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ABELIAN STEINER TRIPLE SYSTEMS 

PETER TANNENBAUM 

1. I n t r o d u c t i o n . A neofield of order v, Nv( + , •), is an algebraic system of 
v elements including 0 and 1,0 9e 1, with two binary operations + and • such 
tha t (Nv, + ) is a loop with identi ty element 0; (Nv*, •) is a group with identi ty 
element 1 (where Nv* = 7VC\{0}) and every element of Nv is both right and 
left distributive (i.e., (y + z)x = yx + zx and x(y + z) = xy + xz for all 
y, z £ Nv). From this we can derive: 0 • x = x • 0 = 0 for all x G Nv. A neofield 
Nv has the inverse property (IP) and is called an IP neofield if for all y Ç Nv 

there is an element z £ Nv such tha t (x + y) + z = x and z + (y + x) = x 
for all x £ TVç. I t readily follows tha t z is the unique two-sided negative of y, 
— y. Moreover, we note tha t — y = (-l)y for all y G Nv, where — 1 is the 
unique two-sided negative of 1. In particular, ( — l ) 2 = 1. A neofield Nv is said 
to be commutative when (Nv, + ) is a commutat ive loop, and it is said to be 
abelian when (Nv*, •) is an abelian group. An abelian neofield with the inverse 
property is called an A IP neofield. I t is easy to show [2] tha t an A I P neofield 
is always commutat ive, from which it readily follows tha t an A I P neofield 
contains a t most one element of multiplicative order 2, namely — 1. 

In the first par t of this paper we give a characterization of an A I P neofield 
Nv in terms of a certain parti t ion of the elements of the abelian group A = 
(Nv*, •) and show tha t the existence of an A I P neofield having (Nv*, •) = A 
is equivalent to the existence of such a parti t ion of A. 

In Section 3 we use the above mentioned characterization to show by direct 
constructions tha t an abelian group A of order n, n odd, is admissible as the 
multiplicative group of nonzero elements of an I P neofield if and only if n = 1 
or 3 (mod 6) and A ^ C9. 

In the last section we use the constructions of Section 3 to obtain existence 
results for abelian Steiner triple systems of all orders n = 1 or 3 (mod 6). (A 
Steiner triple system (STS) of order n,^~n = [S, S^] is an arrangement of the 
elements of an n-set S into a set $f of triples such tha t every pair of elements 
in 5 occur together in exactly one triple of 5f. A necessary and sufficient condi­
tion for the existence of an STS of order n is t ha t n = 1 or 3 (mod 6). An STS 
is called abelian if it has a sharply transitive automorphism group wThich is 
abelian.) Finally, we show tha t the number of nonisomorphic abelian STS's of 
order n (n = 1 or 3 (mod 6)) goes to infinity with n, even as a certain decom­
position of the automorphism groups retains a fixed size. 
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2. AIP neof ie lds a n d a d m i s s i b l e p a r t i t i o n s . Suppose tha t Nv is an A I P 
neofield with multiplicative group (Nv*, •) = A. Then Nv is completely 
characterized by its addit ion table and since y + z = w if and only if 1 + zy~l 

= wy~l it follows tha t Nv is completely characterized by the map p: Nv —> Nv 

given by p(x) = 1 + x. We call the map p a presentation map for Nv. Clearly 
p(0) = 1 and p(-l) = 0. Now suppose tha t for x G Nv\{0, - 1 ) 

(1) p(x) = -y. 

Then clearly y Ç iVv\{0, —1} and moreover, using the inverse proper ty and 
the commuta t iv i ty of addition it follows tha t 

(2) p(y) = -x. 

I t also follows immediately t ha t (1) implies 

(3) p{yx~l) = —x~l 

and therefore 

(4) p{x~l) = — yx~l 

as well as 

(5) p(y~l) = —xy~l 

and therefore 

(6) p{xy~l) = — y~l. 

Thus , the action of p on the set 6(x) = {x, y, yx~l, x~x, y~l, xy~l), y = —p(x), 
is determined by the action of p on x (or on any other element of 6(x)). 

Note tha t if we let ^41 = [x, y), A2 = \yx~l, x - 1 } and A* = \y~l, xy~l) then 
each d(x) = {x, y, yx~1, x~1, y~l, xy~l) satisfies: 

(*) Air\Aj = 0 or Al = Aj for i, j = 1, 2, 3. 

Moreover, if w G 6(x) then 6(w) = 6(x) and we have therefore t ha t the sets 
6(x) (x 5* 0, —1) part i t ion TV^XfO, —1}. This leads to the following definition. 

Definition 2.1. Let A be a finite abelian group with identi ty 1 and having 
a t most one element of order two, an let / denote such an element if it exists, 
1=1 otherwise. A subset of ^4\{/} of the form 6 = {x, y, yx~l, x~l, y~l, xy~1} 
which satisfies condition (*) is called an admissible class in A. A part i t ion of A 
consisting of {/J and admissible classes is called an admissible partition of A. 

We now prove the main result of this section: 

T H E O R E M 2.2. Let A be a finite abelian group of order n having at most one 
element of order two. There exists a neofield Nv or order v = n + 1 having (Nv*, •) 
= A if and only if there exists an admissible partition of A. 

Proof. If Nv is an A I P neofield having (N*, •) = A, letting / = — 1 and 
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y = — (1 + x) we have seen tha t the sets 6 = {x, y, yx~l, x_ 1 , y~l, xy~1} form 
an admissible parti t ion of A. 

Conversely, suppose tha t there exists an admissible parti t ion -K of A. Let 
N = | 0 | U 1 We extend the multiplication of A to TV by defining x • 0 = 0 
for all x G N. We now define addition in TV as follows: 

(A. l ) x + 0 = 0 + x = x for all x £ N. 
(A.2) 1 + / = 0 where / is the unique element of order 2 in A if such an 

element exists; / = 1 otherwise. 
(A.3) x + y = (1 + 3>x-1)x for all x, y £ A 

I t only remains to define the additions 1 + x for all x £ ^4\{/}: 
(A.4) For each admissible class 6 = {x, y, yx~l, x~~\ y~l, xy~~l) in the admis­

sible parti t ion T of A we define: 
(i) 1 + x = ly; 

(ii) 1 + y = Ix; 
(iii) 1 + yx~l = /x"1 ; 
(iv) 1 + oc~l = lyx~l\ 
(v) 1 + y~l = lxy~l and 

(vi) 1 + xy~l = ly~l. 
I t is clear tha t the operations • and + are well defined. We claim tha t 

(N, + , •) is an A I P neofield with —1 = 1. First, we note tha t addition is com­
muta t ive . From (A.4) we have tha t for all z G A\{1}, 1 + z — Iw if and only if 
1 + z~l = lwz~l and by (A.3) we obtain z + 1 = Iw. Also since l"1 — /, 
I + 1 = 1(1 + I) = 0. Thus , z + w = (1 + wz-l)z = (wz-1 + l)z = w + z 
for all z, w £ A. Since z + 0 = 0 + z for all z G N we have tha t (N, + ) is 
commutat ive . 

We next show (iV, + ) is a loop with identi ty 0. Let z, w G N be given. We 
must show tha t there exists a unique x G N such tha t 

(L) z -\- x ~ w 

holds. If z = 0 choose x = w and if w = 0 choose x = Iz (then 2 + fe = 
(1 + l)z = 0 • z = 0) . Suppose now z,w £ A and 2; 5̂  w (if z = w choose x = 0) . 
Then /wz - 1 ^ / and by (A.4) there exists a unique x* Ç ^4\{/} such tha t 
1 + x* = / • lwz~1 = wz~l. Lett ing x = zx* we have 2 + x = w. From (A.2) 
it immediately follows now tha t / = — 1. 

The distributive laws follow immediately from (A.3) and commuta t iv i ty of 
multiplication. I t only remains to show tha t the inverse property 

(IP) (z + w) + (-w) = z 

holds for all z, w Ç N. First note tha t for all x G -^\{/} we have by (A.4) tha t 
1 + x = — y if and only if 1 + y = — x and thus (x + 1) + ( — 1) = ( — y) 
+ (—1) = x. Then, (z + w) + ( — w) = [(sw_1 + 1) + ( — l)]w = (zw~l)w = s 
for all z, w Ç ^4, sw - 1 9e I = —l.lîz = 0,w = 0orz= —w, (IP) holds 
trivially. This completes the proof of Theorem 1.2. 
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We now examine the s t ructure of the admissible part i t ion of an abelian 
group A of order n in more detail. If n is odd then / = 1 and for every admis­
sible class 6 = {x, y, yx~l, x _ 1 , y~l, xy~l), 8 C ^4\{1} and therefore x 9e y. 
If y 9e x2 then yx~l ^ x and by (*), x 9^ y~l and it can be readily verified tha t 
|0| = 6. If y = x2 then yx~l = x and by (*) x - 1 = y, whence x3 = 1 and 6 = 
{x, x2}. Note tha t this can only occur when 3\n, i.e., n = 3 (mod 6). From 
this it immediately follows t ha t when n = 5 (mod 6) every admissible class 
is of size six and thus no admissible part i t ion of A can exist. 

If n is even and A has only one element / of order two then 6 C A\{1\ for 
each admissible class 6 = {x, y, yx~l, x~1, y~1, xy~~l\. The unique class 6t con­
taining the identi ty is of the form 0Z = {1} or 6r = {1, x, x - 1 } , x ^ 1, /. Every 
remaining admissible class is again of size six if y ^ x2 or of the form 6 = {x, x2} 
if y = x2, in which case x3 = 1 and n = 0 (mod 6) . (Henceforth we will refer 
to an admissible class of size six as an admissible sextuple and an admissible 
class of the form 6 = {x, x2} with x3 = 1 as an admissible pair.) 

By means of a simple counting argument we can now summarize our con­
clusions in the following lemma: 

LEMMA 2.3. Let Nv be an AIP neofield of order v with (Nv*, •) = A, and let T 
be the admissible partition of A induced by Nv. 

(1) When v = 0 (mod 6) Nv does not exist. 
(2) When v = 2 (mod 6), -K consists of {1} and \{v — 2) admissible sextuples. 
(3) When v = 4 (mod 6) , then -K consists of {1}, h admissible pairs where 

h = 1 (mod 3) and \{v — 2 — 2h) admissible sextuples. 
(4) When v = 3 (mod 6) then ir consists of {—1}, Bi = {1} and \{v — 3) 

admissible sextuples. 
(5) When v = 5 (mod 6) then w consists of { — 1}, 6i = {1, x, x~1} (x ^ 1) 

and ^(v — 5) admissible sextuples. 
(6) When v = 1 (mod 6) then ir consists of { — 1.}, 6 h h admissible pairs where 

h = 1 (mod 3) if \6l\ = 3 ; h = 2 (mod 3) if |0,| = 1 and \{v - 2 - 2h 
— \di\) admissible sextuples. 

3. AIP neof ie lds of even order. From Lemma 2.3(1) we know tha t when 
v = 0 (mod 6) no A IP neofield of order v can exist. In addit ion, it can be 
easily verified t ha t there is no neofield N of order 10 having (N*, •) = C9 

(see [1, p . 39]). In this section we show tha t there are no other exceptions to 
the existence of even ordered A IP neofields, i.e., there exists an even ordered 
AIP neofield Nv having (N*, •) ~ A iî and only if v = 2 or 4 (mod 6) and 
A * C9. 

In the forthcoming constructions we make use of the following lemma: 

LEMMA 3.1. Let A\, A 2 be abelian groups of odd order having admissible parti­
tions 7Ti, 7T2 respectively. Then there exists an admissible partition of Ai X A2. 

Proof. For each admissible class (pair or sextuple) 0\ = {xi, yiy yiXf-1, Xi_1, 
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yr1, ^ I ^ I - 1 } of 7Ti and B2 = {x2, y2, ^2X2_1, x2
_ 1 , yr"1, ^ ^ " M °f ^2 we form the 

following classes in A\ X ^42 \{(1, 1)}: 

n = {(*!, l), (yx, l), (yixr1, l), (xr1, l), (yr1, l), (xiyr\ 1)} 
r2 = {(1, * 2 ) , (1, y2) , (1, J2X2-1), (1, X2-1), (1, y 2 - 1 ) , (1, ^ y r 1 ) } 

r3 = {(xi, x2), (yi, y2), (yixr1,y2x2~l), 
(xr1,x2-

1), (yr\y2~1), (xiyr1, X2y2~
l)\ 

T4 = {(xi, y2), (yi, y2x2
_1), (yixr1, x2

_1), 
(xr1,y2~l), (yr1,x2y2-

1), (x1yr1,x2)} 

Th = {(xljy2X2~1)(yifX2~1), (yixr1,y2~
1), 

(xr\x2y<rl), (yr\ x2), (xiyrl,y2)\ 

r6 = {(xi, xr1), (yu 3;2~1), Owr1» *2y2
_1), 

(xr\x2), ( y r 1 , y2) , (xiyr1, y2x2~~1)} 

7-7 = {(XU y2
_ 1)> (yi» ^23 ;2~1), ( ^ l - 1 , X2), 

(*r \y 2 ) , ( y r 1 , ^ î " 1 ) , (x1yr1,x2-
1)\ 

r8 = {(xi, x2y2~1), (yi, x2), (y&r1, y2), 

(xr1,y2X2~l), (yr\x2~1), ( tfiyr1 , y 2
- 1 )} 

The classes thus obtained are clearly equal or disjoint and therefore yield an 
admissible part i t ion of Ai X A2. Note t ha t the six classes r3, r4, . . . , r8 

part i t ion to set di X 92 into admissible classes. We call this the direct product 
of 6x and 62. 

lî A is an abelian group of odd order then by the fundamental theorem of 
finite abelian groups we can write A = C%1 X Cn2 X . . . X Cn% where n^n^i 
(i = 2, . . . , t) and nf odd. Lett ing at be a generator of Cni (i = 1 , 2 , . . . , / ) 
we have A = {ai*W* • . • at

k*\kt 6 Zwij and A ^ Z n i X Z„2 X . . . X Z n , 
under the canonical map <p(aikla2

k2 . . . at
kt) = (&i, £2, • . . , kt). In particular 

<p(l) = (0, 0, . . . , 0) and corresponding to an admissible class 

6 = {x, y, yx~x, x~l, y~l, xy~l\ 

in an admissible part i t ion of A we have an admissible class 

0' = {kJJ - k, -k, -j,k -j} 

(where k = (klt k2, . . . , kt), j = (ju j 2 , . . . , j t ) , x = aikla2
ki . . . at

kt and 
y = aiila2

J2 . . . at
jt) in an admissible parti t ion of Zn j X Z„2 X . . . X Z n r 

We now construct admissible parti t ions for Znl X Z„2 X . . . X Znt by in­
duction on £. The case t = 1 corresponds to the cyclic constructions given in 
[1, pp . 39-51], where it is proved tha t Zn has an admissible parti t ion for all 
n = 1 or 3 (mod 6), n 9^ 9. To simplify the analysis we give cases t = 2 and 
t > 2 as separate theorems. 

T H E O R E M 3.2. Let A = Cni X C„2 where n2\n\, n2 > I, n = ni - n2 = 1 or 

3 (mod 6) . Then A has an admissible partition. 
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(1) ni = 1 (mod 6) and 
(2) wi = 3 (mod 6) and 
(3) m = 3 (mod 6) and 
(4) wi = 3 (mod 6) and 

Proof. Since n2 |ni and U\ • n<i = 1 or 3 (mod 6) we must have one of the 
following: 

^2 = 1 (mod 6) 
TZ2 = 1 (mod 6) 
n2 = 3 (mod 6) 
^ 2 == 5 (mod 6) 

(5) m == 5 (mod 6) and n2 = 5 (mod 6) . 
Cases (1), (2) and (3) (with ni, ni ^ 9) follow from the cyclic case and 

Lemma 3.1. For the remaining cases we will use the following notat ion: 
(a) For an arbi t rary r Ç ZWl\{0, rii/3, 2 wi/3} and 5 £ Zn2\{0} we let Ar<s 

denote the following admissible sextuple in Zn X Zn2: 

AT,s = a = {(r,s), (-r,s), ( -2 / - , 0) , ( - r , - 5 ) , (r, - s ) , (2r ,0)} 

0 S — s 
r 

0 
a a 

- r a a 

2r a 

2r a 

(b) For an arbi t rary r G ZWl\{0} and 5 Ç Z„2 \{0, w2 /3, 2 w2/3} we let #r>6. 
denote the following admissible sextuple in Zni X ZW2: 

£ r , s = 0 = { ( r , s ) , (r, - 5 ) , (0, - 2 ^ ) , ( - r , - 5 ) , ( - r , 5), (0 ,25)} . 

5 — s 2s -2s 

0 P 

02. 

r P P 

-r P P 

(c) For an arbi t rary r Ç Z n i \ {0 , Wi/3, 2 Wi/3} and 5 G Z„2 \{0, w2 /3, 2 w2/3j 
we let Cr>s denote the union of the following two admissible sextuples in 

Z n i X ^n2' 

7 = {(r, 5), (2r, - 5 ) , (r, - 2 * ) , ( - r , - s ) , ( - 2 r , 5), ( - r , 2s)} 

7 ' = {(r, - 5 ) , ( 2 r , s ) , (r, 2s), ( - r , i ) , ( - 2 r , - 5 ) , ( - r , - 2 s ) } 

5 — s j2s — 2s 

r 7 y f \ Y 
1 

7 

— r y' 7 ; 7 7 ' 

2r y' 7 

-2r y 7' 
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(d) For an arbitrary admissible sextuple 6 = {m,n,n — m, — m, — n,m — n) 
in ZUl an arbitrary 5 £ Zn2\{0, n2/Z, 2 n2/3) we let £ y s denote the union of 
the following two admissible sextuples in Zni X Zn2: 

ô = {(m, s), (n, 2s), (n — m, s), ( — m, —5), ( — w, —25), (m — n, 5)} 

ô' = {(m, —5), (w, —2s), (n — m, — s), ( — m, s), ( — n, 2s), (m — n, s)) 

s -s 2s -2s 

m ô ô' 

— m 

n 

ô' Ô — m 

n Ô ô' 

— n 

— m 

ô' ô : 

n 

— n 

— m Ô ô' 

m — n ô' ô 

(e) For an arbitrary r £ Zn\{0, tii/3, 2 wi/3} and an arbitrary admissible 
sextuple 6' = [p, q, q — p, —p, — q, p — q] in Zn2 we let Efte> denote the union 
of the following two admissible sextuples in Zn X Z„2: 

e = {(r, p), (2r, q), (r, q - p), (-r, -p), (-2r, -q), \-r, p - q)\ 

e = { ( - r , p), ( -2 r , q), (-r, q - p), (r, -p), (2r, -q), (r, p - q)} 

p -p q -qq-pp-q 

— r 
2r 

-2r 

We now construct admissible partitions for the remaining subcases of 
Case (3): ri\ = 3 (mod 6), n2 = 3 (mod 6). If ni = 9 we must have n2 = 3 

or n2 = 9. If «2 = 3 then the admissible sextuples Aiti, A2,i and ^44,i together 
with the admissible pairs {(0, 1), (0, 2)} ; {(3, 0), (6, 0)} ; {(3, 1), (6, 2)} and 
{(3, 2), (6, l ) j give an admissible partition of Z9 X Z3. If n2 = 9 then the 
admissible sextuples A\^, A2^, A4,s; ^3,1, ^3,2, ^3,4; Ci,i, C2>2, C4,4 together 
with the admissible pairs {(0, 3), (0, 6)}, {(3, 0), (6, 0)}, {(3,'3), (6, 6)j and 
{(3, 6), (6, 3)} give an admissible partition of Z9 X Z9. 

If n2 = 9, ni > 9, then there exists an admissible partition ir of Zn consisting 
of {0}, {ni/3, 2 Wi/3} and admissible sextuples of the form 

6 = {m, n, n — m, —m, —n, m — n), 

e e e e 

le e \ 
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[1]. For each such 6 we construct the following admissible sextuples in Zni X Z9: 

TO = {(w, 0) , (n, 0) , (n — m, 0) , ( — m, 0) , ( — n, 0) , (m — n, 0)} 

TI = {(w, 3), (w, 6), (n — m, 3) , ( — m, 6) , ( — w, 3) , (m — w, 6)} 

r2 = {(m, 6), (w, 3) , (n — m, 6), ( — m, 3) , ( — w, 6) , (m — n, 3)} 

as well as D$ti, Det2, De,*. Note t ha t this accounts for all the elements of 
6 X Z 9 (see Figure 1). In addition, we construct the admissible sextuples 

-^rtj/3,1, -BWl/3,2, -6 
fti/3,4 

which together with the admissible pairs 

P ° = { (0 ,3 ) , ( 0 , 6 ) } , P„ = { ( m / 3 , 0 ) , ( 2 W l / 3 , 0 ) } 

P i = { ( » i / 3 , 3 ) , ( 2 » 1 / 3 , 6 ) } , P 2 = { ( » i / 3 , 6 ) , (2 W l / 3 , 3)} 

account for all the elements of {0, « i / 3 , 2 Wi/3) X Z9 \{ (0, 0 ) j . 

0 ^ 3 6 i 1 8 '. 2 7 j 4 5 

0 - . P ° P^Bn^^Bn^i 1^ /3 ,2 

« i / 3 

2Bi/3 

1 T T , . 

P o . P i P2« • ; 
i i -Bni/3,1 . Bm/3,2 i ^ n i / 3 , 4 

^ o , - r2 i i , , ', 

m 

— m 

n 

— n 

To Ti T2 ' ' I 
1 ' D e , i ' ^ 0 , 2 ! ^ e , 4 

To «T 2 Ti ' « | 

TO , T\ 72 i , ', 

, i De.4 • ^ V i ! £*0,2 
r ° , T 2 T l i » ! 

n — m 

m — n 

To ' Tl T2 ' ! 

De,\ DQÏ « Det4 
To ' T2 Tl ' ' J 

FIGURE 1 

Case (4): ni = 3 (mod 6), w2 = 5 (mod 6) . Here w2 ^ 5 whence wi ^ 15 
and there is an admissible part i t ion of ZWl consisting of {0j, {wi/3, 2 wi/3} and 
admissible sextuples 0 = {m, n, ?i — m, —m, —n, m ~ n\, [I]. We also part i ­
tion Zn2\{0} into sets of the form as = { ± s , ± 2 s , =L22s, . . . , ± 2 ' s } where 
2 r + 1s = s or — s. Note t ha t for ail s ^ 0, \as\ è 4 since s ^ — s (ni odd) , 
2s ^ 5 and 2s ^ - s (3 \ n2). 

For each 0 in Zn and o-s in Zn defined as above we construct the following 
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admissible sextuples in ZWl X Z„2: 

r0 = {(m, 0) , (n, 0) , (n — m, 0) , ( — m, 0) , ( — n, 0) , (m — n} 0)} 

DdtS} De,2S, • • • » Dess­

in addition, we construct the admissible sextuples 

Bni/3,s, Bni/3,2si • • • > Bnii$t%ts. 

Those, together with the admissible pair P = {(wi/3, 0), (2 Wi/3, 0)} yield 
an admissible parti t ion of ZWl X Z„2 (see Figure 2). 

0 5 - 5 2^ -2s- • -2ls -2ls 

0 

» i / 3 

2 » i / 3 

m 

— m 

n 

— n 

n — m 

m — n 

1 1 1 1— 1 1 

— J j S m / 3 , 2 ^ ! Bni/ZtS ! ' * ,!^>»i/3,2«-15i 

P ; ; î ; ; 
| ^ w i / 3 , s [ & 1 / 3 2s J * ' * | ^ n i / 3 2«s[ 

To i ; • j ; 

, De,s | ^&,2s i • • •• De,2ts \ 
To î i 1 1 « 

TO j | • j ; 

J De,2ts ! -^0,5 J' " m\De,it-ls\ 
r ° 1 1 ! î ' 
TO ; i ; ; | 

» De,s 1 Dey2S 1 • • ! ^ 0 , 2 * « 1 

L..i J J. . . i J 

FIGURE 2 

Case (5): m = 5 (mod 6), 712 = 5 (mod 6). The construction in this case is 
based on the following lemma, the proof of which is given in the Appendix. 

LEMMA 3.3. For all n = 5 (mod 6) except n = 11 there exists a partition of 
Zn\{0, w, —w, 2w, —2w) {where w = (n + l ) / 6 ) into (n — 5 ) / 6 admissible 
sextuples. 

If ni 9e 11, n2 T6 11 we parti t ion ZWl\{0, Wi, — ?i>i, 2^ i , — 2w\\ 
(wi= (ni + l ) / 6 ) into admissible sextuples dt and ZW2\{0,, w2l —w2,2w2,—2w2} 
(1V2 = (ti2 + l ) / 6 ) into admissible sextuples 0 / . For each 0* ,0 / thus obtained 
we construct the six admissible sextuples given by the direct product of 0* and 0 / 

https://doi.org/10.4153/CJM-1976-124-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-124-6


1260 PETER TANNENBAUM 

(see Lemma 3.1), as well as the admissible sextuples given by DeitW2 and Ewl<ej> 

(see Figure 3) . 

0 
$ ' ; » ; 

0 

Oil 

u -1 -j 

Direct product ; ' r> ' 
of 9, and 6/ 1 • "'^ ! 

— Wi 

, , J ^ , 

2w1 

-2w1 

----, 

FIGURE 3 

Note now tha t for each pair {r, —r) in Zn where r ^ 0, ±?£>i, ±2u>i there 
is exactly one pair {xr, — xT) in Zn2\{0} such t ha t the elements of {r, —r} X 
{xr, —xr\ have not been accounted for. We construct the sextuples Ar<Xr for 
each pair {r, — r}, r ^ 0, ± ^ i , ± 2 ^ i , and in addit ion we construct AwltW2, 

A.2wi,2w2' 

We now have t h a t for each pair {5, —5}, 5 £ Z n \{0} there is exactly one 
pair of elements {ys, —ys] ys £ Zni\W such t ha t the elements of the set 
{js, —Js] X {s, —s} have not been accounted for. We construct the sextuples 
BVStS for all pairs {s, —s}, s G Z„2 \{0}. This accounts for all the remaining 
elements of Zni X Zn2\{ (0, 0 )} . 

In the case n\ = 11 we must have n2 = 11 as well. Here an admissible 
part i t ion of Z n X Z n is given by the admissible sextuples: 

- 4 l , 4 , ^ 2 , 8 , ^ 4 , 5 , ^ - 8 , 1 , ^ 5 , 2 ; 

^ 4 , 1 , ^ 8 , 2 , ^ 5 , 4 , ^ 1 , 8 , ^ 2 , 5 Î 

Cifi, 02 ,2 , C 4 4 , C8,8 a n d 0 5 , 5 . 

If ni > 11, W2 = 11 we use Lemma 3.3 to obtain a part i t ion of 
Z n i \ {0 , Wi, - ^ i , 2*^1, — 2wi}, W\ = (n\ + l ) / 6 , into admissible sextuples 6{. 
For each 6t thus obtained we construct Deiti, Dei,2, D6I,A, D6i:8< Corresponding 
to the admissible sextuple <p = {2, 3, 1, 9, 8, 10} in Z n we construct Ewlt<p. 
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In addition we construct the admissible sextuples B2wi>i, B2Wi<2, B2wi<A, Bw 8, 
B wl ,5-

0 1 10 2 9 3 7 8 3 5 6 

0 ~ ! Bwlf5 ', B2wi,\ | B2Wl,2 ! B2WI,A\ BWlt8 

Oil 

i Det,i , Dei,2 • De(,i i De,,s \ 

1 • De,,i | Dex,2 \ Dex,\ \ Delts 

[ Dei,i ! £V,2 ,' ^V,4 ! De,,s ! 
L 1 1 • » 

— Wi 
! L i ! ! 

-2wi 

r 1 T T 1 

i B2%JDxi , B2wi2 ! B2Wl,4 < <LLwlt<p • 

FIGURE 4 

We now note tha t for each pair {r, —r) in Zni\{0} there is exactly one pair 
{xr, — xT) in Zn \{0} such tha t the elements of the set {r, —r) X {xr, —xr) 
have not been accounted for. We then construct the admissible sextuples 
AT<Xr for each pair {r, —r} in ZW l \{0}, thus completing an admissible parti t ion 
of Zn X Zn. This concludes the proof of Theorem 3.2. 

T H E O R E M 3.4. Let A = Cni X Cn2 X 

n , > U ^ 3 and n 
sible partition. 

ni - n2 

X Cnt where n^n^i, i = 2, . . . , t, 
nt = 1 or 3 (mod 6) . Then A has an admis-

Proof. We consider three cases according to the residue class of n\ (mod 6) . 
Case (1): rt\ = 1 (mod 6). Here we must have n2 . . . nt = 1 (mod 6) since 

n2 . . . nt = 3 (mod 6) implies nj = 3 (mod 6) some j = 2, . . . , t and since 
nj\ni, ni = 3 (mod 6), a contradiction. There exists an admissible part i t ion of 
Cn [1] and an admissible parti t ion of Cni X . . . X Cnt (by induction). From 
Lemma 3.1 we obtain an admissible parti t ion of A. 

Case (2): ni = 5 (mod 6). Here we must have n2 . . . nt = 5 (mod 6) and 
thus there exists nk, k = 2, . . . , t, such tha t nk = 5 (mod 6). By Theorem 3.2 
there exists an admissible parti t ion of Cnl X CUk and by induction there exists 
an admissible part i t ion of Cn2 X . . . X Cn X Cn X X C since 
n2 . . . % - i • »A:+I . . . nt = 1 (mod 6). Again using Lemma 3.1 we obtain an 
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admissible partition of (Cni X Cnji) X (Cn2 X . . . Cnjc_1 X CWjfc+1 X . . . X Cnt) 

Case (3): m = S (mod 6). Here we can have n2 . . • nt = 1, 3 or 5 (mod 6). 
If n<i . . . nt = 1 (mod 6) then n\ ^ 9 and we repeat the argument of Case (1) ; 
if tt2 . . . nt = 5 (mod 6) then again Wi ^ 9 and we proceed as in Case (2). 

Suppose now that n2 . . . nz = 3 (mod 6). If wi j* 9 then there exists an 
admissible partition of CWl by [1] and an admissible partition of C„2 X . . . X 
Cn (by induction) and thus there exists an admissible partition of A by 
Lemma 3.1. 

If Wi = 9 and nt = 3 then there exists an admissible partition of CWl X . . . 
X Cn _! and an admissible partition of C3 and again by Lemma 3.1 there exists 
an admissible partition of A. 

If ni = 9 and nt = 9 then w* = 9, i = 1, 2, . . . , t and we consider separately 
the cases t ^ 4 and / = 3. If t è 4 then there exists an admissible partition of 
C9 X C9 and an admissible partition of C9 X . . . X C9 (t — 2 times) which 
by Lemma 3.1 yield an admissible partition of A. For t = 3 an admissible 
partition of (Z9 X Z9) X Z9 = A is given in Figure 5. 

0 3 6 1 8 2 7 4 o 

(0 ,0 ) - P° po P(3,3) ,4 P ( 3 , 3 ) , l ^ ( 3 , 3 ) , 2 

- - _ r 
(3, 3) Po P i P 2 

(6 ,6 ) Po P 2 P . 
^ ( 3 , 3 ) , 1 ^ ( 3 , 3 ) , 2 - ^ ( 3 , 3 ) ,4 

(0, 3) <Po <Pi <?2 

A , i A>2 A> 4 
(0, 6) <£>0 

<p0 

<^2 

if 2 (3, 0) 

<£>0 

<p0 

<^2 

if 2 

^ . i A , l A . 2 
(6 ,0 ) <£0 <£>2 <Pl 

(3 ,6 ) <^0 <£l <P2 

AM A . 2 A>.4 
(6, 3) <Po <^2 <Pl 

e0 

e0 

0i 

02 

02 

z?..i D0,2 A . 4 

en 01 e?, en 01 e?, 
„ _ _ , _ _ 

£..4 A . i £"9.2 

e0 
02 di 

6o 

e0 

0i 

02 

e2 

0i 
D,.i A , 2 U..4 

FIGURE 5 
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Note 1: The elements of Z9 X Z9 denoting the rows of Figure 5 appear part i ­

tioned into admissible sextuples 6 as given in Theorem 3.2, and the additional 

admissible sextuple <p = {(0, 3), (3, 0), (3, 6), (0, 6), (6, 0) , (6, 3)} obtained 

by combining the admissible pairs {(0, 3) , (0, 6)}, {(3, 0) , (6, 0)} and 

1(3,6), (6,3)}. 
Note 2: The notat ion in Figure 5 is analogous to tha t of Theorem 3.2, where 

the elements in the first projection are elements in Z9 X Z9 . 

4. AIP neofields and s te iner triple s y s t e m s . Let Nv be an AIP neofield 
of order v = 2 or 4 (mod 6) with (Nv*, •) = A. From [3, Theorem 2.1] we have 
t ha t Nv is equivalent to a Steiner triple system rn of order n — v — 1 having a 
regular (i.e., sharply transitive) automorphism group isomorphic to A. I t im­
mediately follows from the results of the previous section tha t every abelian 
group A of order n = 1 or 3 (mod 6), A ^ C9, is a regular automorphism group 
for some Steiner triple system rn. In this section we discuss nonisomorphic 
Steiner triple systems having the same abelian regular automorphism group. 

Let Nv and TV/ be two A IP neofields based on the same set of elements N 
and having the same multiplicative group A = Cn X Cn2 X . . . X Cn where 
ni - ti2 . . . nt = v — 1 = 1 or 3 (mod 6), n\tii-.\ (i = 2, . . . , / ) , nt > 1. If Nv 

and Nv' are isomorphic under an isomorphism <p, <p must induce an automor­
phism of A and. for each generator at of Cn. (i = 1, 2, . . . , t) the order of <£>(&*) 
in A must equal the order of at in A —which is n%. I t follows tha t the number of 
distinct presentations of an AIP neofield Nv (based on the same set N) is at most 
the number wt of t-tuples (xi, x2, . . . , xt) where xt is of order ni in A. 

From Theorems 3.2, 3.4 and Lemma 1.3 wre know tha t when v = 2 (mod 6) 
an admissible parti t ion of A always exists and it contains (v — 2 ) / 6 admissible 
sextuples. For v = 4 (mod 6) it can be easily verified tha t the constructions 
of Theorems 3.2, 3.4 can be slightly changed to give admissible part i t ions 
consisting of (v — 4 ) / 6 admissible sextuples. Thus , for any v = 2 or 4 (mod 6) 
a neofield Nv can be constructed having [v/6] admissible sextuples in the 
admissible parti t ion of its multiplicative group ([x] denotes greatest integer 
smaller-equal than x). 

In [3, Theorem 3.8] it is shown tha t given an admissible part i t ion of an 
abelian group A consisting of a admissible sextuples we can construct 2a AIP 
neofields having multiplicative group A. From the above remarks we get: 

LEMMA 4.1. Let A = Cni X C„2 X . . • X Cn%, n\tii-\ (i = 2, . . . , / ) , 

ni • n2 . . . nt = v — 1 = 1 or 3 (mod 6), i ^ C9. Then there are at least 

9 [0/6] 

nonisomorphic AIP neofields having multiplicative group A. 
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We now observe t h a t nonisomorphic A IP neofields having the same multi­
plicative group A may also have isomorphic addit ive loops. We wish to deter­
mine therefore a lower bound for the number of nonisomorphic A IP neofields 
having a given multiplicative group A and nonisomorphic addit ive loops, for 
these correspond to nonisomorphic Steiner triple systems having the same 
regular automorphism group A [3]. 

Let rn = [S, Sf\ be a Steiner triple system of order n having an abelian 
regular automorphism group A = Cni X Cn2 X . . . X Cn<, n^n^i (i = 2, . . . , / ) . 
The action of A on the elements of 5 is determined by the action of the au to­
morphisms cii, «2, . • • , cit (ai is a generator of Cn.) on 5, and this itself is com­
pletely determined by the action of ai, a2, . . . , at on a maximal generating set 
& of rn. Let il = {si, s2, . . . , sa} C S. From [3, Lemma 5.1] we know t h a t 
ot Û log2 (n + 1). Now each at maps the generating set {si, s2} . . . , sa\ into 
another generating set {si, s2, • . . , sa'}. This yields a t most n{n — 1) . . . 
(n — a + 1) choices for the action of at and there are therefore a t most 
(n(n — 1) . . . (n — a + 1 ) ) l choices for a tuple (ai, a2, . . . , at) where ax is a 
generator of Cni. Thus , there are a t most <pt = (n(n — 1) . . . (n — a + 1)) 7 ^ * 
ways in which A can act as a regular automorphism group on rn and therefore 
from the arguments given in [3, p. 13] there are a t most <pt nonisomorphic A IP 
neofields having multiplicative group A and isomorphic addit ive loops. This , 
together with Lemma 4.1 implies t ha t the number of nonisomorphic A IP neo­
fields having multiplicative group A and non-isomorphic additive loops is at least 

2^/6] 2 [ v / & ] 2 [ v / 6 ] 

~^t
 = ~^n(n~- 1) . . . (n - oT+T))1 = ~Uy - 1) (v - 2) . . . (v~^)Y 

(2) 

^ at = t. log^v = ^Uôg^Tt > r>(log 2») 3 

Since 2t tV672( log2t ; )3 -> oo as «; - ^ oo we have: 

T H E O R E M 4.2. Let t be a fixed positive integer. If we consider abelian groups of 
the form A = Cn X Cni X . . . X Cn where nt are integers bigger than one, 
ni\nt~i (i = 2, . . . , t) and n = ri\ • n2 . . . nt = 1 or 3 (mod 6), the number of 
nonisomorphic Steiner triple systems having the abelian group A for a regular 
automorphism group goes to infinity with n. 

Appendix . 

LEMMA 3.3. For all u = 5 (mod 6) except u = 11 there exists a partition of 
Zu\{0, w, —w, 2w, —2w) {where w = {u + l ) / 6 ) into (u — 5 ) / 6 admissible 
sextuples of the form (m, n, n — m, —my —n,m — n). 

Proof. We consider four cases according to the residue class of u (mod 24). 
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(We use the following notation: 

S(m, n) = Sn-m = (m, n, n — m, —m, —n, m — n).) 

Case (1) u = 24 k + 5 (w = 4ft + 1). For k = 0 the lemma holds vacuously. 
For k = 1, we have u = 29, w = 5 and the desired admissible sextuples are: 

Sx = 5(6, 7) ; S2 = 5(12, 14) ; S, = 5(8, 11) and S, = 5(9, 13). 
For k ^ 2 we obtain the desired sextuples by partitioning {1, 2, . . . , 4k} U 

{4fe + 2, . . . , 8fe + 1} U {8& + 3, 8k + 4, . . . , 12ft + 2} into triples of the 
form (m, n, n — m) as follows: 

m w n — m 

8ft + 4 12ft + 2 4ft - 2 

8ft + 5 12ft + 1 4ft - 4 

10ft + 1 10ft + 5 4 
10ft + 2 10ft + 4 2 

4ft + 2 8ft + 1 4ft - 1 

4ft + 3 8ft 4ft - 3 

5ft - 1 7ft + 4 2ft + 5 

5ft 7ft + 3 2ft + 3 

5ft + 3 7ft + 2 2ft - 1 

5ft + 4 7ft + 1 2ft - 3 

6ft 6ft + 5 
6ft + 1 6ft + 4 

6ft + 2 8ft + 3 
6ft + 3 10ft + 3 
5ft + 1 5ft + 2 

Case (2) u = 24ft + 23 (w = 4ft + 4). For ft = 0, we have u = 23, w = 4 
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and the desired admissible sextuples are: Si = S(5 , 6) ; S2 = S(9 , 11) and 
S3 = 5 ( 7 , 1 0 ) . 

For k = 1, we have ^ = 47, w = 8 and the desired admissible sextuples are: 
Si = 5(10, 1 1 ) ; 5 2 = 5 ( 1 9 , 2 1 ) ; 5 3 = 5(12, 1 5 ) ; 5 4 = 5 ( 1 8 , 2 2 ) ; 5 5 = 5 ( 9 , 1 4 ) ; 
5 6 - 5(17, 23) and 5 7 = 5 (13 , 20). 

For k ^ 2 we obtain the desired sextuples by part i t ioning {1, 2, . . . , 4k + 3} 
U {4k + 5, . . . , 8k + 6, 86 + 7} U {86 + 9, . . . , 12ife + 11} into triples 
(m, n, n — m) as follows: 

m w n — m 
86 + 9 12fe + 11 4k + 2 

8& + 10 \2k + 10 4k 

lOJfe + 8 lOife + 12 4 

10^ + 9 106 + 11 2 

4£ + 5 8& + 6 4k + 1 
4£ + 6 8k + 5 4£ + 1 

5& + 3 7& + 8 2& + 5 

5k + 4 7& + 7 2& + 3 

ok + 7 7k + 6 2k - 1 

5£ + 8 7& + 5 2& - 3 

6& + 4 6& + 9 5 
6& + 5 6& + 8 3 

6^ + 6 8£ + 7 2k + 1 

6£ + 7 lOfc + 10 4£ + 3 
5& + 5 5^ + 6 1 

Case (3) « = 24& + 11 (w = 4£ + 2). For & = 0, Z n \ { 0 , 2, 9, 4, 7} = 
{1, 3, 5, 6, 8, 10} can never be arranged into an admissible sextuple. 

For k = 1 we have u = 35, if = 6 and the desired admissible sextuples are: 
Si = S ( 7 , 8 ) ; S 2 = 5 (9 , 1 1 ) ; S 3 = S ( 1 3 , 1 6 ) ; 5 4 = S(14, 18) and S, = S(10, 15). 

For k = 2 we have u = 59, w = 10 and the desired sextuples are: Si = 
Si(27, 2 8 ) ; S 2 = S(14, 1 6 ) ; S 3 = 5(22, 2 5 ) ; S 4 = 5 (13 , 1 7 ) ; S 5 = S (21 , 26) ; 
S6 = 5(12, 1 8 ) ; S 7 = S(23, 30) ; S8 = 5 ( 1 1 , 19) and S9 = S(15, 24). 
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For ft ^ 3 we obtain the desired sextuples by partitioning the set 

{1, 2, . . . , 4fc + 1} U {4ft + 3, . . . , 8ft + 3} 

U {8ft + 5, . . . , 12ft + 4, - (12ft + 5)} 

into the following triples (m, n, n — m)\ (Note that we have chosen 
— (12ft + 5) = 12ft + 6 instead of the more natural 12ft + 5 as the last 
element listed.) 

m n n — m 
4ft + 3 8ft + 3 4ft 
4ft + 4 8ft + 2 4ft - 2 

6ft + 1 6ft + 5 4 
6ft + 2 6ft + 4 2 

8ft + 5 12ft + 4 4ft - 1 
8ft + 6 12ft + 3 4ft - 3 

9ft + 1 lift + 8 2ft + 7 
9ft + 2 lift + 7 2ft + 5 

9ft + 3 lift + 4 2ft + 1 
9ft + 4 lift + 3 2ft - 1 

10ft + 1 10ft + 6 5 
10ft + 2 10ft + 5 3 

10ft + 3 12ft + 6 2ft + 3 
6ft + 3 10ft + 4 4ft + 1 

lift + 5 lift + 6 1 

Case (4) u = 24ft + 17 (w = 4ft + 3). For ft = 0 we have u = 17, w = 3 
and the desired sextuples are Si = 5(4, 5) and 52 = 5(7, 9). 

For ft ^ 1 we partition into triples (w, n, n — m) the set {1, 2, . . . , 4ft + 2} 

VJ {4ft + 4, . . . , 8ft + 4, 8ft + 5} 

VJ {8ft + 7, . . . , lift + 7, - (lift + 8), lift + 9, . . . , 12ft + 8} 

as follows. (Note that in the place of lift + 8 we have - (lift + 8) = 13ft + 9. 
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m n n — m 
4fe + 4 8fe + 4 4fe 

4fe + 5 8fe + 3 4fe - 2 

6fe + 2 6fe + 6 4 

6fe + 3 6k + 5 2 

8fe + 7 12fe + 8 4fe + 1 

86 + 8 126 + 7 4fe - 1 

9fe + 5 life + 10 2k + 5 

9fe + 6 life + 9 2fe + 3 

9fe + 8 life + 7 2fe - 1 

9fe + 9 life + 6 2fe - 3 

lOfe + 6 lOfe + 9 3 
lOfe + 7 lOfe + 8 1 

6fe + 4 8fe + 5 2fe + 1 

9fe + 7 13fe + 9 4fe + 2 
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