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ABELIAN STEINER TRIPLE SYSTEMS
PETER TANNENBAUM

1. Introduction. A neofield of order v, N,(+, -), is an algebraic system of
v elements including 0 and 1, 0 # 1, with two binary operations + and - such
that (IV,, +) is a loop with identity element 0; (V,*, -) is a group with identity
element 1 (where N,* = N,\{0}) and every element of N, is both right and
left distributive (i.e., (v + 2z)x = yx + zx and x(y + z) = xy + «x2z for all
y,2 € N,). From this we can derive: 0 - x = x - 0 = O forallx € N,. A neofield
N, has the inverse property (/P) and is called an IP neofield if for ally € N,
there is an element z € N,such that (x + y) +z =xandz 4+ (y + x) = x
for all x € N,. It readily follows that z is the unique two-sided negative of v,
—1y. Moreover, we note that —y = (—1)y for all y € N,, where —1 is the
unique two-sided negative of 1. In particular, (—1)? = 1. A neofield N, is said
to be commutative when (N, +) is a commutative loop, and it is said to be
abelian when (N ,*, -) is an abelian group. An abelian neofield with the inverse
property is called an AP neofield. It is easy to show [2] that an AIP neofield
is always commutative, from which it readily follows that an AIP neofield
contains at most one element of multiplicative order 2, namely —1.

In the first part of this paper we give a characterization of an AIP neofield
N, in terms of a certain partition of the elements of the abelian group 4 =
(N*, -) and show that the existence of an AIP neofield having (N,*, ) = 4
is equivalent to the existence of such a partition of 4.

In Section 3 we use the above mentioned characterization to show by direct
constructions that an abelian group 4 of order n, n odd, is admissible as the
multiplicative group of nonzero elements of an IP neofield if and only if n = 1
or 3 (mod 6) and 4 # C,.

In the last section we use the constructions of Section 3 to obtain existence
results for abelian Steiner triple systems of all orders # = 1 or 3 (mod 6). (A
Steiner triple system (STS) of order n,.7, = [S,.¥] is an arrangement of the
elements of an n-set .S into a set.% of triples such that every pair of elements
in S occur together in exactly one triple of .. A necessary and sufficient condi-
tion for the existence of an STS of order n is that # = 1 or 3 (mod 6). An STS
is called abelian if it has a sharply transitive automorphism group which is
abelian.) Finally, we show that the number of nonisomorphic abelian STS’s of
order n (n = 1 or 3 (mod 6)) goes to infinity with n, even as a certain decom-
position of the automorphism groups retains a fixed size.
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2. AIP neofields and admissible partitions. Suppose that N, is an AIP
neofield with multiplicative group (N,*, ) = 4. Then N, is completely
characterized by its addition table and since y + z = w if and only if 1 4 zy~!
= wy! it follows that N, is completely characterized by the map p: N, — N,
given by p(x) = 1 4+ x. We call the map p a presentation map for N,. Clearly
p(0) = 1 and p(—1) = 0. Now suppose that for x € N,\{0, —1}

(1) p) = —y.

Then clearly y € N\{0, —1} and moreover, using the inverse property and
the commutativity of addition it follows that

@) () = —x

It also follows immediately that (1) implies

3) plx™) = —a!

and therefore

#) pl™) = —yx!
as well as

() PO = —xy
and therefore

6) pley™) = =y

Thus, the action of p on the set 8(x) = {x, y, yx~,, x~, y~ L, xy~l},y = —p(x),
is determined by the action of p on x (or on any other element of 6(x)).

Note that if we let 4, = {x, v}, 42 = {yx~!, x~ 1} and 43 = {y~!, xy~'} then
each 6(x) = {x, vy, yx~1, x~1, y~1, xy~1} satisfies:

(x) A4:iMNA4; =0 or A, =4, ford,j=1,2 3.

Moreover, if w € 6(x) then 6(w) = 6(x) and we have therefore that the sets
6(x) (x £ 0, —1) partition N ,\{0, —1}. This leads to the following definition.

Definition 2.1. Let A be a finite abelian group with identity 1 and having
at most one element of order two, an let / denote such an element if it exists,
[ = 1 otherwise. A subset of A\{l} of the form 6 = {x, y, yx~1, x~!, y~!, xy~1}
which satisfies condition (x) is called an admissible class in A. A partition of 4
consisting of {/} and admissible classes is called an admissible partition of A.

We now prove the main result of this section:

THEOREM 2.2. Let A be a finite abelian group of order m having at most one
element of order two. There exists a neofield N, or order v = n + 1 having (N *, )
= A if and only if there exists an admaissible partition of A.

Proof. If N, is an AIP neofield having (N*, ) = A4, letting [ = —1 and
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y = — (1 4+ x) we have seen that the sets § = {x, y, yx~1, x71, y~1, xy~1} form
an admissible partition of 4.

Conversely, suppose that there exists an admissible partition = of 4. Let
N = {0} U A. We extend the multiplication of 4 to N by defining x -0 = 0
for all x € N. We now define addition in N as follows:

Al)x+0=0+4+x=x forallx € N.

(A.2) 1 +1 =0 where!is the unique element of order 2 in 4 if such an

element exists; [ = 1 otherwise.

A3)x+vy=(1+yx)x forallx,y € 4.

It only remains to define the additions 1 + x for all x € A\{l}:
(A.4) For each admissible class § = {x, y, yx!, x~!, y~1, xy~1} in the admis-
sible partition = of A we define:
)1 +x=1ly;
(i) 1 +y = Ix;
(iii) 1 + yx~! = Ix~1;
(iv) 1 + x~! = lyx1;
(v) 1 4+ v = lxy~t and

(vi) 1 4+ xy™t = [y~

It is clear that the operations - and 4 are well defined. We claim that
(N, 4+, +) is an AIP neofield with —1 = [. First, we note that addition is com-
mutative. From (A.4) we have that for all z € A\{l}, 1 + z = lwif and only if
142! =lwz! and by (A.3) we obtain z + 1 = lw. Also since [7! =/,
I4+1=11+4+1)=0. Thus, st+w=(14wrz= (wz'+1)z=w++z2
for all z, w € 4. Since 2 + 0 = 0 4+ z for all z € N we have that (N, +) is
commutative.

We next show (N, 4) is a loop with identity 0. Let z, w € N be given. We
must show that there exists a unique x € N such that

L)yz+x=w

holds. If 2 = 0 choose x = w and if w = 0 choose x = [z (then z + Iz =
(141)z=0-2=0).Supposenow z,w € 4andz # w (if z = w choose x = 0).
Then lwz=! % [ and by (A.4) there exists a unique x* € A\{l} such that
14 x* =1 lwz! = wz~l. Letting x = zx* we have z + x = w. From (A.2)
it immediately follows now that = —1.

The distributive laws follow immediately from (A.3) and commutativity of
multiplication. It only remains to show that the inverse property

IP) 4+ w)+ (—w) =3

holds for all z, w € N. First note that for all x € 4\{/} we have by (A.4) that
14+ x= —yifandonlyifl +v = —xand thus (x + 1) + (—1) = (—y)
+ (—=1) = x.Then, z +w) + (—w) = [cw '+ 1)+ (—1)]w= gwHw =23
forall z, wé A, zw ' # 1 = —1.lf 2 =0, w =0 or z = —w, (IP) holds
trivially. This completes the proof of Theorem 1.2.
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We now examine the structure of the admissible partition of an abelian
group A of order # in more detail. If # is odd then / = 1 and for every admis-
sible class 6 = {x, v, yx~1, x~1, 371, xy~1}, 6 C A\{1} and therefore x 5 y.
If y £ x? then yx~! £ x and by (¥), x # y~!and it can be readily verified that
|6] = 6. If y = x? then yx~! = x and by (*) x~!' = y, whence x* = 1 and § =
{x, x?}. Note that this can only occur when 3|n, i.e., n = 3 (mod 6). From
this it immediately follows that when » = 5 (mod 6) every admissible class
is of size six and thus no admissible partition of 4 can exist.

If n is even and A has only one element / of order two then 6§ C A\{/} for
each admissible class 6 = {x, y, yx~!, x71, y71, xy~!}. The unique class 6, con-
taining the identity is of the form 6, = {1} or 8, = {1, x, x~ '}, x # 1, [. Every
remaining admissible class is again of size six if y # x? or of the form § = {x, x?}
if y = x%, in which case x* = 1 and n = 0 (mod 6). (Henceforth we will refer
to an admissible class of size six as an admissible sextuple and an admissible
class of the form § = {x, x*} with x® = 1 as an admissible pair.)

By means of a simple counting argument we can now summarize our con-
clusions in the following lemma:

LemMA 2.3. Let N, be an AIP neofield of order v with (N*,-) = A, and let
be the admissible partition of A induced by N ,.

(1) When v = 0 (mod 6) N, does not exist.

(2) Whenv = 2 (mod 6), 7 consists of {1} and §(v — 2) admissible sextuples.

(3) When v = 4 (mod 6), then w consists of {1}, h admissible pairs where
k=1 (mod 3) and §(v — 2 — 2h) admissible sextuples.

(4) When v = 3 (mod 6) then w consists of {—1}, 0, = {1} and (v — 3)
admissible sextuples.

(5) When v = 5 (mod 6) then w consists of {—1}, 0, = {1, x, x~1} (x = 1)
and (v — 5) admissible sextuples.

(6) Whenv = 1 (mod 6) then = consists of { —1}, 0, h admissible pairs where
h=1 (mod3)if|6,] =3;h=2 (mod3)if 6] =1and §(v — 2 — 2k
— 16.]) admissible sextuples.

3. AIP neofields of even order. From Lemma 2.3(1) we know that when
v = 0 (mod 6) no AIP neofield of order v can exist. In addition, it can be
easily verified that there is no neofield N of order 10 having (N*, -) = Cy
(see [1, p. 39]). In this section we show that there are no other exceptions to
the existence of even ordered AP neofields, i.e., there exists an even ordered
AIP neofield N, having (N,* ) = A4 if and only if v = 2 or 4 (mod 6) and
A # Cy.

In the forthcoming constructions we make use of the follewing lemma:

LeEMMA 3.1. Let A1, A, be abelian groups of odd order having admassible parti-
tions my, o respectively. Then there exists an admissible partition of Ay X Ao.

Proof. For each admissible class (pair or sextuple) 6, = {x1, y1, yix:~!, 7},
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v 2yl of mpand 82 = {x9, yo, yaxa!, X271, y27Y, X9y} of 7y we form the
following classes in 4; X A4.\{(1, 1)}:

1= {(x1, 1), (¥, 1), (e, 1), (173, 1), (74 1), (way7?, 1)}
e = {(1, x2), (1, 32), (1, yaxs™?), (1, 57%), (1, 327%), (1, waya™)}
T3 = { (%1, ¥2), (y1, ¥2), (Y1177, yax2™?),
(17t 2071), (007 27h), (o™, aya )}
7o = {(x1, ¥2), (Y1, yox271), (Y™t ws7Y),
(17l 7Y, (7Y, weye™h), (et x2)}
75 = { (%1, y2271) (1, %271), (yaxr™h, ¥27Y),
(e, weya™), (yi7h x2), (v, y2)}
o = {(x1, 2271, (y1, ¥271), (ywer™, x2y27),
(e w2), (V17 y2), (Rayn ™, yaxe™h)}
1= { (%1, ¥271), (1, x2y271), (a1, x2),
(e y2), (7, yawe™), (vt 2271}
s = { (01, X2y271), (1, X2), (Y1, ¥2),
(%171, yaxe™), (171, x27h), (™Y, v 1))

The classes thus obtained are clearly equal or disjoint and therefore yield an
admissible partition of 4; X A, Note that the six classes 73, 74, ..., 73
partition to set 6; X 6, into admissible classes. We call this the direct product
of 6; and 8.

If 4 is an abelian group of odd order then by the fundamental theorem of
finite abelian groups we can write 4 = C,, X C,, X ... X C,, where n|n,
(z=2,...,t) and n; odd. Letting a,; be a generator of C,; (1 = 1,2, ..., 1)
we have 4 = {a1"a.*r ... a/ftk; € Z,,} and A =Z, X Z,, X ... X Z,,
under the canonical map ¢(a:¥1a2*2 . .. a,*t) = (ky, ks, . .., k,). In particular
¢(1) = (0,0,...,0) and corresponding to an admissible class

0 = {x, 5, yx~t, &7, y71, xy~1
in an admissible partition of 4 we have an admissible class

o' = {krjy] - ky _ky —jv k —j}

(where & = (ky, k2, ..., ky), 7 = (1, Joy -+ -y Jo)y ¥ = aiFal??r ... a,ft and
y = ai’'ay’? ... a,’t) in an admissible partition of Z, X Z,, X ... X Z,,
We now construct admissible partitions for Z,, X Z,, X ... X Z,, by in-

duction on ¢ The case ¢ = 1 corresponds to the cyclic constructions given in
(1, pp. 39-51], where it is proved that Z, has an admissible partition for all
n = 1or 3 (mod 6), n % 9. To simplify the analysis we give cases { = 2 and
t > 2 as separate theorems.

THEOREM 3.2. Let A = C,, X C,, where naolny, ns > 1, n = ny-ny = 1 or
3 (mod 6). Then A has an admissible partition.
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Proof. Since ne|n; and ny - ne = 1 or 3 (mod 6) we must have one of the

following:
(1) n; =1 (mod 6) and ny =1 (mod 6)
(2) 1 =3 (mod 6) and #, =1 (mod 6)
(3) m1 =3 (mod 6) and 7y, = 3 (mod 6)
(4) n, = 3 (mod 6) and ny = 5 (mod 6)
(5) ny =5 (mod 6) and ny, =5 (mod 6).

Cases (1), (2) and (3) (with 7, ny % 9) follow from the cyclic case and
Lemma 3.1. For the remaining cases we will use the following notation:

(a) For an arbitrary » € Z, \{0, n1/3, 2 n,/3} and s € Z, \{0} we let 4, ;
denote the following admissible sextuple in Z, X Z,,:

Ars=a={(r,s), (—r,5), (—2r,0), (=r, —s), (r, —s), (2r,0)}

0O s —s
r a
—r (64 o
2r| «
—27| «

(b) For an arbitrary » ¢ Z, \{0} and s € Z, \{0, n2/3, 2 ns/3} we let B,
denote the following admissible sextuple in Z, X Z,,:

Br,s = B = {(77 S), ()’, —S)v (0: _28)1 (—)’, —5)! (—7, S)r (0) 23)}

s —s 2s —2s

0 B B
7|8 B
—7|B 38

(c) For an arbitrary r € Z, \{0, n1/3, 2 n1/3} and s € Z,\{0, ns/3, 2 n./3}
we let C,; denote the union of the following two admissible sextuples in
Zn, X Zy,:

v = {(r,s), 2r, —s), (r, =25), (=7, —s), (—2r,5), (=7, 25)}

v = {({r, —s), 2r,s), (r,25), (—r,5), (—2r, —s), (—7r, —25)}
s —s5,2s —2s
Yy Y v

<

’

]
—r|Y Y Y

2|y oy

—2rly ¥
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(d) For an arbitrary admissible sextuple 6 = {m, n,n — m, —m, —n, m — n}
in Z, an arbitrary s € Z,,\{0, ns/3, 2 ns/3} we let Dy , denote the union of
the following two admissible sextuples in Z, X Z,,:

0= {(mr S)v (’ﬂ, 25)7 (n - m, S), (—m) ‘S), <_n) —_25)7 (m - n, S)}

8 = {(m, —s), (n, —2s), (n —m, —s), (—m,s), (—n, 2s), (m — n,s)}

s —s 25 —2s
m|é &
—m{d& 6

n ) &

—n y 6
n—mlé &
m —n|d 0

(e) For an arbitrary » € Z, \{0, n1/3,2 n,/3} and an arbitrary admissible
sextuple 0 = {p,q, ¢ — p, —p, —q, p — ¢} in Z,, we let E, 4 denote the union
of the following two admissible sextuples in Z, X Z,,:

€ = {(1’, P)v (277 Q)7 (77 q — p)v (—77 _p)v (—_277 -_9)! (—f,p - g)}
€ = {(_71 P)v (—27’ Q)r (—-)’, q— P)v (7v _P)v (27, —(1), (’,P - Q)}
b P9 —qq—pp—g

rle ¢ € 4
/ ’
—r}e € € €
2 € €
’
—2r € €

We now construct admissible partitions for the remaining subcases of

Case (3): n, = 3 (mod 6), ne = 3 (mod 6). If n; = 9 we must have ny, = 3
or ny = 9. If o = 3 then the admissible sextuples 411, 451 and A4 ; together
with the admissible pairs { (0, 1), (0, 2)}; {(3, 0), (6, 0)}; {(3, 1), (6, 2)} and
{(3, 2), (6, 1)} give an admissible partition of Zg X Z3. If ny = 9 then the
admissible sextuples A13, A2, Ass; B3, Bss, By, Ci1, Coe, Cay together
with the admissible pairs { (0, 3), (0, 6)}, { (3, 0), (6, 0)}, {(3, 3), (6, 6)} and
{(3, 6), (6,3)} give an admissible partition of Zy X Zs.

If ny = 9,11 > 9, then there exists an admissible partition = of Z, consisting
of {0}, {n1/3, 2 n,/3} and admissible sextuples of the form

0 ={mnn—m, —m, —n, m — n},
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[1]. For each such 6 we construct the following admissible sextuples in Z, X Zy:

To = {(mv O)) (nr 0)7 (’ﬂ - m, O)v (—my O)y (_'ﬂ, O)v (m - n, O)}
Ty = {(mr 3)7 (nr 6)7 (n - m, 3)1 (_my 6)7 (—nr 3)1 (m - n, 6)}
19 = {(m, 6), (n,3), (n — m, 6), (—m, 3), (—n, 6), (m — n, 3)}

as well as Dy 1, Dgs, Dy s Note that this accounts for all the elements of
6 X Zy (see Figure 1). In addition, we construct the admissible sextuples

Bnl/:&,l; Bn1/3,2y Bnl/3,4
which together with the admissible pairs

PO = {(0,3), (0,6)}, Po= {(n/3,0), (2n/3,0)}
Pl = {(%1/3, 3), <2 n1/3, 6)}, P2 = {(714/3,6), (2 n1/3, 3)}

account for all the elements of {0, n,/3, 2 n,/3} X Z\{ (0, 0)}.

' ] ' )
013 6i1 8.2 7i4 5
'
Of— P pPou Bnl/3'4 ' Bnl/?,,l : Bnl/s,?.
haiunbass Sl vt Sl it T bl
1
n1/3 Py, P, Ps v '
B B VB
. l ' ny/3,11 np/3,2 4 ny1/3,4
2, /3| Po Py Py, : 1
R, S e s Hmmmmmm=
m | 19 11 T2 ! !
! ' Dg1 " Depa | Do
—Mm | To T2 T1! ' :
————— ) lammmam 4--—-—- Hmm -
6 n To,T1 T2 ' :
'
, v Doy« Dg1 v Do
p— 1
n| To T2 T1, ' 1
...... . emmccmec e e e e m.—-—-
1 1 i 1
n—m| 70 T1 7'2| . !
I 1
D0,1 D0,2 ' D9,4
m—mn| To'Te  T1' ! N
------ R e K iy U I —
FIGURE 1

Case (4): n; = 3 (mod 6), ny = 5 (mod 6). Here ny = 5 whence n; = 15
and there is an admissible partition of Z, consisting of {0}, {n1/3, 2 #,/3} and
admissible sextuples 6 = {m, n, n — m, —m, —n, m — n}, [1]. We also parti-
tion Z,,\{0} into sets of the form o, = {45, 25, +£22%, ..., 2%} where
241s = 5 or —s. Note that for all s # 0, |o,| = 4 since s # —s (ne odd),
2s % sand 25 # —s (3 £ n2).

For each 6 in Z, and o, in Z,, defired as above we construct the following
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admissible sextuples in Z, X Z,,:
To = {(mr O)r (’ﬂ, O), (’}’L - m, O)v (_m: 0)1 (_nv 0)1 (m - n, 0)}

Dy,s, Do os, ..., Dy ats.

In addition, we construct the admissible sextuples

Bn1/3,sr Bn1/3,23y e ey Bnl/3,2‘s-

Those, together with the admissible pair P = {(n:/3, 0), (2 n,/3, 0)} yield
an admissible partition of Z, X Z,, (see Figure 2).

0 s —s 25 —25---2% —2%

T T T T N
1 1
0| — Bussots Bus,s i Buysatta
N P e -lI

] ' [ )
m/3) P : P :
. ' By s S:B"1/3 251" ':Bnl/(& 2t
2”1/5 P, ] ' 1 ]
R P — L (R D, '
1 1 ) | '
m | To v : [ [ :

] 1 1
v Dot Dy oy e Dy aes
—m | 7 H ] ] ' 1
[ B | I { DR D !
1 1 ] [ 1
nl 1o ! ' ' '
1 ) ] 1 ]
VDgoeg } Dy Ve 1 Do ey,
—n Ty ! ' [} ] '
1 ' | ' |
=== === (aiuial Sl 1
n—mf T, H ' h 1l
) 1
' D9 s \ D0,2s : . : D0‘2‘s '
m — nj|To, ! ' i '
[ ' ' [
R U P P R S |

FIGURE 2

Case (5): n1 = 5 (mod 6), n; = 5 (mod 6). The construction in this case is
based on the following lemma, the proof of which is given in the Appendix.

LeEMMA 3.3. For all n = 5 (mod 6) except n = 11 there exists a partition of
Z\{0, w, —w, 2w, —2w} (where w = (n + 1)/6) into (n — 5)/6 admissible
sextuples.

If ny 5 11, n, # 11 we partition Z,\{0, w;, —w;, 2w, —2uw}
(wy = (n1 + 1)/6) into admissible sextuples 8, and Z,,\{0,, ws, —ws, 2w, — 2ws}
(ws = (w2 + 1)/6) into admissible sextuples §,. For each 6,, 6, thus obtained
we construct the six admissible sextuples given by the direct product of 6; and 6,
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(see Lemma 3.1), as well as the admissible sextuples given by Dy, ,, and E,, o,
(see Figure 3).

] 0/ 1 ] ]
0 :/-—\/L/—\: Wy -wZ:Q'LUg—erUgE
v 0 : 1
0] ' ! -
PR EE R I ikl EEE re————— :
i 1 1 '
: Lo b
1
! : DO: wy 'l :
: i ' '
] S R |
1 ' ) |
| ' | '
6, ' Direct product ' 'D !
00y *
! of §; and 6/ H PR
' L mcme YR '
) 1 ) :
' ' ' !
' ' ] '
! ' Doy :
1 1 1 :
ecepmedeeee-- as----=-- =~ --—-- Fo----- bomee-- q
w1 ' : : : ] :
\ ' ' , H '
:Ewl 6; : : Ewlv"’j : : :
—w ' ' ' ' . '
P R
2701 : ' ) H : '
1
: : lzu»l 0; " : : 1
H 1 ' \ '
— 2w, ' ' ' \ H ]
S [ P { beccccecccana= 4
FiGure 3

Note now that for each pair {r, —#} in Z, where r # 0, dw,, 2w, there
is exactly one pair {x,, —x,} in Z, \{0} such that the elements of {r, —r} X
{x,, —x,} have not been accounted for. We construct the sextuples 4, ., for
each pair {r, —r}, » # 0, w;, £2w;, and in addition we construct A, .,
A2w1,2w2'

We now have that for each pair {s, —s}, s € Z, \{0} there is exactly one
pair of elements {y,, —y} y, € Z,\{0} such that the elements of the set
{vs, =95} X {s, —s} have not been accounted for. We construct the sextuples
B,, s for all pairs {5, —s}, s € Z,,\{0}. This accounts for all the remaining
elements of Z, X Z, \{(0,0)}.

In the case #; = 11 we must have n, = 11 as well. Here an admissible
partition of Z1; X Z1; is given by the admissible sextuples:

A1,4, Az,s, A4,5, A8,ly As,z?
B4,1, Bs,% B5,4, Bl,s, Bz,s;
Cia, Co9, Cy4y Cg g and Cs 5.
If ny > 11, ne = 11 we use Lemma 3.3 to obtain a partition of
an\{O, wy, —wi, 2wy, —2w}, w; = (n1 + 1)/6, into admissible sextuples 6.

For each 6, thus obtained we construct Dy, 1, De; 2, Dg. 1, Dg; s. Corresponding
to the admissible sextuple ¢ = {2, 3, 1, 9, 8, 10} in Z;; we construct [, ,.
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In addition we construct the admissible sextuples Bay, 1, Bow, .20 Bow, .4, Bu, s,
By, 5.
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FIGURE 4

We now note that for each pair {r, —r} in Z, \{0} there is exactly one pair
{x,, —x,} in Z11\{0} such that the elements of the set {r, —r} X {x,, —x,}
have not been accounted for. We then construct the admissible sextuples
A, ., for each pair {r, —r} in Z, \{0}, thus completing an admissible partition
of Z, X Zi;. This concludes the proof of Theorem 3.2.

THEOREM 3.4. Let A = C, X C,, X ... X Gy, where ny|n; 1,1 = 2,. .., 1,
n,>1,t23andn =mn-n....n,=10r3 (mod 6). Then A has an admis-
sible partition.

Proof. We consider three cases according to the residue class of #; (mod 6).

Case (1): n; = 1 (mod 6). Here we must have #, ... %, = 1 (mod 6) since
ny...n, =3 (mod 6) implies n; = 3 (mod 6) some j = 2, ..., t and since
n,ln1, n1 = 3 (mod 6), a contradiction. There exists an admissible partition of
Gy, [1] and an admissible partition of C,, X ... X C,, (by induction). From
Lemma 3.1 we obtain an admissible partition of 4.

Case (2): ny = 5 (mod 6). Ilere we must have ns ... n, = 5 (mod 6) and
thus there exists n;, & = 2, ..., ¢, such that n, = 5 (mod 6). By Theorem 3.2
there exists an admissible partition of C,, X C,, and by induction there exists
an admissible partition of C,, X ... X C,_ X G, X ... X G, since
Ny oo My Mpgr ... n, =1 (mod 6). Again using Lemma 3.1 we obtain an
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admissible partition of (C,, X C,,) X (C,, X ... G,
=~ 4.

Case (3): n; = 3 (mod 6). Here we can have ny ... 7, = 1, 3 or 5 (mod 6).
If ny...n, =1 (mod 6) then #; # 9 and we repeat the argument of Case (1);
if no...nm, =5 (mod 6) then again 7, # 9 and we proceed as in Case (2).

Suppose now that ny ... n, =3 (mod 6). If n; # 9 then there exists an
admissible partition of C,, by [1] and an admissible partition of C,, X ... X
C., (by induction) and thus there exists an admissible partition of 4 by
Lemma 3.1.

If n. = 9 and n, = 3 then there exists an admissible partition of C, X ...
X C,,, and an admissible partition of C3 and again by Lemma 3.1 there exists
an admissible partition of 4.

Ifn, = 9andn, = 9thenn; = 9,7 = 1,2, ..., tand we consider separately
the cases t = 4 and t = 3. If t = 4 then there exists an admissible partition of
Cy X Cy and an admissible partition of Cy X ... X Cy (! — 2 times) which
by Lemma 3.1 yield an admissible partition of 4. For ¢ = 3 an admissible
partition of (Zy X Zy) X Zy = A is given in Figure 5.
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FIGURE 5

https://doi.org/10.4153/CJM-1976-124-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-124-6

STEINER TRIPLES 1263

Note 1: The elements of Zy X Zg denoting the rows of Figure 5 appear parti-
tioned into admissible sextuples 6 as given in Theorem 3.2, and the additional
admissible sextuple ¢ = {(0, 3), (3, 0), (3, 6), (0, 6), (6, 0), (6, 3)} obtained
by combining the admissible pairs {(0, 3), (0, 6)}, {(3, 0), (6, 0)} and
{(3,6), (6,3)}.

Note 2: The notation in Figure 5 is analogous to that of Theorem 3.2, where
the elements in the first projection are elements in Zy X Z.

4. AIP neofields and steiner triple systems. Let N, be an 4P neofield
of order v = 2 or 4 (mod 6) with (N,* -) = 4. From [3, Theorem 2.1] we have
that IV, is equivalent to a Steiner triple system 7, of order n = v — 1 having a
regular (i.e., sharply transitive) automorphism group isomorphic to 4. It im-
mediately follows from the results of the previous section that every abelian
group A of order n = 1 or 3 (mod 6), A # Cy, 1s a regular automorphism group
for some Steiner triple system 7,. In this section we discuss nonisomorphic
Steiner triple systems having the same abelian regular automorphism group.

Let N, and N, be two A IP neofields based on the same set of elements N
and having the same multiplicative group 4 = C,; X C,, X ... X (,, where
ni-ng...n,=v—1=1lor3 (mod6),nin,1G=2...,¢),n,>11I N,
and N,/ are isomorphic under an isomorphism ¢, ¢ must induce an automor-
phism of 4 and for each generator a;of G, ( = 1,2, ..., ¢) the order of ¢(a;)
in A must equal the order of a; in A —which is n;. It follows that the number of
distinct presentations of an AIP neofield N, (based on the same set N) is at most
the number w, of t-tuples (x1, xo, . . ., x,) Where x; is of order n; in A.

From Theorems 3.2, 3.4 and Lemma 1.3 we know that when v = 2 (mod 6)
an admissible partition of 4 always exists and it contains (v — 2)/6 admissible
sextuples. For v = 4 (mod 6) it can be easily verified that the constructions
of Theorems 3.2, 3.4 can be slightly changed to give admissible partitions
consisting of (v — 4)/6 admissible sextuples. Thus, for any v = 2 or 4 (mod 6)
a neofield N, can be constructed having [v/6] admissible sextuples in the
admissible partition of its multiplicative group ([x] denotes greatest integer
smaller-equal than x).

In [3, Theorem 3.8] it is shown that given an admissible partition of an
abelian group A consisting of ¢ admissible sextuples we can construct 2° 4P
neofields having multiplicative group 4. From the above remarks we get:

Livva 410 Let A = C, X Gy X .o . X Gy, miney (=2, ..., 1),
ny-ny ... n,=v—1=1o0 3 (mod 6), A # Cy. Then there are at least
2[v/6]
1y =

t

nonisomorphic AIP neofields having multiplicative group A.
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We now observe that nonisomorphic AP neofields having the same multi-
plicative group 4 may also have isomorphic additive loops. We wish to deter-
mine therefore a lower bound for the number of nonisomorphic 4 7P neofields
having a given multiplicative group 4 and nonisomorphic additive loops, for
these correspond to nonisomorphic Steiner triple systems having the same
regular automorphism group 4 [3].

Let 7, = [S, %] be a Steiner triple system of order » having an abelian
regular automorphism group 4 = C,; X G, X ... X G, ni|ni (1=2...,1).
The action of 4 on the elements of S is determined by the action of the auto-

morphisms ay, as, . .., a, (a;is a generator of C, ) on S, and this itself is com-
pletely determined by the action of ay, as, . . ., @, on a maximal generating set
Qof 7,. Let @ = {s1, 89, ..., o} C S. From [3, Lemma 5.1] we know that
a = logs (n 4+ 1). Now each a; maps the generating set {si, Ss, ..., S} into

another generating set {s/, s2/, ..., s.’}. This yields at most n(n — 1) ...
(n — a + 1) choices for the action of «; and there are therefore at most
(n(n —1)... (n —a -+ 1))*choices for a tuple (ai, as, . .., a,) where a, is a
generator of C,;. Thus, thereareatmost ¢, = (n(n —1)... (n —a+ 1)) "/w,
ways in which 4 can act as a regular automorphism group on 7, and therefore
from the arguments given in [3, p. 13] there are at most ¢, nonisomorphic AP
neofields having multiplicative group 4 and isomorphic additive loops. This,
together with Lemma 4.1 implies that the number of nonisomorphic AP neo-
Jields having multiplicative group A and non-isomorphic additive loops is at least

2[1)/6] 2[11/61 2[0/6]
we, wWh—1)...n—a+1)) (0—1D@—-2)... 00— a)
(2) olv/6] olo/o) olo/ol olo/6]

> vat = 'Ut.log2v = 2(log2v)7.t > 2(log2v)$

Since 20%/61 /2008203 _, o6 a5 9 — 00 we have:

THEOREM 4.2. Lel t be a fixed positive integer. If we consider abelian groups of
the form A = C, X G,, X ... X C,, where n; are integers bigger than one,
nne G=2,..., ) andn = ny-ny...n, =1o0r 3 (mod 6), the number of
nonisomorphic Steiner triple systems having the abelian group A for a regular
automorphism group goes to infinity with n.

Appendix.

LEMMA 3.3. For all w = 5 (mod 6) except u = 11 there exists a puartition of
Z\{0, w, —w, 2w, —2w} (where w = (u + 1)/6) into (u — 5)/6 admissible
sextuples of the form (m, n,n — m, —m, —n, m — n).

Proof. We consider four cases according to the residue class of # (mod 24).
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(We use the following notation:
Sm,n) = Sp—n = my,n,n —m, —m, —n,m — n).)

Case 1)u =24k +5 (w=4k+ 1). For k=0 the lemma holds vacuously.

For k = 1, we have u = 29, w = 5 and the desired admissible sextuples are:
S =S5(6,7);S, = 5(12, 14);.S; = S(8, 11) and S, = S(9, 13).

For k = 2 we obtain the desired sextuples by partitioning {1, 2, ..., 4k} \U
{4k +2,...,8k + 1} U {8k + 3,8k + 4, ..., 12k 4+ 2} into triples of the

form (m, n, n — m) as follows:

m n n—m
Sk + 4 12k + 2 4k — 2
8k + 5 12k + 1 4k — 4
10k + 1 10k + 5
10k + 2 10k + 4 2
4k 4 2 Sk 4+ 1 4k — 1
4k 4 3 8k 4k — 3
5k — 1 Tk + 4 2k 4+ 5

5k 7k + 3 2k + 3
5k 4+ 3 Tk + 2 2k — 1
5k 4 4 Tk 41 2k — 3

6k 6k 4+ 5 b
6k + 1 6k + 4 3
6k + 2 S8k + 3 2k + 1
6k + 3 10k + 3 4k
5k +1 Sk 4 2 1

Case (2) u = 24k + 23 (w = 4k 4+ 4). For k =0, we have u = 23, w = 4
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and the desired admissible sextuples are: S; = S(5, 6); S, = S(9, 11) and
S; = S(7, 10).

For k = 1, we have u = 47, w = 8 and the desired admissible sextuples are:
S = S(10,11);S, = S(19,21);S; = S(12,15);S, = S(18,22);S; = S(9, 14);
Se = S(17, 23) and S; = S(13, 20).

For B = 2 we obtain the desired sextuples by partitioning {1, 2, . . ., 4k 4+ 3}
U {4k + 5, ..., 8k +6,8k+ 7} U {8E+ 9, ..., 12k 4 11} into triples
(m, n,n — m) as follows:

m n n—m
Sk+9 12k + 11 4k + 2
Sk + 10 12k + 10 4k
10k + 8 10k + 12 4
10k 4+ 9 10k + 11 2
4k + 5 Sk+ 6 4k + 1
4k + 6 SE+ 5 4k + 1
Sk + 3 Tk 4+ 8 2k + 5
Sk + 4 Tk+7 2k + 3
Sk + 7 Tk + 6 2k — 1
Sk + 8 k+5 2k — 3
6k + 4 6k + 9 5
6k + 5 6k + 8 3
6k + 6 Sk + 7 2k + 1
6k + 7 10k + 10 4k + 3
S5k 45 S5k + 6 1

Cuse (3) u = 24k + 11 (w = 4k + 2). For k = 0, Z;)\|0, 2,9, 4, 7} =
{1, 3,5, 6,8, 10} can never be arranged into an admissible sextuple.

For k = 1 we have u = 35, w = 6 and the desired admissible sextuples are:
S1=S8(7,8);5: =S5(09,11);S; = S13,16); S, = S(14, 18) and S; = S(10, 15).
For k = 2 we have u = 59, w = 10 and the desired sextuples are: .S, =

S1(27, 28): Sy = S(14, 16); S, = S(22, 25); S, = S(13, 17): S, = S(21, 26);
S = S(12, 18); S; = S(23,30); Ss = S(11, 19) and S, = S(15, 24).
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For B =2 3 we obtain the desired sextuples by partitioning the set
1,2, ..., 4k + 1} \U {4k + 3, ..., 8k + 3}
U {8k +5,...,12k + 4, — (12k + 5)}

into the following triples (m, n, n» — m): (Note that we have chosen
— (12k + 5) = 12k + 6 instead of the more natural 12k + 5 as the last
element listed.)

m n n— m
4k + 3 S8k + 3 4k
4k 4+ 4 Sk + 2 4k — 2
6k 4 1 6k + 5 4
6k 4 2 6k 4 4 2
8k +5 12k + 4 4k — 1
8k 4+ 6 12k 4+ 3 4k — 3
9k 41 112 4+ 8 2k + 7
9k + 2 11 + 7 2+ 5
9k + 3 11k + 4 2k +1
9k + 4 11 + 3 2k — 1
106 + 1 10 + 6 5
10k 4 2 10k + 5 3
10k + 3 12k + 6 2k + 3
6k + 3 10& 4 4 4k + 1
112 + 5 11 + 6 1

Case (4) u = 24k + 17 (w = 4k + 3). For k = 0 wehaveu = 17, w = 3
and the desired sextuples are S; = S(4, 5) and S; = S(7, 9).

For £ = 1 we partition into triples (m, n, n — m) theset {1, 2, ..., 4k + 2}
U {4k +4,...,8k + 4,8k + 5}
U {8k +7,..., 11k +7, —(11k +8), 11k + 9, ..., 12k + S}

as follows. (Note that in the place of 11k + 8 we have — (112 + 8) = 13k + 9.
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m
4k 4 4
4k + 5

6k + 2
6k + 3
Sk + 7
8k + 8

9% + 5
9k + 6
9k + 8
9k 4 9

10k + 6
10k + 7
6k + 4
Ok + 7
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n
Sk + 4
Sk + 3

6k + 6
6k + 5
12k + 8
12k 4+ 7

11 4+ 10
11 + 9
11 + 7
11k 4+ 6

10k + 9
10k + 8
Sk +5
13k + 9
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n— m
4k
4k — 2

4k + 1
4k — 1

2k + 5
2k + 3
2k — 1
2k — 3

3
1
2k + 1
4k + 2
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