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Abstract

Data-driven neural word embeddings (NWEs), grounded in distributional semantics, can capture various
ranges of linguistic regularities, which can be further enriched by incorporating structured knowledge
resources. This work proposes a novel post-processing approach for injecting semantic relationships
into the vector space of both static and contextualized NWEs. Current solutions to retrofitting (RF)
word embeddings often oversimplify the integration of semantic knowledge, neglecting the nuanced
differences between relationships, which may result in suboptimal performance. Instead of applying multi-
thresholding to distance boundaries in metric learning, we compute taxonomic similarity to dynamically
adjust these boundaries during the semantic specialization of word embeddings. Benchmark evaluations
on both static and contextualized word embeddings demonstrate that our dynamic-fitting (DF) approach
produces SOTA correlation results of 0.78 and 0.76 on SimLex-999 and SimVerb-3500, respectively, high-
lighting the effectiveness of incorporating multiple semantic relationships in refining vector semantics.
Our approach also outperforms existing RF methods in both supervised and unsupervised semantic
relationships recognition tasks. It achieves top accuracy scores for hypernymy detection on the BLESS,
WBLESS, and BIBLESS datasets (0.97, 0.89, and 0.83, respectively) and an F1 score of over 0.60 on four
types of semantic relationship classification in the shared Subtask-2 of CogALex-V, surpassing all partic-
ipant systems. In the analogy reasoning task of the Bigger Analogy Test Set, our approach outperforms
existing RF methods on inferring relational similarity. These consistent improvements across various lexi-
cal semantics tasks suggest that our DF approach can effectively integrate distributional semantics with
symbolic knowledge resources, thereby enhancing the representation capacity of word embeddings in
downstream applications.
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1. Introduction

Distributional semantic models (DSMs) vectorize lexical terms mainly through counting or pre-
dicting co-occurrence patterns in context, among which neural word embeddings (NWEs), gener-
ated by self-supervised-training neural language models (NLMs) or large-scale language models
(LLMs), are capable of capturing various levels of linguistic regularities in their geometry space
(Mikolov, Yih, and Zweig, 2013c; Tenney, Das, and Pavlick, 2019). NWEs can be static or dynamic
in terms of regulating word meanings in context. Static NWEs such as GloVe (Pennington,
Socher, and Manning, 2014) and Skip-gram (Mikolov et al. 2013b) generate unified and
context-independent word representations, effectively avoiding the issues of high-dimensional
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sparse representations and poor scalability associated with counting co-occurrences in
bag-of-words models. They are more suitable for calculating semantic relatedness (Hill, Reichart,
and Korhonen, 2015) and tend to construct similar representations for words with similar con-
textual distributions, which may dampen their semantic expressiveness (Peters et al., 2018)
in semantic relation discrimination and inference. Dynamic NWEs, on the other hand, uti-
lize large-scale NLMs like BERT (Devlin et al. 2018) and GPT-2 (Radford et al. 2018) to
produce contextualized word representations. Their multilayered transformer framework can
develop distinctive representations respectively suited for morphological, syntactic, semantic,
and application-specific purposes, forming the foundation of current breakthroughs in natu-
ral language processing (NLP). They can also be converted into static NWEs (Ethayarajh, 2019,
Bommasani, Davis, and Cardie, Bommasani et al. Bommasani et al. 2020, Gupta and Jaggi, 2021).
In contrast with dynamic NWEs, static NWEs have demonstrated advantages in generalization,
computing efficiency, and strong interpretability (Gupta and Jaggi, 2021). Apart from scaling up
the parameters of NLMs or improving their neural architectures to learn more implicit knowledge
from unstructured corpora, NWEs can be further optimized by integrating explicit knowledge
resources, either directly regulating the ad hoc training loss functions of NLMs (Yu and Dredze,
2014; Xu et al. 2014; Liu et al. 2015) or semantically specializing NWEs in a post hoc manner
(Faruqui et al. 2015; Mrksic¢ et al. 2016; Vuli¢ and Mrksi¢ 2018; Arora, Chakraborty, and Cheung,
2020). In contrast to utilizing cross-entropy loss to maximize the conditional probability of token
prediction within a common self-supervised pretraining paradigm, post-processing methods typ-
ically employ ranking loss such as contrastive loss (Chopra, Hadsell, and Lecun, 2005) and triplet
loss (Schroff, Kalenichenko, and Philbin, 2015) to optimize the distributional distance between a
token and its relata, a process also known as distance metric learning (Bellet, Habrard, and Sebban,
2015). The objective of metric learning is to pull semantically similar or related tokens closer in a
vector space and push dissimilar or unrelated tokens farther apart. Since joint-training NWEs may
consume substantial computational resources to simultaneously learn distributional features and
encode relational knowledge, the post-processing methods can significantly reduce such computa-
tional demands while demonstrating versatility and flexibility in incorporating multiple categories
of semantic relationships (Faruqui et al. 2015).

1.1. Metric learning

Metric learning, a form of contrastive representation learning, is also applicable for generating
NWEs, where positive and negative samples for a target are processed contrastively during self-
supervised training. For example, to improve training efficiency and avoid updating all parameters
of Skip-gram, Mikolov et al. (2013b) introduced negative sampling, replacing the softmax func-
tion with a contrastive loss that maximizes the probability of a target and its positive context
words, while minimizing the probability between the target and its randomly selected negative
samples. Additionally, Nguyen et al. (2017) employed triplet loss for pretraining hierarchical word
embeddings. Throughout this study, we use the terms metric learning and contrastive learning
interchangeably, as both share the core objective of attracting related terms and repelling unrelated
ones in a geometric space.

However, typical solutions to retrofitting (RF) NWEs are often ineffective at integrating
relational knowledge resources. They either indiscriminately inject different types of semantic
relationships (Faruqui et al. 2015), establish unified distance boundaries for hierarchical rela-
tionships (Vuli¢ and Mrksi¢ 2018), or manually allocate distance boundaries for distinctive
relationships (Vuli¢ and Mrksi¢ 2018; Arora et al. 2020; Yang et al. 2022; Pan et al. 2024), which
may result in interference of different semantic specializations on vector space models, thereby
limiting their effectiveness on downstream applications (Arora et al. 2020). Distance bound-
aries in metric learning should be adjustable to accommodate various knowledge injections,
inherently capturing association intensity within semantic relationships. To enforce pulling and
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Figure 1. Illustration of our proposed method on semantically retrofitting word embeddings. In a vector space model, w,
wt, and w™ stand for a target word, its positive or related sample, and its negative or unrelated sample, respectively. In
distance metric learning, Margin(w, w') refers to the distributional distance (D) boundary or margin between D(w, w*) and
D(w, w™) in the triplet loss. We propose adjusting this margin adaptively using taxonomic similarity calculation, where SD
indicates the shortest distance between w and w* within a semantic network.

pushing operations in metric learning, RF NWEs necessitates setting multiple distance bound-
aries or margins to account for various semantic constraints. These constraints help guide the
positioning of words in vector space, refining word embeddings based on their semantic similarity
or relationships, such as synonymy, antonymy, and hypernymy.

While incorporating relational knowledge into word embeddings, instead of relying on fixed
distance margins to impose corresponding semantic constraints in metric learning, we propose
fully exploring the semantic nuances of the constraints to dynamically adjust their distance mar-
gins. As illustrated in Figure 1, metric learning first retrieves both positive and negative pairs
to construct the triplet loss. Positive pairs represent semantically related tokens in knowledge
bases, while negative ones lack significant connections. To impose semantic constraints on the
vector space of NWEs, the triplet loss function seeks to minimize the distance of a positive pair
while maximizing the distance of its corresponding negative pair. During the optimization of
NWEs, distance margin often serves as a minimum threshold by which the negative pair must
be separated from the positive one.

For example, with a target token like tiger, we employ semantic networks in WordNet (Miller
et al. 1990; Fellbaum, 1998) to retrofit NWEs. We first extract its direct hypernym “mammal” as a
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positive sample and calculate their semantic similarity score as 0.85, based on counting their short-
est link distance (one link) in the hierarchy. The indirect hypernym “animal” can also serve as a
positive sample, but with a lower similarity score of 0.55, as they are two links apart in the hierar-
chy. In the mini-batch updating process of NWEs, we typically select a token at random or a token
with the minimum distributional similarity to tiger, say, garden, as its negative sample. Assuming
that such negative pairs have little semantic association, the similarity scores on these positive
pairs are subsequently converted into distance margins of 0.15 and 0.45, respectively, matching
their semantic nuances for metric learning. The training objective is to attract the positive pair,
tiger and mammal, closer while repelling the negative pair, tiger and garden, apart, ensuring that
their relative distance falls within the specified margin of 0.15, thus facilitating proper semantic
specialization on word embeddings.

In contrast, current RF approaches address different semantic constraints in metric learning
either by individually adjusting distance margins or by simply assigning them a uniform value. For
example, while the positive pair, tiger and mammal, is semantically closer than tiger and animal
in the IS-A hierarchy, existing research often treats them equivalently with the identical distance
margin (0.1), as shown in Figure 1. The fixed margin inevitably restricts both direct and indirect
hypernymy constraints within the same distance range in a vector space, misinterpreting their
semantic disparity through inappropriate actions of attracting and repelling in metric learning.
We first calculate taxonomic similarity in WordNet, which is then adapted as a proxy for distance
margins or boundaries in metric learning. Geometric relationships of words in a vector space
model can then be optimized to mirror their semantic association from knowledge bases.

1.2. Distributional semantics in LLMs

We aim to leverage handcrafted relational knowledge to enhance distributional semantics distilled
from prediction-based static embeddings, along with two contextualized embeddings: autoencod-
ing BERT and autoregressive GPT. Different from counting-based DSMs, neural embeddings as
the intermediate states of NLMs are essentially sub-symbolic, storing linguistic patterns implicitly
in a continuous semantic space, but they still fundamentally ground on the distributional hypoth-
esis (Harris, 1954; Firth, 1957) to capture and encode relationships between words, phrases, and
contexts. Thanks to the significant scaling up on pretraining data size and transformer archi-
tecture, NLMs equipped with terabytes of tokens and billions of parameters have evolved into
foundation models (Bommasani et al. 2021) for downstream applications across diverse domains,
demonstrating remarkable zero-shot or few-shot performances as meta-learners. Nonetheless,
data-driven and parameter-packed LLMs also face extraordinary challenges such as biases, limited
knowledge, and hallucinations, while balancing memorization and generalization to overcome
overfitting (Naveed et al. 2023). Incorporating external factual or world knowledge resources,
for example, retrieval-augmented generation (Lewis et al. 2020), can strengthen the consistency
and accuracy of distributional semantics in LLMs, rendering their “black-box” generation process
more trustworthy and explainable. Further research into distributional semantics, for example,
probing their internal representations or token embeddings (Kadavath et al. 2022; Li et al. 2024;
Chen et al. 2024a), can refine how word meanings and contextual nuances are structured in vector
space, which can deepen insights into the inner workings of LLMs, enhancing interpretability and
control over these models.

Off-the-shelf LLMs have emerged as potential proxies for knowledge bases (Davison, Feldman,
and Rush, 2019; Petroni et al. 2019; Roberts, Raffel, and Shazeer, 2020; Talmor et al. 2020),
exhibiting several advantages over traditional symbolic systems, particularly in scalability on data
consumption, unsupervised training, and minimal reliance on scheme engineering. The inter-
mediate states or latent space of token embeddings within LLMs can facilitate the retrieval of
relational knowledge, for example, learning hyperspherical relational embeddings (Wang, He, and
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Zhou, 2019), masked token prompting (Petroni et al. 2019), and fine-tuning to optimize con-
textualized embeddings (Ushio, Camacho-Collados, and Schockaert, 2021). Additionally, LLMs
can directly generate world knowledge, thereby enhancing their utility in knowledge-intensive
applications (Chen et al. 2023). However, the effectiveness of these knowledge mining strate-
gies is contingent upon the accuracy of factual and commonsense relationships extracted from
LLMs. Current studies suggest that the internal embeddings may contain truthfulness informa-
tion (Kadavath et al. 2022; Li et al. 2024; Chen et al. 2024a), which may be harnessed to predict
error types associated with hallucinations or improve the overall truthfulness of LLMs’ outputs
(Chuang et al. 2024). Refining these internal embeddings may enhance LLMs’ comprehension on
nuanced semantic relationships.

LLMs, as foundational models, have extrapolated their near-human-level performance on cer-
tain artificial general intelligence tasks (Bubeck et al. 2023) to serve as Al evaluators. For example,
LLMs can consistently align with human preferences when scoring natural language generation
tasks (Wang et al. 2023; Fu et al. 2024), validating chatbots (Zheng et al. 2024), and evaluating
information retravel (Thomas et al. 2024), leveraging strengths in scalability and explainability.
However, data-driven LLMs inevitably introduce new biases in the outputs generated from evalu-
ation prompts (Wu and Aji, 2023; Zheng et al. 2024; Koo et al. 2024; Chen et al. 2024b; Stureborg,
Alikaniotis, and Suhara, 2024, Wang et al. 2024), with remedies such as chain-of-thought and
fine-tuning yielding only limited improvements.

1.3. Our contributions

With the aid of computing taxonomic similarity in WordNet, we describe a novel solution to
injecting semantic knowledge into vector semantics, which is a clear improvement on the cur-
rent RF strategies on semantically specializing NWEs (Mrksi¢ et al. 2016; Vuli¢ and Mrksi¢ 2018;
Faruqui et al. 2015; Arora et al. 2020). Our method can dynamically adjust the scope of margins
while imposing corresponding semantic specialization on NWEs. It can facilitate amalgamat-
ing various semantic relationships into distributional semantics, with the effects of mitigating
the interference of inconsistently enforcing different semantic specializations on NWEs. Arora
et al. (2020) have highlighted such interference in LexSub, for which they proposed to learn a
separate subspace for each type of semantic relationship. Note that they still followed the tradi-
tional RF methods (Mrksic¢ et al. 2016; Vuli¢ and Mrksi¢ 2018; Faruqui et al. 2015) in manually
tuning distance boundaries to learn those subspaces, with an additional cost of training a dedi-
cated projection matrix for each semantic constraint. The benchmark tests show that our hybrid
method of combining knowledge resources and distributional semantics can significantly improve
lexical semantics applications, including semantic similarity calculation, lexical entailment (LE)
detection, and word analogy reasoning.

Given the objective of probing the internal states of LLMs for relational knowledge, we address
evaluation mainly through intrinsic and extrinsic tasks rather than relying on LLM-based judges.
Lenci et al. (2022) observed that intrinsic evaluations correlate well with the performance of
DSMs on extrinsic tasks. Although intrinsic evaluations may exhibit bias or subjectivity (Bakarov,
2018; Naveed et al. 2023), they often work as reliable metrics for assessing the internal repre-
sentations of LLMs, providing valuable insights into the core properties of embeddings beyond
task-specific outcomes. To thoroughly evaluate the distributional quality of NWEs, we employ
three intrinsic benchmarks (Baroni, Dinu, and Kruszewski, 2014) on lexical and relational similar-
ity computation, as well as a supervised extrinsic task (Santus et al. 2016) on semantic relationship
classification.

2. Related work

Prediction-based neural embeddings are more capable of deriving semantic relatedness rather
than semantic similarity (Hill et al. 2015; Lé and Fokkens 2015), in which antonyms are prone
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to learning proximate vector representation. Hill et al. (2015) also demonstrate that modeling
semantic similarity from NWEs is inherently more challenging than modeling semantic related-
ness or association under the assumption of similar words sharing similar contexts.

Given that lexical knowledge bases (LKBs) such as WordNet are superior in yielding semantic
similarity rather than semantic relatedness (Lé and Fokkens 2015; Yang and Yin, 2022), various
studies have attempted to leverage NWEs with handcrafted semantic relationships, aiming to
enrich the distributional representation of word meanings with both first-order co-occurrences
of syntagmatic association acquired in context and second-order co-occurrences of paradig-
matic parallelism extracted from LKBs. In the following, we briefly introduce three popular LKBs
in computing semantic similarity and then present major methodologies for improving vector
semantics in similarity judgment.

2.1. Deriving semantic similarity from LKBs

To enrich distributional semantics derived from sub-symbolic word embeddings with human-
curated symbolic knowledge, we first outline how to calculate taxonomic similarity in the
semantic networks of WordNet. We then review current literature on knowledge-enhanced
NWEs, highlighting advancements in integrating symbolic knowledge with word embeddings.

2.1.1 WordNet

WordNet is an online lexical database for the English language, whose organization of concept
relationships has a fundamental impact on multilingual lexical bases such as BabelNet (Navigli
and Ponzetto, 2012) and the Open Multilingual WordNet (Bond and Foster, 2013). The typical
properties of wordnets are the concept networks of the synsets that stand for the unique concepts
that consist of a group of synonyms with the same parts of speech (PoS) tags. On assum-
ing the interchangeability of the lexical units in a specific context, WordNet consists of some
popular paradigmatic relations, including syn/antonym, hyper/hyponym (IS-A relations), and
holo/meronym (PART-OF relations). Note that WordNet only contains paradigmatic relation-
ships. The lack of connections between topically related words is also known as the tennis problem
in WordNet, which means the tightly related concepts in tennis, racquet, ball, and net are located
in different hierarchies.

2.1.2 Taxonomic similarity

LKBs play a crucial role in soliciting word similarity from the provision of concept definitions
and relationships. Aside from the shortest path length in semantic networks, the key difference
among taxonomic similarity methods is how to estimate concept specificity, either using network
structures in edge-counting or using concept frequencies in information content (Yang and Yin,
2022).

Edge-counting exclusively relies on semantic networks as the resource of retrieving concep-
tual relationships so that every possible concept contrast is exposed before the computation of
word similarity. Edge-counting can calculate word similarity in different meaning combinations
(Yang and Yin, 2022). Given that each link holds the same weight in searching paths in LKBs,
edge-counting tends to traverse all possible paths between concepts without any consideration of
feasibility costs. Although some concepts are unpopular or obsolete in literal and metaphorical
usage, edge-counting can compute word similarity from every aspect of word senses.

Information content (IC) (Resnik, 1999) relies on concept frequencies in use to predict word
similarity. It is inevitably biased toward using the predominant sense of a word because the
unbalanced word-sense distribution fits well with Zipf's law (Zipf, 1965), which says that the
most typical sense of a word prevails in reality. As IC can capture the predominant meanings
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of words in contexts, its result reflects the biases in word usage within specific domains. Assigning
different weights for each link in IC results in a heuristically informed search that only pre-
dicts the economic path between concepts. Therefore, IC probably emphasizes only the literal
connectedness between words in language usage. Without such additional restrictions on sense
distribution, edge-counting tends to reveal both the literal and metaphorical proximity between
words, and word similarity derived from edge-counting in WordNet can automatically determine
the corresponding senses of words.

2.2. Synergy of distributional similarity and knowledge-based similarity

Concept representations in semantic memory hypothesize semantic modeling within associ-
ation networks, distributed binary features, and statistically distributional semantics (Kumar,
2021). This framework highlights the complexity of computing similarity judgments, emphasiz-
ing its multifaceted nature in terms of knowledge-based or taxonomic similarity (Collins and
Quillian, 1969; Collins and Loftus, 1975), contrast model on feature overlap (Tversky, 1977),
and distributional similarity (Harris, 1985). Integrating these approaches within a unified model
appears to be an optimal solution for capitalizing on their respective merits in similarity calcula-
tions. For example, Hassan and Mihalcea (2011) achieved significant improvement in measuring
semantic relatedness through combining both Wikipedia-based distributional semantics, that
is, explicit semantic analysis (Gabrilovich and Markovitch, 2007), and Wikipedia’s hyperlink
hierarchy. Using BabelNet, a multilingual comprehensive LKB that amalgamates various lexi-
cal resources including WordNet and Wikipedia, Camacho-Collados et al. (2016) constructed
a joint vector semantic space that encompasses both semantic relationships and statistical co-
occurrences. Instead of yielding a unified semantic representation, Banjade et al. (2015) trained a
support vector regressor (SVR) to integrate similarity judgments from multiple resources, includ-
ing taxonomic similarity on WordNet, explicit semantic analysis on Wikipedia, and distributional
similarity on NWEs. Lee ef al. (2020) also employed SVR to combine distributional features from
word embeddings and multiple linguistic features extracted from WordNet to predict semantic
relatedness.

2.3. Semantically specializing NWEs

According to the distributional hypothesis, geometric relations derived through vector distance
and direction manipulation can effectively capture underlying semantic relationships between
words. By leveraging semantic composition in word embeddings, we can enhance language under-
standing tasks such as similarity calculation, analogy reasoning, and LE recognition. The primary
objective of contrastive learning for NWEs is to position words in similar contexts closer in geo-
metric space, utilizing distance metrics in their loss functions. Euclidean metrics like dot product
are well-suited for learning symmetric relationships such as synonymy and antonymy, while non-
Euclidean metrics like hyperbolic distance can encode the hierarchy of asymmetric relationships
such as hypernymy and meronymy (Nickel and Kiela, 2017; Nickel and Kiela, 2018). However,
NWEs learned through non-Euclidean metrics demonstrate little superiority over Euclidean ones
in semantic computing tasks (Ganea, Bécigneul, and Hofmann, 2018; Leimeister and Wilson,
2018). Additionally, Euclidean embeddings can also represent complex linguistic patterns, aided
by high dimensionalities (Torregrossa et al. 2021). This study focuses on Euclidean NWEs, for
example, SGNS (Mikolov et al. 2013b) and BERT (Devlin et al. 2018), generated from shal-
low to deep neural networks. They can be semantically enhanced through the incorporation of
semantic relations from LKBs, potentially improving their representation capacities. Note that
we seek to distill semantic relationships from word embeddings rather than from hyperspherical
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relation embeddings like SphereRE (Wang et al. 2019) or from relation embeddings extract
through prompting pretrained LLMs (Petroni et al. 2019; Ushio et al. 2021).

2.3.1 Joint-training NWEs

Apart from predicting co-occurrent words in context, most joint-training methods directly fac-
tor in semantic constraints to optimize the training objective of NLMs (Yu and Dredze, 2014;
Nguyen et al. 2017; Alsuhaibani et al. 2018). For example, Yu and Dredze (2014) regularized the
training objective of continuous bag-of-words (CBOW) (Mikolov et al. 2013a) through maximiz-
ing > _,cr, log p(wilwj), in which Ry, is the set of semantic constraints, consisting of the target
word w; and its synonym w; extracted from the paraphrase database (PPDB) (Ganitkevitch, Van
Durme, and Callison-Burch, 2013) and WordNet. In a similar vein, Xu et al. (2014) enhanced the
training objective of Skip-gram (Mikolov et al. 2013b) by incorporating both relational and cate-
gorical knowledge sourced from knowledge graphs and Freebase (Bollacker et al. 2008); Liu et al.
(2015) augmented the pretraining process of NWEs by integrating both synonymy and LE from
WordNet with an improvement in semantic similarity calculation and named entity recognition.
Apart from incorporating semantic associations into the training objectives of NLMs, another
approach to enhancing NWEs is through the utilization of more intricate neural architectures
such as training graph convolutional networks with syntactic dependencies and semantic rela-
tionships (Vashishth et al. 2019) and employing attention mechanisms (Yang and Mitchell, 2017;
Peters et al. 2019). Joint-training methods can customize NWEs for downstream applications,
albeit at the expense of excessive computing demands.

2.3.2 Post-processing NWEs

Post-processing methods frequently employ ranking loss in metric learning (Kaya and Bilge, 2019)
to update NWEs, hypothesizing that associated terms in LKBs should remain closer in a vector
space. Given a target w; and its semantically linked counterpart wj, along with the unlinked one

w]/- in the n-dimensional space of NWEs: f (x) : x € R", metric learning aims to learn an updated

f(; with ranking loss such as contrastive loss (Chopra et al. 2005) and triplet loss (Schroff et al.
2015). The goal is to minimize the distance of w; and its positive sample w; : D (f@ (wi), fo (wj)) to

pull them closer, while simultaneously maximizing D (f@ (wi), fo (wj/)) to push w; and its negative

sample w]/- farther apart.

Retrofitting (RF). To refine NWEs in RF, Faruqui et al. (2015) collectively integrated various
semantic relations including synonymy and LE from WordNet, word association from FrameNet
(Baker, Fillmore, and Lowe, 1998), and lexical paraphrasing from PPDB (Ganitkevitch et al. 2013).

Counter-fitting (CF). Mrksic et al. (2016) established respective distance boundaries for syn-
onymy and antonymy in contrastive loss to specialize the geometry space of NWEs. Subsequently,
Mrksi¢ et al. (2017) improved CF with triplet loss in ATTRACT-REPEL, which employed seman-
tic constraints extracted from both mono- and cross-lingual resources, including PPDB and
BabelNet.

Lexical entailment attract-repel (LEAR). Apart from synonymy and antonymy used in CF
and ATTRACT-REPEL, Vuli¢ and Mrksi¢ (2018) introduced LE in WordNet in RF NWEs. LEAR
does not differentiate between direct and indirect hypernymy, establishing the same distance
margin in the triplet loss function for both hypernymy and synonymy.

Hierarchy-fitting (HF). Inspired by LEAR, Yang et al. (2022) proposed HF to distinguish
semantic nuances between synonymy and direct hypernymy in the quadruplet loss function.

LexSub. Different from RF, CE, LEAR, and HF in integrating various semantic relations to
establish a unified vector space, Arora et al. (2020) trained a projection matrix to create a
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separate subspace for each semantic constraint. LexSub aims to reduce the interference of dif-
ferent semantic constraints in RF NWEs, in contrast with other post-processing methods such as
ATTRACT-REPEL and LEAR. Note that apart from syn/antonymy and IS-A relations commonly
used in existing methods, LexSub incorporates PART-OF relations from WordNet as additional
semantic constraints.

In comparison with the joint-training paradigm, RF NWEs effectively integrates various types
of semantic resources into vector space models. Additionally, it enables the construction of a
unified word embedding model using multilingual lexicons (Mrksic et al. 2017).

Regardless of its benefits, the indiscriminate application of multiple semantic constraints in
post-processing may underestimate their semantic distinctions and ultimately undermine RF
effects on NWEs. While some methods attempted to align semantic constraints with correspond-
ing distance boundaries, the intricate nature of diverse concept relationships poses challenges in
adjusting margins within a single vector space, potentially exacerbating interference with semantic
specialization. Our contribution lies in introducing taxonomic similarity computation to dynam-
ically adjust margins or distance boundaries in metric learning, through which we can combine
both lexical similarity and distributional similarity in RF NWEs.

3. Dynamic fitting
The dynamic-fitting (DF) method we propose consists of two main parts: (1) calculating seman-
tic similarity or distance using multiple relationships in semantic networks and (2) integrating
semantic similarity and distributional similarity within metric learning to retrofit NWEs, as
depicted in Figure 2.

3.1. Taxonomic similarity
We adopt WUP (Wu and Palmer, 1994), one of the edge-counting methods, to compute semantic
similarity in WordNet, which has demonstrated effectiveness in diverse application tasks. WUP
estimates similarity by measuring the depths of two conceptual nodes, w; and wj, in the seman-
tic network, as well as the depth of their least common ancestor node, LCS (w,-, wj), which is as
follows:
depth (LCS (wi, wj))

depth (w;) + depth (w))

SiMyyp (w,-, wj) =—log (1)
WUP is part of the similarity calculation toolkit (Pedersen, Patwardhan, and Michelizzi, 2004),
which is subsequently used to define distance boundaries for metric learning. Note that the meth-
ods in this package are also applicable to other lexical resources like Roget’s thesaurus (Jarmasz
and Szpakowicz, 2003), which encompasses both syntagmatic and paradigmatic relations within
a relatively shallow taxonomy and can be treated as a hybrid network of semantic similarity and
relatedness. Additionally, these methods can be extended to the Gene Ontology (Pedersen et al.
2007; Guzzi et al. 2011) in the bioinformatic domain, as well as for computing verb similarity
(Yang and Powers, 2006)

3.2. Semantic specialization function
DF for semantically RE NWEs mainly employs a triplet loss function:

L=t (m(w,w")+D (w,w") =D (w,w")) (2)

Here, for a target word w, its positive sample wt, and negative sample w~, D denotes the dis-
tributional distance in the vector space model of NWEs, t(x) = max(0, x), and m is the dynamic
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distance boundary or margin between the positive pair (w, w) and the negative pair of (w, w™).
If w and w' are measured as semantically similar by WUP, they form a positive pair, and vice
versa for a negative pair, where w and w™ are dissimilar. To convert L; from the learning distance
metric into a similarity metric, we use:

L= (simyup (W, w") + S (w, w™) = S (w, w')) (3)

where m (w, wt) =1 — simyyup(w, w") and S stands for the cosine similarity (1 — D) in a distri-
butional space.

In addition to synonymy and antonymy, the semantic constraints for DF also consist of LE,
covering both direct and indirect hypernymy, organized as the main taxonomy in WordNet.
These constraints are derived from LEAR (Vuli¢ and Mrksi¢ 2018). When injecting synonymy
or LE into the vector space of NWEs, we utilize sirn,,,, to score semantic similarity between w and
its semantic associate w', serving as the similarity boundary in the loss function.

During the mini-batch updating process of NWEs, DF first computes cosine similarity across
each batch to retrieve the hard negative samples closest to w or w. In our experiment, DF fetches
only one negative sample for w or w'.

To incorporate antonymy into the loss function and push w or its antonym w™ apart, the
corresponding loss function becomes:

Ly =t (simyup (ws w™) + S (ws w™) = S (ws w)) 4)

Here, the positive sample w in antonymy specialization should be farthest apart from w or w™
or have the minimum distributional similarity with w or w™ in a batch.

After incorporating taxonomic similarity into the loss functions, DF aims to optimize distri-
butional semantics in the vector space of NWEs, so that words semantically similar to w should
be clustered together based on their proximity in semantic networks, while words dissimilar to
w should remain separable. DF dynamically adjusts distance boundaries between w and its pos-
itive samples according to their semantic similarity, aiming to simulate semantic hierarchies in
WordNet. By eliminating the need for manually selected margins in metric learning, DF enriches
the range of semantic specializations for post-processing NWEs, effectively fusing distributional
semantics with lexical semantic knowledge.

Unlike previous joint-training or RF methods to enhance embeddings, DF not only employs
semantic constraints to fine-tune a vector space model but also weighs semantic similarity in
quantifying distance margins to differentiate semantic nuances among word usage patterns.

3.3. Hypernymy directionality

Unlike the symmetric relations of syn/antonymy, the IS-A link between a subordinate and its
superordinate or hypernym holds directionality or is asymmetric. This implies that we should
encode the order of LE into an Euclidean vector space model during RF NWEs. Apart from com-
puting semantic boundaries in RF NWEs, we follow LEAR to embed the directionality of LE into
NWEs, which is as follows:

Y L e o

[ wiypoll + [ wiyper|

Here, under the assumption that the L2 vector norm of a subordinate wy,, in a Euclidean space
should be less than the norm of its superordinate wy,,, the training objective is to adjust the
magnitude of ||wl| to learn hypernymy’s directionality from the subordinate wyyp, to Wpyper, and
vice versa for hyponymy.
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Figure 2. Aflowchart of dynamic fitting on neural word embeddings.
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3.4. Distributional information preservation

Following other post-processing methods such as LEAR and LexSub, DF also incorporates a
regularization function in RF:

L=p |fow — fow) (6)

Here, u is the adjustable coefficient for L2 regularization. L, aims to partially preserve the distri-
butional semantics of w learned in its original vector space fy(w), preventing over-correction in
the specialized space fé (w).

The full loss function of DF comprises Ls, Lrg, and L,. Different from the previous post-
processing methods that establish constant distance margins or handpick them separately for
each category of semantic constraints, we propose to replace them with taxonomic similarity
computation, dynamically adjusting them in metric learning. Hence, DF not only can accom-
modate multiple semantic relationships into a vector space model but also can augment NWEs
with semantic taxonomy through learning the IS-A hierarchy in WordNet.

4. Experiment setup

Validating the distributional hypothesis in LLMs presents a complex challenge (Bommasani
et al. 2021). Little general agreement exists on how to validate the quality of NWEs (Bakarov,
2018). Intrinsic evaluations directly measure the correlation between distributional semantics and
human judgments on lexical and relational semantics, whereas extrinsic evaluations typically need
an extra layer of “supervised learner” for downstream benchmark tasks. Due to the self-supervised
way of pretraining and data usage, extrinsic evaluation of NWEs may only be suitable for cer-
tain downstream tasks (Schnabel et al. 2015). Conversely, intrinsic evaluation is often considered
a robust quality indicator for NWEs but may potentially contain subjectivity or bias (Bakarov,
2018).

Given that we combine taxonomic similarity with distributional similarity in semantically spe-
cializing NWEs, we prefer to utilize intrinsic tasks (Baroni et al. 2014) to evaluate DF, which
include semantic similarity calculation, LE recognition, and lexical analogy reasoning. These
benchmark tasks have been widely used in validating distributional semantics (Bakarov, 2018).
We compared DF with other popular RF methods, including RF, CF, LEAR, HEF, and LexSub.

4.1. Neural embeddings

Apart from three popular pretrained static embeddings: GloVe?, fastText® (Bojanowski ef al.
2017), and SGNS, we also chose two typical contextualized ones: BERT and GPT-2 in evaluation.

Note that it is not feasible to generate static embeddings by simply feeding a single word
into BERT or GPT-2 (Bommasani et al. 2020), as contextualized embeddings typically exhibit
anisotropic characteristics or occupy a relatively small conical space across layered transformers
(Ethayarajh, 2019). Gupta and Jaggi (2021) adapted the CBOW-like pretraining method to con-
vert contextualized embeddings into their static representations, which notably outperforms two
common distilling methods—calculating the first principal component (Ethayarajh, 2019) and
average-pooling (Bommasani et al. 2020)—in semantic similarity calculation tasks. We thus opted
for the two best static embeddings,? based on sentence contexts and the last layer of a 12-layer
BERT and GPT-2 in their study.

2https://nlp.stanford.edu/projects/glove

Phttps://fasttext.cc/docs/en/english-vectors.html
“https://github.com/eyaler/word2vec-slim

dhttps://zenodo.org/record/5055755
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Table 1. Evaluation tasks in the lexical entailment recognition and lexical relationship classification

Data size Relationship types Task Method
BLESS 1,337 hypernymy(hyper): fox vs carnivore: directionality detection unsupervised
hyper.
WBLESS 1,168 hypernymy, other: stove vs artifact: bi-classification unsupervised

hyper; stove vs migraine: other.

BIBLESS 834 hypernymy, hyponymy (rhyper), 3-way classification unsupervised
other: rifle vs gun: hyper; rifle vs
revolver: other; device vs rifle: rhyper.

CogALex-V 3,054/4,260
(training/testing)
Subtask-1 semantically related (T) and bi-classification supervised
unrelated (F): milk vs drink: T; milk vs
cloudy: F.
Subtask-2 hypernymy, synonymy (syn), 5-way classification supervised

antonymy (ant), meronomy (part-of),
unrelated (random): nation vs country:
syn; brain vs organ: hyper; brain vs head:
part-of; bright vs dark: ant; brain vs
island: random.

4.2. Evaluation task

4.2.1 Semantic similarity calculation

This task focuses on directly evaluating NWEs with the Spearman rank correlation coefficient (p)
in the gold-standard test sets: SimLex-999 (Hill et al. 2015) and SimVerb-3500 (Gerz et al. 2016).
Note that we only used the test set of SimVerb-3500, consisting of 3,000 verb pairs, denoted as
SimVerb-3000.

4.2.2 Lexical entailment recognition

This task encompasses three subtasks within the HyperVec toolkit (Nguyen et al. 2017), as out-
lined in Table 1. Specifically, BLESS focuses on detecting hypernymy directionality, WBLESS
addresses binary classification to distinguish hypernymy from the other relationships such as
hyponymy, meronymy, co-hyponym, and random, while BIBLESS tackles a challenging three-
way classification task, identifying hypernymy, hyponymy, and the others. In addition, the toolkit
utilizes HyperScore, an unsupervised entailment recognition metric, to assess the impact of the
aforementioned post-processing methods on NWEs. HyperScore is defined as follows:

[ #nper|

7)
[whypol

HyperScore(Whypo, Whyper) = €OSine(Wpypo, Whyper) *

It factors in both distributional similarity and the ratio between the vector norms of a
subordinate wy,y, and its superordinate wyyp, to recognize LE. This approach provides more
interpretability in comparison with supervised methods that mainly seek to “memorize” unique
contextual feature patterns, as highlighted by Levy et al. (2015). Given that only hypernymy is
present in BLESS, it is unnecessary to calculate distributional similarity, cosine (Wpypo, Whyper),
within HyperScore. Instead, the ratio Hwhype, || / ”Whypo ” can be directly applied, based on the

assumption that “whyper”should be larger than Hwhypo H to capture the inherent asymmetry in
hypernymy. However, a full HyperScore calculation is required to differentiate hypernymy from
other relationships in WBLESS and BIBLESS.
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We employ the default settings in the toolkit to determine the respective HyperScore threshold
for WBLESS and BIBLESS, where 2% of the data is randomly selected for learning the threshold,
and the remainder is reserved for testing. This thresholding process is repeated 1,000 times, and
the average precision (AP) is reported (Nguyen et al. 2017).

4.2.3 Lexical relationship classification

In addition to the three unsupervised learning tasks in HyperVec, we include CogALex-V (Santus
et al. 2016), a supervised benchmark task for lexical relationship classification, for comparison.
As summarized in Table 1, CogALex-V consists of two shared tasks: Subtask-1 aims to predict
whether two terms are semantically related, while Subtask-2 further classifies their relationship
into one of the following categories: synonymy, antonymy, hypernymy, part-whole meronymy,
or unrelated (random). The dataset of CogALex-V is highly imbalanced, with approximately 73%
of the training data and 71.8% of the testing data tagged as random. These random pairs are treated
as noise and excluded during evaluation, where overall classification performance is reported as
the weighted precision, recall, and F1 score. CogALex-V is intentionally designed to be challeng-
ing (Santus et al. 2016), due to its dataset’s diverse resources, such as WordNet, ConceptNet, and
crowdsourcing, and lack of morphological or PoS information, which complicates lexical relation-
ship identification. Note that, apart from the monolingual CogALex-V (English), the CogALex-VI
shared task (Xiang et al. 2020) focuses on multilingual identification of semantic relationships and
may serve as a benchmark for evaluating multilingual NWEs in future research.

We train a multilayer perceptron (MLP) model with a single hidden layer containing 128 neu-
rons for the two subtasks in CogAlex-V. The rectified linear unit (ReLU) activation is applied to
both the input and hidden layers. For the final output layer, we employ the Sigmoid function for
Subtask-1 and the Softmax function for Subtask-2. During training with cross-entropy loss, we set
the learning rate to 0.001 and epoch and batch size to 50 and 200, respectively.

We feed both numerical and vectorial features into the MLP classifier. The numerical features
consist of the Euclidean norms of the embeddings for the input pair, along with their cosine sim-
ilarity score. The vectorial feature is derived through their vector subtraction. Each numerical
feature is transmuted into its corresponding vector using the Gaussian-based feature vectorization
(Maddela and Xu, 2018), with an optimal dimension size of 30.

4.2.4 Analogy reasoning

It primarily examines whether the inter-conceptual relationship between a and 4 also holds
between b and b, which is applicable to tasks such as word-sense disambiguation and seman-
tic relation detection. Unsupervised methods for analogy reasoning often involve computing
both relation and word similarity. For example, 3CosAdd (Mikolov et al. 2013b) computes
b as argmax _,( cos (b/, b—a+ a/)), while PairDistance (Levy and Goldberg, 2014) computes

b as argmax, _,( cos (b, —bad — a)). Bouraoui et al. (2020) proposed fine-tuning NLMs for
analogy reasoning, achieving much higher accuracy than unsupervised methods. However, super-
vised methods may not generalize as well as unsupervised ones in dealing with new types of
relationships. For this task, we use 3CosAdd, a simple vector arithmetic method.

Given that we semantically specialize NWEs with syn/antonymy and hypernymy, we used a
subset of the bigger analogy test set (BATS) (Gladkova, Drozd, and Matsuoka, 2016) to validate
DF on relation inference, which consists of L01, L02, and L03 for hypo/hypernymy and L07 and
L08 for synonymy, along with L09 and L10 for antonymy.

4.3. Training parameter settings

Similar to LEAR and HEF, we chose a standard dataset to assess the training results of DF, consisting
of 201 pairs of nouns from WordSim-353-similarity (Agirre et al. 2009) and 500 pairs of verbs
from the training part of SimVerb-3500 (Gerz et al. 2016).
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Table 2. Measuring semantic similarity using different retrofitting methods on NWEs

SimLex-999 / SimVerb-3000

SCNS GloVe fastText BERT GPT-2
Vanilla 0.13/0.05 0.37/0.22 0.18/0.14 0.55/0.44 0.54/0.47
RF 0.27/0.14 0.50/0.31 0.38/0.28 0.62/0.51 0.62/0.54
CF 0.29/0.19 0.55/0.41 0.38/0.31 0.64/0.57 0.65/0.60
LEAR 0.66/0.65 0.71/0.69 0.68/0.67 0.67/0.68 0.70/0.69
HF 0.77/0.75 0.79/0.75 0.78/0.75 0.79/0.77 0.80/0.77
DF 0.76/0.75 0.78/0.76 0.77/0.76 0.78/0.76 0.79/0.76

We optimized the cost function of DF with AdaGrad, along with hyperparameters such as
learning rate and mini-batch size in a grid search. The initial learning rate was set to 0.002, the
small batch dataset size to 32, and the L2 regularization constant to 0.001. We only retrieved one
positive or negative sample in each mini-batch, depending on the type of semantic constraints in
DF.

5. Results and analysis
5.1. Semantic similarity calculation

As for the static NWEs: SGNS, GloVe, and FastText, the mean Spearman rank correlation coef-
ficient (p) of DF on SimLex-999 and SimVerb-3000 is 0.77 and 0.76, respectively, as shown
in Table 2. They are notably higher than those of Vanilla, RE, and CF, which stand at 0.23 and
0.14, 0.39 and 0.24, 0.36 and 0.30, respectively. For contextualized embeddings: BERT and GPT-2,
DF attains p of 0.79 and 0.76, respectively, outperforming Vanilla, RE, and CF by at least 0.14 and
0.18. In comparison with RF and CE, DF integrates both syn/antonymy and hypo/hypernymy in
RF NWEs, indicating that injecting additional semantic relationships can enhance vector space
models in computing semantic similarity.

Across all NWE:s in Table 2, DF improves LEAR in p by 14.7% and 11.8% on the two datasets.
Although both methods employ the same types of semantic relations and triplet loss to impose
semantic constraints on NWEs, LEAR presets distance boundaries in metric learning, whereas DF
dynamically adjusts distance margins using taxonomic similarity. The results suggest that DF can
further improve vector semantics and more effectively enforce the specialization effect of different
relationships on NWEs in comparison with LEAR.

The performance of DF slightly lags HF in SimLex-999 but is on par with HF in SimVerb-3000
(p: 0.76). Wilcoxon rank-sum tests indicate no significant difference between them (P > 0.05).
While both HF and DF employ triplet loss functions and the same semantic constraints as LEAR,
HF also adds a complex quadruplet loss function to incorporate hierarchical relationships into
NWEs. HF coordinates two preset margins to account for the semantic distance between different
IS-A relations in RF NWEs. In contrast, DF tallies with HF by dynamically adjusting distance
boundaries using taxonomic similarity calculation.

To further explore the RF effects of different semantic constraints employed by DF on NWES,
we conducted an ablation study to assess how these constraints affect the derivation of seman-
tic similarity from NWEs. We progressively eliminated the semantic constraints of hypernymy,
antonymy, and synonymy in post-processing NWEs, with the results presented in Figure 3. As
for the static embeddings: SGNS, GloVe, and fastText, the removal of the hypernymy constraint
is detrimental to DF in deriving semantic similarity, with an average performance decline of (o
= 0.06 across the two benchmark tasks. The subsequent removal of antonymy and synonymy
further hampers DF’s performance, resulting in additional reductions of 0.08 and 0.44, respec-
tively. For contextualized embeddings: BERT and GPT-2, DF exhibits almost no deterioration
on computing semantic similarity after the removal of IS-A relations. However, its performance
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Table 3. Results of different retrofitting methods in lexical entailment recognition

Vanilla RF CF LEAR HF DF
BLESS SGNS 0.53 0.59 0.52 0.96 0.87 0.97
GloVe 0.28 0.55 0.52 0.96 0.88 0.97
fastText 0.34 0.56 0.43 0.95 0.89 0.97
BERT 0.50 0.49 0.48 0.95 0.96 0.97
GPT 0.41 0.52 0.36 0.96 0.96 0.97
WBLESS SGNS 0.52 0.52 0.51 0.88 0.75 0.89
GloVe 0.46 0.52 0.52 0.88 0.74 0.88
fastText 0.48 0.52 0.50 0.89 0.75 0.89
BERT 0.53 0.51 0.52 0.88 0.86 .89
GPT 0.53 0.52 0.48 0.89 0.86 0.88
BIBLESS SGNS 0.38 0.36 0.38 0.84 0.60 0.84
Glove 0.34 0.36 0.37 0.85 0.58 0.82
fastText 0.33 0.38 0.37 0.85 0.59 0.84
BERT 0.38 0.37 0.38 0.85 0.78 0.84
GPT 0.37 0.37 0.35 0.85 0.78 0.83
0.9
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Figure 3. Ablation study on the different effects of semantic constraints on retrofitting vector semantics. Full stands for using
all the semantic relationships: the I1S-A link (hypernymy hierarchy) and syn/antonymy in DF.

gradually declines, with average reductions of 0.05 for antonymy and 0.23 for synonymy. Among
the three semantic constraints, synonymy plays a more significant role than the others in seman-
tically constraining both static and contextualized embeddings via DF. This underscores DF’s
effectiveness in incorporating diverse semantic knowledge into the geometric space of NWEs,
enabling static embeddings to perform comparably to contextualized embeddings in deriving
semantic similarity.

5.2. Lexical entailment recognition

As shown in Table 3, DF achieves an AP of 0.91 for SGNS, GloVe, and fastText and 0.88 for
BERT and GPT-2 across the three benchmark tasks. DF outperforms RF by 85.7% and 91.3%,
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Figure 4. The effect of hypernymy directionality function in DF on identifying lexical entailment.

together with CF by 97.8% and 104.7%. There is no significant difference among DF-specified
NWE:s in recognizing LE (one-way ANOVA, P > 0.05). The absence of hypernymy constraints
in RF and CF, along with the lack of directionality optimization for LE, underscores the advan-
tage of DF, LEAR, and HF. DF achieves AP of 0.97, 0.89, and 0.83 for the three tasks in Table 3,
only slightly inferior to LEAR on BIBLESS, but LEAR can surpass HF by a considerable mar-
gin. HF only uses direct hypernyms in RE, whereas DF and LEAR also cover indirect hypernyms,
highlighting the utility of hierarchical IS-A relations in facilitating LE recognition. These results
emphasize the validity of DF in dynamically adapting distance boundaries for the hypernymy
taxonomy.

To further examine the significance of the hypernymy directionality function, we excluded
it from the cost function of DF (denoted as DF-D) to investigate its impact on LE recognition.
As shown in Figure 4, APs attained by DF-D on NWEs decrease by 72.6%, 43.1%, and 53.2% in
BLESS, WBLESS, and BIBLESS, respectively, in comparison with DF. However, NWEs retrofitted
by DF-D maintain p at 0.76 and 0.74 in SimLex-999 and SimVerb-3000, respectively, with neg-
ligible deviation from DF. This underscores the importance of simultaneously learning both
directionality and similarity metrics when injecting asymmetric semantic constraints into a vector
space model, which is also observed in HF (Yang et al. 2022).

5.3. Lexical relationship classification

Additionally, to investigate the impact of semantic specialization on neural embeddings, we com-
plement the unsupervised LE recognition in HyperVec with the supervised lexical relationship
classification results on CogALex-V, as shown in Table 4. Across both static and contextualized
embeddings, all the RF approaches, on average, consistently exceed Vanilla, demonstrating a pos-
itive impact on enhancing distributional semantics. For the binary classification of Subtask-1, DF
performs comparably to HE, with both achieving an average F1 score above 0.85 across NWEs.
RE, LEAR, HE and DF all outperform GHHH (F1 = 0.79) (Attia et al. 2016), the top-performing
participant system that employs cosine similarity feature and simple logistics. Subtask-2 poses a
more challenging classification task than Subtask-1, with a notable drop in F1 scores in Table 4.
Specifically, LEAR, HF, and DF all yield average F1 scores above 0.51, outperforming LexNet
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Table 4.Results of different retrofitting methods on CogALex-V. Each cell indicates the
weighted F1 scores for Subtask-1/Subtask-2. The best scores for NWEs are highlighted in bold,
with SOTA results from respective papers included for comparison

SGNS GloVe FastText BERT GPT

Vanilla 0.88/0.43 0.81/0.43 0.90/0.46 0.77/0.41 0.76/0.42
RF 0.73/0.30 0.89/0.41 0.84/0.36 0.90/0.45 0.92/0.42
CF 0.72/0.32 0.79/0.38 0.63/0.34 0.84/0.44 0.83/0.41
LEAR 0.83/0.54 0.82/0.54 0.82/0.53 0.83/0.54 0.81/0.53
HF 0.86/0.58 0.88/0.56 0.87/0.55 0.85/0.53 0.84/0.52
DF 0.84/0.55 0.81/0.40 0.82/0.42 0.88/0.60 0.89/0.61
GHHH 0.790/0.287

LexNET 0.765/0.445

ST™M N/0.453

SphereRE N/0.471

(Shwartz and Dagan, 2016), the leading participant system in Subtask-2, which uses an MLP classi-
fier on GloVe. In comparison with the static embeddings: SGNS, GloVe, and FastText, DF attains
the highest F1 scores on the contextualized embeddings of BERT (0.60) and GPT (0.61), well
beyond other RF methods.

Note that we also include two additional state-of-the-art approaches in Table 4 for compari-
son on Subtask-2: STM (Glavas and Vuli¢ 2018) and SphereRE (Wang et al. 2019). STM utilizes
multiple tensor functions to extract features from unspecialized NWEs, followed by a feedforward
neural network to discriminate semantic relationships. Rather than using Euclidean embeddings
of individual terms for lexical relation recognition, as seen in GHHH, LexNet, and STM, SphereRE
constructs a hyperspherical vector space to embed relationships directly and then employs a feed-
forward neural network for classification. In a similar vein to STM and SphereRE, which employ
straightforward neural networks for classification, DF-retrofitted embeddings such as BERT and
GPT demonstrate clear benefits over these SOTA methods on this task.

As shown in Table 5, we delve deep into the prediction result of each type of relationship
on DEF-retrofitted GPT. The overall weighted recall remains modest at 0.55, highlighting sub-
stantial misclassification of semantically related pairs. DF-retrofitted GPT achieves a precision
of 0.92 in identifying antonymy but only 0.53 for synonymy. Notably, 48.7% of antonymy pre-
dictions are labeled as random, whereas this error rate falls to 8.4% for synonymy. As indicated
in the confusion matrix in Table 5, after the removal of random pairs, 22.6% of hypernymy pairs
are misclassified as syn, while nearly 24.1% of synonymy pairs are misidentified as hyper, partly
revealing the complexity in differentiating these relationships. Regarding meronymy predictions,
since we incorporate no such relationship in RF GPT, nearly 45.4% of them are labeled as hyper,
ant, and syn, and this error rate rises to 72.9% if including random pairs, with 50.4% classified as
random.

5.4. Analogy reasoning

Among the static NWEs used to derive semantic similarity in Table 2, GloVe consistently out-
performs SGNS and FastText across all RF methods, with LEAR-, HF-, and DF-retrofitted GloVe
performing on par with BERT and GPT, the contextualized NWEs. Furthermore, since 3CosAdd,
employed in analogy reasoning, mainly measures distributional similarity in vector space, we
chose GloVe for this task to assess the effectiveness of various RF methods. Top 1 precision (P@1)
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Table 5. Performance of DF-retrofitted GPT on Subtask-2 of CogALex-V. The left shows precision (P), recall
(R), and F1 scores for each relationship after removing random pairs as noise, while the right presents the
confusion matrix of classification, where each row corresponds to the actual counts of each relationship in
the dataset, and each column corresponds to the predicted counts

P R F1 random  hyper ant  part-of  syn

hyper 0.69 0.56 0.62 random 2501 108 193 233 24
ant 092 052 0.66 hyper 24 215 7 55 81
part-of 0.55 056 0.55 ant 124 12 186 20 18
syn 0.53 058 0.55 part-of 42 29 3 125 25
Weighted 070 0.55 0.61 syn 7 55 7 29 137

Table 6. Results of different retrofitting methods on lexical analogy reasoning conditioning on hypernymy. We only list
the top 6 candidates in the varied distributional spaces of GloVe. We colored the same candidates

Question What is to cat as canine is to dog?

Correct answer feline

Method  Prediction (similarity score)

Vanilla feline(0.82) canines (0.72) felines (0.70) fanciers (0.69) cats (0.69) distemper (0.69)
RF feline(0.82) cats (0.79) felines (0.77) canines (0.74) kitten (0.74) textitfanciers (0.74)
CF feline(0.83) canines (0.73) felines (0.70) cats (0.70) distemper (0.69) equinel (0.68)
LEAR  cheetah (0.89) feline (0.88) puma (0.88) lioness (0.87) felines (0.87) bobcats (0.87)
HF feline(0.85) Jjaguar (0.83) | leopard (0.82) = cheetah (0.82) lynx (0.82) panther (0.80)
DF feline(0.86) panther (0.86)  leopard (0.85) lynx (0.85) Jjaguar (0.85) cheetah (0.84)

Table 7. Results of different retrofitting methods on lexical analogy reasoning conditioning on synonymy. We only list
the top 6 candidates in the varied distributional spaces of GloVe. We colored the same candidates

Question What is to mother as kid is to child?

Correct answer mom

Method  Prediction (similarity score)

Vanilla dad (0.80) mom (0.79) grandmother (0.78) aunt (0.75) remembers (0.75) father (0.74)
RF mom (0.86) dad (0.84) grandmother (0.82) mama (0.8) aunt (0.78) grandma (0.78)
CF  grandmother (0.91)  daughter (0.90) wife (0.90) mom (0.89) mama (0.89) mamma (0.87)
LEAR mothers (0.74) sire (0.74) mamas (0.73) momma (0.73) mama (0.73) mummies (0.73)
HF mom (0.86) mommy (0.84) momma (0.84) mama (0.84) ma (0.83) mammy (0.82)
DF mom (0.86) mommy (0.84) mama (0.83) momma (0.83) mammy (0.82) ma (0.8)

serves as the evaluation metric, assessing whether the first candidate term after 3CosAdd reason-
ing matches the correct answer, as illustrated in Figure 5. We also randomly sampled an instance
from each type of semantic relation in BATS, including IS-A and syn/antonymy, to examine the
reasoning process of 3CosAdd, as demonstrated in Tables 6, 7, and 8.

5.4.1 Hypernymy analogy

DF achieves an AP (P@1) of 26.6% for IS-A analogy reasoning in Figure 5, which is comparable
to HF (25.7%) but significantly outperforms Vanilla (6.5%), RF (9.8%), CF (3.6%), and LEAR
(5.1%). The absence of IS-A relationships in RF and CF results in less desirable results in both LE
recognition and analogy reasoning. Although LEAR performs similarly to DF in LE recognition, it
lags behind DF by 21.5% in this task. In contrast to DF, LEAR fails to differentiate between direct
and indirect hypernymy in its training objective, opting instead for a uniform distance margin for
IS-A links.
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Table 8. Results of different retrofitting methods on lexical analogy reasoning conditioning on antonymy. We only list
the top 6 candidates in the varied distributional spaces of GloVe. We colored the same candidates

Question What is to long as small is to large?

Correctanswer  Short

Method  Prediction (similarity score)

Vanilla short (0.81) few (0.78) longer (0.77) just (0.77) little (0.76) way (0.76)
RF short (0.82) longer (0.79) few (0.78) little (0.78) just (0.76) only (0.75)
CF little (0.87) tiny (0.76) minor (0.76) longer (0.75) limited (0.74) few (0.74)
LEAR slim (0.76) smaller (0.75)  inconsiderable (0.75) ' slender (0.75) half-size (0.74) puny (0.74)
HF slim (0.75) slender (0.75) tiny (0.75) smaller (0.73) puny (0.72) little (0.72)
DF  smaller (0.78) slim (0.77) tiny (0.77) little (0.77) small-scale (0.76)  lesser (0.76)
0.70
0.60
0.50

om

LO9 L10

IS-A Synonymy Antonymy
Vanilla BRF ®CF BLEAR OHF DDF

Figure 5. Results of retrofitted GloVe for three types of semantic relations in lexical analogy reasoning.
We presented in Table 6 an example of analogy reasoning of

b= argmax _,,( cos (b/, cat — dog + canine)) (8)

in different vector spaces of GloVe. Only LEAR finds the correct answer “feline” at the second
position; all other methods can correctly locate “feline” at the top 1. In the top 6 results of Vanilla,
RE, and CF, the words “canines,” “fanciers,” and "distemper” appear at least twice or more, which
are semantically similar to “feline” in WordNet. It indicates that GloVe retrofitted by RF and CF
may still resemble Vanilla regarding vector semantics. DF and HF both identify the same can-
didates in the top 6 results but with different ranking orders. HF aims to learn the relational
similarity between synonymy and hypernymy by establishing two margins in the quadruplet loss
function, whereas DF dynamically adjusts distance margins in metric learning to integrate tax-
onomy similarity into specializing vector semantics, which is more adaptable for learning richer
analogies.

5.4.2 Synonymy analogy
DF reaches P@1 of 39.5% in Figure 5, surpassing all other RF methods except for HF (42.6%).
LEAR falls behind all other RF methods with P@1 of 16.1%, comparable to Vanilla (15.6%).

As depicted in Table 7, the top 1 candidate predicted for synonymy analogy reasoning in Vanilla
is “dad,” which is an antonym of the correct answer “mom” “mom” only appears in the second
position with a high distributional similarity of 0.79. For CF-retrofitted GloVe, the top 1 candidate
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“grandmother” is semantically close to “mom,” while “mom” only appears in the 4th candidate
position. “sire,” the top 1 candidate of LEAR, is semantically contrary to “mom,” and not correct
answer can be found in its top 6 list. These results confirm the findings of Hill et al. (2015) on
computing distributional similarity in NWEs, namely, semantically contradicted words often have
similar vector representations and are distributionally related.

The top 6 candidates predicted in the DF- and HF-retrofitted spaces are fully overlapped, all of
which are semantically similar to “mom.” No correct answer turns up for LEAR. We found that the
hypernymy constraint set in LEAR consists of “mom” vs “mother” and “mom” vs “mothers.” Since
LEAR employs unified distance margins for both hypernymy and synonymy in metric learning,
not surprisingly, it might predict “mothers” instead of “mom” in analogy reasoning. In contrast,
both DF and HF can distinguish the relational distance between hypernymy and synonymy, which
indicates that their capacity to adapt semantic variation while injecting different semantic rela-
tions into NWEs may be the main factor affecting the performance of these RF methods in analogy
reasoning.

5.4.3 Antonymy analogy

Vanilla scores P@1 of 20.3% on antonymy analogy reasoning, whereas RF only gains 15.3%, and
the other methods perform poorly with less than 1.0% precision. Although both Vanilla and RF
predict “short” as the top 1 candidate in Table 8, their top 6 lists also include the antonym of the
correct answer, “longer.” Moreover, “longer” is present in the prediction list of CF but not in LEAR,
HE and DFE where these methods fail to identify the correct answer and instead produce a group
of terms semantically similar to “small.”

While using antonymy constraints, for example, “long” vs “short,” to retrofit embeddings,
if “large” is selected as a positive sample in a mini-batch, DF tries to decrease the similar-
ity between “long” and “short” while increasing the similarity between “long” and “large.”
Consequently, “long” and “large” move closer in the retrofitted space, potentially resulting in
argmax, _,( cos (b, long — largr + small)) to extract words that are semantically close to “small.”
This partially explains why antonymy analogy reasoning may be challenging for DF, together with
LEAR and HF.

The quadruplet loss in HF or the triplet loss in LEAR and DF tend to prioritize synonymy
or hypernymy constraints in refining a distributional space, suggesting their preference for syn-
onymy or hypernymy analogy reasoning. We thus replaced the triplet loss of DF with the
contrastive loss, which can exclusively reduce semantic similarity between antonyms. The updated
results of the task show that DF achieves 36.6% and 42.7% on L09 and L10, respectively, out-
performing Vanilla by 19.2% and 19.6%. As DF employs contrastive loss to deal with antonymy
separately, it shows no interference with the synonymy and hypernymy analogy reasoning tasks.

5.4.4 Related work on word analogy reasoning
In addition to our method, denoted as 3CosAdd_DF + GloVe, we listed SOTA results on BATS
for analysis, as shown in Table 9. As for the unsupervised vector arithmetic calculation for analogy
reasoning, 3CosAdd_GloVe and 3CosAdd_3-gram stand for the best results reported by Gladkova
et al. (2016). Note that our Vanilla result (13.0%) is close to 3CosAdd_GloVe.

Additionally, 3CosAvg_GloVe (Drozd, Gladkova, and Matsuoka, 2016) instead uses another
vector arithmetic:

b= argmax, _,( cos (b/, b + avgoffser)) 9)
for analogy reasoning, where
m n
io G i=0 4
Av8offset = ZIT;O 1 Jn : (10)
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Table 9. Analogy reasoning methods on BATS. The best results are in black font.
The results of BERT]i3 are F1 values

L01 02 LO03 LO7 LO8 LO9 L10 Mean

3CosAdd_GloVe 6.0 4.0 50 11.0 135 21.0 370 139
3CosAdd_3-gram 100 45 80 115 165 19.0 340 148
3CosAvg_GloVe 2.5 2.5 70 100 9.0 180 340 119
LRCos_GloVe 35.0 23.0 120 180 7.0 220 28.0 20.7
3CosAdd DF + GloVe 21.8 241 340 225 565 6.6 427 340
BERT%%" 71.8 78.8 61.3 50.8 487 48.5 54.5 59.2

a; and a; are similar words of a and a, respectively. LRCos_GloVe (Drozd et al. 2016) infers with

b = argmaxy (P .p * cos (b, b)) (11)

where P denotes the logistic regression probability of b and b in the same class.

Instead of relying on pairwise vector calculation like 3CosAdd, 3CosAvg and LRCos use a
group of homogeneous vectors for analogy reasoning, avoiding dependence on individual words.
Consequently, their results in Table 9 outperform 3CosAdd: GloVe and 3CosAdd: 3-gram. Our
method attains the best results among the unsupervised vector composition methods, with an
average accuracy of 34.0%.

Furthermore, we compared DF with a supervised learning method (Bouraoui et al. 2020),
BERTY", which is based on fine-tuning BERT with a binary analogy classifier. BERT{* achieves
the best results on nearly every sub-dataset except for L08 in Table 9. As suggested by Rogers
et al. (2020), although such BERTology methods may excel in some downstream applications
through fine-tuning NLMs, they may generalize less effectively in dealing with new types of
analogy reasoning, in which unsupervised vector composition may show potential adaptability.

6. Conclusion

We have proposed leveraging both co-occurrence patterns in distributional semantics and hand-
crafted relationships in lexical semantics to construct a unified semantic space. Unlike common
practices of thresholding distance boundaries for different semantic constraints in metric learning,
we simplify this process through automating taxonomy similarity computation to dynamically
differentiate the impact of the semantic distinctiveness of each category of relationships on vector
semantics. This effectively imposes semantic constraints on both static and contextualized NWEs
and injects semantic hierarchy into a distributional semantic space. In comparison with the pop-
ular RF methods on semantically specializing NWEs, our DF model has shown no limitations on
utilizing various types of semantic relationships and their association intensity in LKBs, advancing
previous methods by avoiding incomplete or improper specialization on vector space models.

To further enhance distributional semantics in NWEs, future research can explore the fusion
of multiple knowledge resources, such as Wiktionary and PPDB, to circumvent issues of concep-
tual obsolescence and lexical omission in WordNet. Additionally, integrating grounded semantics
from multimodal knowledge bases such as BabelNet and Wikipedia into NWEs can be beneficial.
Given that computing semantic relatedness rather than semantic similarity is more widely appli-
cable in NLP, it is worthwhile to investigate augmenting NWEs with ConceptNet, which contains
a rich array of semantic associations.

As NWEs heavily rely on self-supervised prediction on co-occurrences in context and a large
volume of online linguistic corpora, they are susceptible to contamination by social biases, which
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can detrimentally affect the credibility of both static and contextualized embeddings in down-
stream applications. Post-processing NWEs according to the guidelines of semantic knowledge in
LKBs may offer a potential solution for minimizing the occurrence of these biases.
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