simulations in
which the axial flux is set to zero with those in which the net axial pressure gradient
is zero. Either condition is valid for a periodic direction, but the choice has significant
consequences if the flow is not reflection symmetric (e.g. Edwards et al. 1991). Feldmann
& Avila (2025) find that in the absence of axial flux, the drift is considerably reduced, but
still undergoes Brownian motion.

3. The future
Several questions are raised by this paper. The most obvious and perplexing is the reason
for the abrupt threshold. Why are shorter columns tranquil and why are slightly longer
columns suddenly so jittery? What physical phenomenon could be responsible for such a
sharp distinction?
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The second question concerns its generality. Feldmann & Avila (2025) have given
convincing evidence that the rolls in other flows, such as Poiseuille flow, Rayleigh–Bénard
convection and Taylor–Couette flow with no axial flux, also undergo diffusive drift. Does
drift in these flows also have a length threshold? Are the threshold and the power law
decay exponent the same?

The third question concerns the applicability of these axisymmetric results to the
three-dimensional turbulence which naturally occurs at these high values of Reynolds
or Rayleigh number. Eckhardt et al. (2020) suggest that some global properties of
three-dimensional turbulent Taylor–Couette flow could be captured by its axisymmetric
analogue. Is axial drift one of those properties? What other properties might obey this?

Declaration of interests. The authors report no conflict of interest.
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