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Abstract

We derive several algorithms for the busy period distribution of the canonical Markovian
fluid flow model. One of them is similar to the Latouche–Ramaswami algorithm for
quasi-birth–death models and is shown to be quadratically convergent. These algorithms
significantly increase the efficiency of the matrix-geometric procedures developed earlier
by the authors for the transient and steady-state analyses of fluid flow models.
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1. Introduction

The subject of this paper is the construction of efficient algorithms for the transient (time-
dependent) analysis of the canonical Markov-modulated fluid flow (MMFF) model. This model
is obtained by assuming as given an irreducible, continuous-time Markov chain J (t) of ‘phases’
with a finite state space S = S1 ∪ S2 ∪ S3 and infinitesimal generator Q such that, for a phase
i ∈ S1, the fluid level increases at rate ci > 0; for i ∈ S2, the fluid level decreases at rate ci > 0;
and for i ∈ S3, the fluid level remains constant.

In [2], the authors derived the joint distribution of (F (t), J (t)), where F(t) and J (t) are
respectively the fluid level and phase at time t+, given that F(0) = 0 and J (0) = i, i ∈ S1;
see Section 7 of [2]. For Re(s) ≥ 0, the matrix of Laplace–Stieltjes transforms (LSTs) with
elements

E(0,i)[e−sF (t)1(J (t) = j)], i ∈ S1 and j ∈ S,

where E(x,i) denotes conditional expectation given the initial state (x, i) and 1(·) is an indicator
function, was characterized in terms of three LST matrices K̃(s), �̃(s), and �̃(s). It was
shown that these matrices are readily obtained from the LST matrix �(s) of the busy period
τ = inf{t > 0 : F(t) = 0} of the fluid flow model, and defined by the elements

[�(s)]ij := E(0,i)[e−sτ 1(J (τ ) = j)], i ∈ S1, j ∈ S2, and Re(s) ≥ 0.

In the literature on stochastic fluid flow models, much attention has been focused on the
steady-state distribution; see [3], [5], [7], and [16]. As for time-dependent distributions, past
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532 S. AHN AND V. RAMASWAMI

approaches have been based on Wiener–Hopf factorizations or on partial differential equations.
Noteworthy are the work of Sericola [17], based on an ad-hoc series expansion, and that of [9],
based on spectral methods. Ramaswami [15] was the first systematic use of matrix-analytic
methods in the context of fluid flow models and provided a highly efficient algorithm for
computing the stationary distribution; Ahn and Ramaswami [1] demonstrated that approach to
be based on stochastic coupling to a matrix-geometric queue. A continuation of that work in [2]
characterized the time-dependent distributions exactly in terms of the busy period transform of
the fluid model, and provided an accurate algorithm to evaluate them. The methods of [2] require
repeated evaluations of the busy period transform and, therefore, the quadratically convergent
algorithm of this paper improves the efficiency of those methods very significantly. Note that
a characterization of the busy period distribution was obtained earlier by Asmussen [4], who
also noted its importance as a fundamental quantity and provided a linearly convergent iterative
scheme for its computation; being quadratically convergent, the new algorithm developed here
is much faster.

The discrete-state-space analogue of the stochastic fluid flow is the quasi-birth–death (QBD)
process, for which matrix-geometric methods apply; see [12] and [13]. The analogue of
the transform �(s) in the QBD model is the matrix G of the latter, for which an efficient
quadratically convergent algorithm has been obtained by Latouche and Ramaswami [11] using
probabilistic arguments. The work here provides an algorithm for the fluid model that is similar
in spirit to the Latouche–Ramaswami algorithm for QBDs and has quadratic convergence.

The construction of the algorithms in this paper and the determination of their properties
are achieved through the consideration of a closely related queue with interarrival-dependent
service times (see Section 5) and a probabilistic analysis of that queue. This coupled queue is
quite different from those in [1] and [2], which involved service times distributed independently
of interarrival times. Thus, this work may also be interpreted as an extension of the algorithms
in [11] to queues with interarrival-dependent service times.

Throughout this paper, I will denote an identity matrix and 1 a column vector of 1s, both
of whose dimensions will be determined by the context in which they appear. Where it is
necessary to indicate the dimension explicitly, we will write In to denote the n × n identity
matrix. For later use, we define the diagonal matrices

Cj = diag{ci, i ∈ Sj }, j = 1, 2, 3,

where we set ci = 1 for all i ∈ S3, and let C = diag(C1, C2, C3). We partition the states of the
Markov chain in conformity with the three sets Si identified above and denote its infinitesimal
generator, in partitioned form, as

Q =
⎛
⎝Q11 Q12 Q13

Q21 Q22 Q23
Q31 Q32 Q33

⎞
⎠ .

Finally, to avoid confusion between submatrices in a partitioned structure and elements of a
matrix, the (i, j)th element of a matrix A will always be denoted by [A]i,j , [A]ij , or A(i, j)

instead of as Aij , as is often customary.

2. Spatial uniformization

A key step in the analysis of [2] is a procedure called spatial uniformization, which we now
discuss. A spatial uniformization (for the fluid flow) is effected by modeling the Markov process
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of phases as a Markov renewal process with exponential sojourn times such that potential
changes to the fluid level between epochs of the Markov renewal process are identically
distributed. To that end, we let {(Jn, tn), n ≥ 0} be such a process, with successive states
Jn ∈ S, transition epochs 0 = t0 < t1 < t2 < · · · , and with semi-Markov kernel H(·) defined
such that H(i, j ; t), the (i, j)th element of H(t), is given by

H(i, j ; t) = P{Jn+1 = j, tn+1 − tn ≤ t | Jn = i} = (1 − e−λci t )[Pλ]ij ,
where

Pλ = λ−1C−1Q + I and λ ≥ max
i∈S

{−[C−1Q]ii} is fixed.

The associated semi-Markov process J = {J (t), t ≥ 0} is specified such that it takes the
value Jn in the interval tn ≤ t < tn+1. The following result shows that J is indeed a realization
of the phase process; for a proof, we refer the reader to [2].

Theorem 1. The process J = {J (t), t ≥ 0} is a continuous-time Markov chain with infinites-
imal generator Q.

Since a sojourn interval of the semi-Markov process in i ∈ S1 is distributed as Exp(λci) with
fluid accumulation at rate ci per unit time, the additional fluid accumulation in that interval is
distributed as Exp(λ). Similarly, for a state in S2, given that adequate fluid exists at the start of the
interval, the potential decrease of the fluid level that could be effected is distributed as Exp(λ).
This underlies our reason for using the nomenclature ‘spatial uniformization’. Throughout the
rest of the paper, we will view the phase process, i.e. the continuous-time Markov chain J (·),
as being specified by the above construction.

3. Busy period

For x > 0, i, j ∈ S, and Re(s) ≥ 0, let [Ĝ(s, x)]i,j denote the LST

[Ĝ(s, x)]i,j := E(x,i)[e−sτ 1(J (τ ) = j)].
We assume that the matrix Ĝ(s, x) of elements [Ĝ(s, x)]ij is also partitioned according to the
sets Si , i = 1, 2, 3. Thus, for instance, the submatrix Ĝ12(s, x) is the matrix of elements
[Ĝ(s, x)]ij for which i varies over S1 and j varies over S2.

In our model, fluid is depleted only in S2. Thus, all busy periods must end in a state of S2.
From this, the following result is trivial.

Theorem 2. The matrices Ĝ(s, x) have the structure

Ĝ(s, x) =
⎛
⎝0 Ĝ12(s, x) 0

0 Ĝ22(s, x) 0
0 Ĝ32(s, x) 0

⎞
⎠ .

We now proceed to determine the submatrices in the second column of the partitioned
structure above.

Theorem 3. For x > 0,

(a) Ĝ12(s, x) = �(s)Ĝ22(s, x);

(b) Ĝ32(s, x) = (sI − Q33)
−1Q31Ĝ12(s, x) + (sI − Q33)

−1Q32Ĝ22(s, x); and
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(c) with

H(s) = C−1
2 [Q22 − sI +Q23(sI −Q33)

−1Q32 +{Q21 +Q23(sI −Q33)
−1Q31}�(s)],

we have
Ĝ22(s, x) = eH(s)x .

Proof. Part (a) follows easily by conditioning on the first return to level x in the set S2.
Similarly, part (b) is proved by conditioning on the first epoch during which the phase process
escapes from S3. To prove (c), consider the first epoch of spatial uniformization and note that,
with δij denoting the Kronecker delta and P ≡ Pλ, we can write

[Ĝ22(s, x)]i,j = δij e−λcix/ci e−sx/ci

+
∫ x/ci

0
λcie

−λci te−st
∑
k∈S

[P ]i,k[Ĝ(s, x − ci t)]k,j dt

= δij e−(λ+s/ci )x + λ

∫ x

0
e−(λ+s/ci )(x−z)

∑
k∈S

[P ]i,k[Ĝ(s, z)]k,j dz.

Multiplying by e(λ+s/ci )x and differentiating with respect to x, we obtain

(
λ + s

ci

)
[Ĝ22(s, x)]i,j +

[
∂

∂x
Ĝ22(s, x)

]
i,j

= λ
∑
k∈S

[P ]i,k[Ĝ(s, x)]k,j ,

which, being written in matrix form, yields, due to parts (a) and (b), the differential equa-
tion (∂/∂x)Ĝ22(s, x) = H(s)Ĝ22(s, x) with the initial condition Ĝ22(s, 0) = I . Therefore,
Ĝ22(s, x) = eH(s)x and the proof is complete.

4. Random initial fluid

We wish to appeal to matrix-geometric results that have mainly been developed for queues.
So, a tool we shall employ is to view the fluid model as being derived from the work process
of a suitably defined queue. To relate quantities of interest to the busy period of such a queue,
it helps to consider a busy period starting with an amount of fluid X that is exponentially
distributed with mean λ−1; in the context of the queue, X will be the amount of work brought
in by the customer starting a busy period of the queue.

We thus consider the transform matrix G̃(s, λ) defined by the elements

[G̃(s, λ)]i,j := E[E(X,i)[e−sτ 1(J (τ ) = j)]],
where the outer expectation is with respect to X. Then, from Theorem 3 we can easily obtain

G̃22(s, λ) =
∫ ∞

0
λe−λyeH(s)y dy = λ(λI − H(s))−1, (1)

G̃12(s, λ) = �(s)G̃22(s, λ), (2)

G̃32(s, λ) = (sI − Q33)
−1Q31G̃12(s, λ) + (sI − Q33)

−1Q32G̃22(s, λ). (3)

The following result expresses �(s) in terms of the submatrices of G̃(s, λ).
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Theorem 4. The LST matrix �(s) can be written

�(s) =
(

P11 − s

λ
C−1

1

)
G̃12(s, λ) + P12G̃22(s, λ) + P13G̃32(s, λ). (4)

Proof. If we consider the first epoch of spatial uniformization of the underlying Markov
process, then, for i ∈ S1 and j ∈ S2,

[�(s)]i,j =
∫ ∞

0
λcie

−λci te−st
∑
k∈S

[P ]i,k[Ĝ(s, ci t)]k,j dt

= λ

∫ ∞

0
e−(λ+s/ci )y

∑
k∈S

[P ]i,k[Ĝ(s, y)]k,j dy,

which we can rewrite in matrix form as

�(s) = λ

∫ ∞

0
e−(λI+sC−1

1 )y[P11Ĝ12(s, y) + P12Ĝ22(s, y) + P13Ĝ32(s, y)] dy.

Using (3) and Theorem 3, we can rewrite �(s) as

�(s) = λ

∫ ∞

0
e−sC−1

1 yL(s)e−(λI−H(s))y dy,

where

L(s) = P11�(s) + P12 + P13(sI − Q33)
−1Q31�(s) + P13(sI − Q33)

−1Q32.

Using integration by parts, we obtain

�(s) = L(s)λ(λI − H(s))−1 − s

λ
C−1

1 �(s)λ(λI − H(s))−1.

Substituting for L(s) and using (1), (2), and (3) immediately yields (4).

The following result is a key theorem in the development of an algorithm for computing
�(s) via G̃(s, λ).

Theorem 5. The matrices G̃12(s, λ), G̃22(s, λ), and G̃32(s, λ) satisfy the following equations:

G̃12(s, λ) =
[
P11 − s

λ
C−1

1

]
G̃12(s, λ)G̃22(s, λ) + P12G̃

2
22(s, λ) + P13G̃32(s, λ)G̃22(s, λ),

G̃22(s, λ) = λC2(sI + 2λC2)
−1[I + P21G̃12(s, λ) + P22G̃22(s, λ) + P23G̃32(s, λ)],

G̃32(s, λ) = λ

s + λ
P31G̃12(s, λ) + λ

s + λ
P32G̃22(s, λ) + λ

s + λ
P33G̃32(s, λ).

Proof. The result of the first equation is clear from (2) and (4). The third equation can be
obtained easily by conditioning on the first epoch of spatial uniformization. Thus, we only
need to prove the second equation.

By considering the first epoch of spatial uniformization, we can write

[Ĝ22(s, x)]i,j = e−λcix/ci e−sx/ci +
∫ x/ci

0
λcie

−λci te−st
∑
k∈S

[P ]i,k[Ĝ(s, x − ci t)]k,j dt.
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Multiplying this by λe−λx and integrating over x, it is easy to obtain

[G̃22(s, λ)]i,j = λ

(
2λ + s

ci

)−1

+ λ

(
2λ + s

ci

)−1 ∑
k∈S

[P ]i,k[G̃(s, λ)]k,j .

Written in matrix form, this yields the required formula for G̃22(s, λ).

Now, if we define the matrices

A0(s, λ) =
⎛
⎝P11 − (s/λ)C−1

1 P12 P13
0 0 0
0 0 0

⎞
⎠ , (5)

A1(s, λ) = �C(sI + �C)−1

⎛
⎝ 0 0 0

1
2P21

1
2P22

1
2P23

P31 P32 P33

⎞
⎠ , (6)

A2(s, λ) =
⎛
⎝0 0 0

0 λC2(sI + 2λC2)
−1 0

0 0 0

⎞
⎠ , (7)

where � = diag(λI, 2λI, λI), then the set of equations given by Theorem 5 can be written
simply as

G̃(s, λ) = A2(s, λ) + A1(s, λ)G̃(s, λ) + A0(s, λ)(G̃(s, λ))2, (8)

reminiscent of the equation for the G-matrix of a QBD; see [12] and [13]. It also yields the
following corollary.

Corollary 1. If we define

Ũ (s, λ) = A1(s, λ) + A0(s, λ)G̃(s, λ) (9)

then, for Re(s) ≥ 0, we have

G̃(s, λ) = (I − Ũ (s, λ))−1A2(s, λ). (10)

Proof. We note first of all that the blocks G̃ij (s, λ) of the matrix G̃(s, λ) vanish except for
when j = 2; this is because fluid is depleted only when the phase is in S2 and, therefore,
the busy period must also end in S2. If we now let g2(s, λ) = 2λC2(sI + 2λC2)

−1 and
g3(s, λ) = λ(s + λ)−1, then it follows from evaluating the right-hand side of (9) in partitioned
form, using Theorem 5 and (1)–(4), that

Ũ (s, λ) =
⎛
⎜⎝

0 �(s) 0

g2(s, λ) 1
2P21 g2(s, λ) 1

2P22 g2(s, λ) 1
2P23

g3(s, λ)P31 g3(s, λ)P32 g3(s, λ)P33

⎞
⎟⎠ .

This shows that Ũ (s, λ) is a matrix of LSTs that has eigenvalues all less than 1 in
absolute value and that is strictly substochastic for all s > 0. For complex s with Re(s) > 0,
the matrix of absolute values of this transform matrix is bounded above by a strictly sub-
stochastic matrix and, therefore, all its eigenvalues are also less than 1 in absolute value;
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see [14, para. 2.4.9]. Thus, the inverse in (10) exists, and we can recover that equation from
(8) using (9).

Note that (9) and (10) are similar to those obtained by Latouche [10] (also see [12, Chap-
ters 8.1 and 8.2]) for the G-matrix of the QBD, and suggest an iterative procedure. Later in
the paper, we will consider such an iterative scheme (Algorithm 2) and demonstrate that it
converges to the required matrices.

5. An algorithm for G̃(s, λ) through a queue

5.1. Notation and definitions

In what follows, we assume that the MMFF process (F , J) = {(F (t), J (t)), t ≥ 0} operates
under a last-in–first-out scheme; that is, the most recently arrived fluid is purged first. This
does not affect the distribution of the busy period, the quantity of interest to us. Our approach
rests on constructing a closely related queue whose work process yields the fluid flow.

To facilitate the discussion, we introduce some notation and definitions below. It is helpful
to illustrate the underlying ideas with the example shown in Figure 1, which depicts a path of
the MMFF process; for simplicity, we have in that illustration (alone) assumed that S3 is empty.
Note that if we replace each of the upward linear segments of the path of the MMFF (during
the sojourn in an exponentially distributed interval that results in the spatial uniformization) by
a jump that occurs at the termination of that segment, we could interpret the resulting path as
that of the work in a last-in–first-out queue. In such a queue, at the end of each sojourn of the
phase process in states of S1, a new customer with an exponentially distributed amount of work
with mean λ−1 joins the queue, and work is depleted only while the phase process is in S2, and,
in particular, at rate per unit time cj when in state j ∈ S2. The queue is quite complex, in that
the amount of work brought by a customer is directly proportional to the length of the sojourn
in S1 whose end marks the arrival epoch of that customer. What is, however, noteworthy is
that with this correspondence between the MMFF and the queue, the busy period of the MMFF
process is identical to the corresponding busy period of the queue. When such a busy period of
the MMFF starts with an exponentially distributed amount of fluid, the distribution of the busy
period of the MMFF is identical to the busy period of the queue initiated by an arrival to an

Fluid

tκ109κκ76κ κ8κ5κ4κ3κ2κ0 κ1 κ11

Y5
Y3

Y2

Y1

4Y

	( )t+
| |( )	 t+ 1 2 32 23 343 2 1 0

Fluid

{1}{1, 2, 3} {1, 2} {1, 2} {1, 2}{1, 2, 4}{1, 2, 4}{1, 2, 4, 5}{1, 2, 4}{1, 2}{1} ∅

Figure 1: A path of the MMFF process (with S3 empty).
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empty system. Many of the terms we introduce will also be interpreted in terms of this queue,
and this will allow us to draw freely from the matrix-geometric literature.

Here is some of the notation we will use.

1. Let {0 = τ0 < τ1 < · · · } denote the set of successive spatial uniformization epochs of J.

2. Let Y1 denote the initial amount of fluid (at time 0), which we assume to be exponentially
distributed with mean 1/λ. Let Yn+1, n ≥ 1, denote the amount of fluid coming in during the
nth sojourn in S1 of the (spatially uniformized) phase process. Note that, because of the spatial
uniformization, Yn, n ≥ 2, are all also exponentially distributed with mean 1/λ.

3. Let n ≥ 1 and assume that the index r(n) is such that τr(n) is the epoch of the nth visit to S1.
(If J (0) ∈ S1 then we treat 0 as the epoch of the first visit to S1.) Now, for t ≥ τr(n)+1, define
Yn+1(t) to be the amount of fluid, out of Yn+1, which remains in the system at time t . Note
that Yn+1(τr(n)+1) = Yn+1. Similarly, let us denote by Y1(t) the amount of fluid, out of Y1,
which remains in the system at time t > 0. The epoch during which a Yn(t) attains the value 0
is clearly a departure epoch for the last-in–first-out queue; in Figure 1, such epochs correspond
to the points where right-hand ends the of lines drawn parallel to the t axis meet the path of the
MMFF.

4. Now consider the spatial uniformization epochs {τn} along with the departure epochs iden-
tified above, and denote the resulting set of ordered epochs by κn; we have

0 = κ0 < κ1 < κ2 < · · · almost surely.

5. Let 	(t) denote the set of indices n = 1, 2, . . . such that Yn(t) > 0. We define |	|(t) to be
the total number of elements in 	(t), and we represent the set 	(t) as

	(t) = {n1(t), . . . , n|	|(t)(t)},
where nj (t) denotes the j th-largest index among the indices in the set 	(t). Defined thus,
the set 	(t) gives the identities of the customers still present in the queue and |	|(t) the total
number of customers present at time t . In Figure 1, we have shown the epochs κn in a busy
period along with the corresponding sets 	 and their cardinalities at those epochs. Note that,
almost surely, |	|(t) = 0 if and only if F(t) = 0.

Armed with this notation, we are now ready to state the following important result, which
is a direct consequence of the memoryless property of the exponential distribution and can be
established by mathematical induction (we omit the proof).

Theorem 6. Given that |	|(κn) = m, the fluid level F(κn) (or, equivalently, the total amount
of work in the queue at κn) is distributed as the sum of m independent, identically distributed
random variables with common distribution Exp(λ). Furthermore, the residual amounts of
work for the m customers in the queue at κn are independent and identically distributed with
distribution Exp(λ).

Remark 1. The above result shows that if the fluid level (i.e. the amount of work in the system)
at κ0 is distributed as Exp(λ), then knowing the number of customers present at κn determines
the law of the MMFF process in the interval [κn, ∞). In fact, if Nn denotes the level at κn+,
then (κn, Nn), n ≥ 0, form a semiregenerative sequence (see [6, Chapter 10.6]) for the MMFF
process as well as for the work in the queue.
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For the queue, we now introduce a set of random variables similar to those introduced by
Latouche [10] in the computation of G in a QBD. Given that |	|(κm) = n ≥ 1, let κU denote
the first epoch in {κj , j ≥ m + 1} for which |	|(κj ) = n. Also, let κG denote the first epoch
in {κj , j ≥ m + 1} for which |	|(κj ) = n − 1. Thus, if by ‘level’ n we denote the set of states
with queue length n, then κU −κm is a return time to level n avoiding lower levels, and κG −κm

is the first passage time to the (immediately lower) level n − 1, given that we start in level n.
Finally, we denote the amount of remaining work of the customer in service at κm by Xm.

Now, let Û (k, s, x) denote the transform matrix such that

[Û (k, s, x)]i,j
= E[e−s(κU −κm)1(J (κU ) = j, n ≤ |	|(t) < n + k for all t ∈ [κm, κU )) | |	|(κm) = n,

J (κm) = i, Xm = x].
Also, let

[Ĝ(k, s, x)]i,j
= E[e−s(κG−κm)1(J (κG) = j, n ≤ |	|(t) < n + k for all t ∈ [κm, κG)) | |	|(κm) = n,

J (κm) = i, Xm = x].
From the structure of the process under consideration, it is clear that the above transform
matrices do not depend on n. Note that these matrices, of course, depend on the uniformization
parameter λ, but we have suppressed this fact to simplify our notation.

We also define the matrices Ũ (k, s, λ) and G̃(k, s, λ) (making their dependence on λ explicit)
as

Ũ (k, s, λ) =
∫ ∞

0
λe−λxÛ(k, s, x) dx,

G̃(k, s, λ) =
∫ ∞

0
λe−λxĜ(k, s, x) dx. (11)

The following results follow from these definitions.

Lemma 1. (a) If we let g2(s, λ) = 2λC2(sI + 2λC2)
−1 and g3(s, λ) = λ(s + λ)−1, then

Ũ (k, s, λ) has the following form:

Ũ (k, s, λ) =
⎛
⎜⎝

0 Ũ12(k, s, λ) 0

g2(s, λ) 1
2P21 g2(s, λ) 1

2P22 g2(s, λ) 1
2P23

g3(s, λ)P31 g3(s, λ)P32 g3(s, λ)P33

⎞
⎟⎠ . (12)

(b) For Re(s) ≥ 0, Ũ12(k, s) converges as k increases, such that

lim
k→∞ Ũ12(k, s, λ) = �(s).

Furthermore, for s ≥ 0 the matrices Ũ12(k, s, λ) are (entrywise) monotone nondecreasing.
That is,

Ũ (k, s, λ) → Ũ (s, λ) as k → ∞,

and the convergence is monotone for s ≥ 0.
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Proof. In part (a), the submatrices in the second and third rows are obtained by noting that
the first return to a given level, avoiding lower levels, occurs at the first step of the spatial
uniformization if and only if the time to that step is less than the amount of time taken to serve
the customer in service at time 0. The zero elements appear in the first row because, when a
return to a given level occurs from S1, the phase returned to must be in S2. All the other results
follow immediately upon noting that the set of paths that go up to level n + k − 1 in a return
to level n, avoiding lower levels, form a nondecreasing set converging to the set of all paths
returning to level n avoiding lower levels.

Lemma 2. Let Re(s) ≥ 0. Then the following statements hold.

(a) Ĝ12(k, s, λ) = Ũ12(k, s, λ)Ĝ22(k, s, λ).

(b) Ĝ32(k, s, λ) = (sI − Q33)
−1Q31Ĝ12(k, s, λ) + (sI − Q33)

−1Q32Ĝ22(k, s, λ).

(c) If we let

H(k, s) = C−1
2 [Q22 − sI + Q23(sI − Q33)

−1Q32

+ {Q21 + Q23(sI − Q33)
−1Q31}Ũ12(k, s, λ)],

then
Ĝ22(k, s, x) = eH(k,s)x .

(d) G̃22(k, s, λ) = λ(λI − H(k, s))−1.

(e) For Re(s) ≥ 0, H(k, s) → H(s), and G̃(k, s, λ) → G̃(s, λ) as k ↑ ∞. Furthermore,
for s ≥ 0, G̃(k, s, λ) ↑ G̃(s, λ) as k ↑ ∞.

Proof. Part (a) follows by conditioning on the first epoch of return to level 1 before the end
of the busy period. Part (b) follows by conditioning on the first exit time from S3. Part (c) is
proven along the same along the same lines as Theorem 3(c), and immediately yields part (d).
The proof of part (e) follows from the simple observation that, as k → ∞, the set of paths
yielding a first passage from level 1 to level 0, avoiding level n + k, form an increasing set
converging to the set of all paths yielding a first passage from level 1 to level 0.

5.2. Relation between Ũ and G̃

For the following analysis, we introduce the operator vec defined [8], on matrices A = (aij )

of order m × n, by
vec(A) = (a11 · · · am1 · · · a1n · · · amn)


,

where ‘
’ denotes the transpose operator. We then have the following lemma.

Lemma 3. Given an m × m matrix A, an n × n matrix B, and an m × n matrix Y ,

vec(AYB) = (B
 ⊗ A) vec(Y ),

where ⊗ denotes the Kronecker product of matrices.

Now we can prove the following result, establishing a relationship between Ũ and G̃.

Lemma 4. Ũ and G̃ are such that the following statements hold.

(a) G̃(k, s, λ) = (I − Ũ (k, s, λ))−1A2(s, λ).
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(b) The submatrices Ũ12(k, s, λ) in (12) are such that Ũ12(1, s, λ) = 0 and, for k ≥ 2,

Ũ12(k, s, λ) = P11G̃12(k − 1, s, λ) + P12G̃22(k − 1, s, λ)

+ P13G̃32(k − 1, s, λ) − s

λ
C−1

1 Ũ12(k, s, λ)G̃22(k − 1, s, λ).

(c) vec(Ũ12(k, s, λ)) =
(

I + s

λ
G̃


22(k − 1, s, λ) ⊗ C−1
1

)−1

× vec(P11G̃12(k − 1, s, λ) + P12G̃22(k − 1, s, λ)

+P13G̃32(k − 1, s, λ)).

Proof. Recall the definitions of κU and κG from Section 5.1. Given the state J (κU ), it is
clear that κG and κG−κU are independent, and that the distribution of κG−κU given J (κU ) = j

is identical to the distribution of κG given J (0) = j . Therefore,

G̃(k, s, λ) = A2(s, λ) + Ũ (k, s, λ)G̃(k, s, λ),

which completes the proof of part (a). Part (c) is a direct consequence of part (b) and Lemma 3,
so we only need to prove part (b). Now, without loss of generality, by Lemma 2(b) we can
assume that S = S1 ∪ S2 (for the purposes of the proof). By its definition, it is trivial that
Ũ12(1, s, λ) = 0 since, given an initial state in S1, the level increases in the very first step of
the spatial uniformization. Thus, part (b) holds for k = 1. Assume, as an induction hypothesis,
that it holds for some k − 1 with k ≥ 2. Now consider k, and assume that i ∈ S1 and j ∈ S2.
We then have

[Ũ12(k, s, λ)]i,j =
∫ ∞

0
λcie

−λci te−st
∑
l∈S

[P ]i,l[Ĝ]l,j (k − 1, s, ci t) dt

=
∫ ∞

0
λe−λye−s/ciy

∑
l∈S

[P ]i,l[Ĝ]l,j (k − 1, s, y) dy,

and it follows from the induction assumption that

Ũ12(k, s, λ) = λ

∫ ∞

0
e−λye−sC−1

1 yP11Ĝ12(k − 1, s, y) dy

+ λ

∫ ∞

0
e−λye−sC−1

1 yP12Ĝ22(k − 1, s, y) dy

= λ

∫ ∞

0
e−sC−1

1 y[P11Ũ12(k − 1, s, λ) + P12] exp{−(λI − H(k − 1, s))y} dy.

Using integration by parts in the expression above, and the results in Lemma 2, we now find
that

Ũ12(k, s, λ) = P11G̃12(k − 1, s, λ) + P12G̃22(k − 1, s, λ)

− s

λ
C−1

1 Ũ12(k, s, λ)G̃22(k − 1, s, λ),

and the proof follows by induction.

From Lemma 4, we can now construct the following iterative scheme.

Algorithm 1. Let Re(s) ≥ 0 and fix ε > 0, k = 1, diff = 100, and λ > 0 such that

λ ≥ max
i∈S

{−[C−1Q]ii}.
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Initialize as Ũ (1, s, λ) = A1(s, λ) and G̃(1, s, λ) = (I − Ũ (1, s, λ))−1A2(s, λ).

do while (diff > ε)

k = k + 1;

Ũ (k, s, λ) = A1(s, λ);

M = (I + (s/λ)G̃

22(k, s, λ) ⊗ C−1

1 )−1;

N = vec(P11G̃12(k, s, λ) + P12G̃22(k, s, λ) + P13G̃32(k, s, λ));

vec(Ũ12(k, s, λ)) = MN ;

G̃(k, s, λ) = (I − Ũ (k, s, λ))−1A2(s, λ);

diff = maxi,j∈S |[G̃(k, s, λ)]i,j − [G̃(k − 1, s, λ)]i,j |;
end

�(s) � Ũ12(k, s, λ); G̃(s, λ) � G̃(k, s, λ).

By Lemma 4, the iterates inAlgorithm 1 are such that the kth iterates Ũ (k, s, λ) and G̃(k, s, λ)

are respectively the quantities in (11) defined using the forbidden paths of the MMFF. Therefore,
they converge to the required matrices �(s) and G̃(s, λ) as k ↑ ∞, as shown in Lemmas 1
and 2. We have already shown that, for s ≥ 0, the convergence is (entrywise) monotonic.
Furthermore, the convergence is linear since each successive iteration includes paths that go
up by one more level during a busy period; this is similar to the linear algorithm of Latouche
[10]. Indeed, by the results of [12, Chapter 8], the difference between the limit values and the
kth iterates are asymptotically O([η(s)]k) as k → ∞, where 0 < η(s) < 1 is the minimal
solution in (0, 1) of the equation sp(A0(s) + η(s)A1(s) + [η(s)]2A2(s)). (Here sp(A) denotes
the spectral radius of the matrix A.)

Remark 2. Although, in principle, the iterates of Algorithm 1 converge as required, when
implemented on a computer (a finite arithmetic machine), we have found it to misbehave due
to round-offs and truncations. A thorough numerical analysis of the iterative schemes given in
this paper has not been made. However, it is easy to show that if we choose λ using a more
stringent criterion; namely that if, in addition to the condition λ ≥ maxi∈S{−[C−1Q]ii} of
spatial uniformization, we also require that

max
i∈S

[
Re(s)

λ
C−1

]
i,i

≤ δ < 1 and 0 < max
i∈S

[
Pλ − Re(s)

λ
C−1

]
i,i

,

then the iterates remain within a bounded region of the complex plane and behave well.
This becomes obvious from the easily verified fact that, under these conditions, the matrices
Ai(Re(s), λ), i = 0, 1, 2, are nonnegative and strictly substochastic, and sum to a strictly
substochastic matrix. Thus, the matrices Ũ (k, Re(s), λ) and G̃(k, Re(s), λ) both remain strictly
substochastic. We therefore recommend implementing all the algorithms in this paper using this
more stringent scheme, so that numerical stability is maintained in the presence of round-offs
and truncations.

Henceforth, we will assume that, for each s, an appropriate λ(s) meeting the stringent criteria
established above is being used. However, to simplify our notation, we will simply write λ,
suppressing the dependence of λ on s.
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6. Quadratically convergent algorithm

An iterative procedure is said to have linear convergence if the error in the kth iteration
is O(ηk) as k → ∞, and to have quadratic convergence if that error is O(η2k

), for some
0 < η < 1. Having obtained a linear algorithm for �(s), we now examine an algorithm
resulting from Corollary 1, and then a faster version thereof. The faster version will be shown
to have quadratic convergence.

The following is an iterative scheme obtained by bootstrapping in the equations of Corol-
lary 1.

6.1. Linear algorithm

Algorithm 2. Fix ε > 0 and set diff = 100. Initialize as U∗(1, s, λ) = A1(s, λ) and
G∗(1, s, λ) = (I − U∗(1, s, λ))−1A2(s, λ).

do while (diff > ε)

k = k + 1;

U∗(k, s, λ) = A1(s, λ) + A0(s, λ)G∗(k − 1, s, λ);

G∗(k, s, λ) = (I − U∗(k, s, λ))−1A2(s, λ);

diff = maxi,j∈S |[G∗(k, s, λ)]i,j − [G∗(k − 1, s, λ)]i,j |;
end

�(s) � U∗
12(k, s, λ); G̃(s, λ) � G∗(k, s, λ).

Comparing the matrices U∗(k, s, λ) and G∗(k, s, λ) of Algorithm 2 with Ũ (k, s, λ) and
G̃(k, s, λ) of Algorithm 1, we can see that

(a) U∗(1, s, λ) = Ũ (1, s, λ) and G∗(1, s, λ) = G̃(1, s, λ);

(b) U∗
lm(k, s, λ) = Ũlm(k, s, λ) for l = 2, 3, m = 1, 2, 3, and k = 1, 2, . . . ; and,

(c) for all k = 1, 2, . . . ,

G∗(k, s, λ) = (I − U∗(k, s, λ))−1A2(s, λ),

G̃(k, s, λ) = (I − Ũ (k, s, λ))−1A2(s, λ).

Thus, the difference in the two algorithms arises from the difference in the iterates U∗
12(k, s, λ)

and Ũ12(k, s, λ). As we can see in Lemma 4(b), Ũ12(k, s, λ) satisfies

Ũ12(k, s, λ) = P11G̃12(k − 1, s, λ) + P12G̃22(k − 1, s, λ) + P13G̃32(k − 1, s, λ)

− s

λ
C−1

1 Ũ12(k, s, λ)G̃22(k − 1, s, λ), (13)

while U∗
12(k, s, λ) in Algorithm 2 satisfies

U∗
12(k, s, λ)

=
(

P11 − s

λ
C−1

1

)
G∗

12(k − 1, s, λ) + P12G
∗
22(k − 1, s, λ) + P13G

∗
32(k − 1, s, λ)

= P11G
∗
12(k − 1, s, λ) + P12G

∗
22(k − 1, s, λ) + P13G

∗
32(k − 1, s, λ)

− s

λ
C−1

1 U∗
12(k − 1, s, λ)G∗

22(k − 1, s, λ). (14)
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We draw particular attention to the indices of the U matrices arising in (13) and (14). Note
that (13) yields a linear equation for the unknown that needs to be solved, while (14) is a true
recursion. A result we will establish soon is that, despite these differences, the iterates in both
algorithms converge to the same matrices.

We begin with the following result, whose proof by mathematical induction is quite straight-
forward and, therefore, omitted.

Lemma 5. (a) For s ≥ 0, the matrices U∗(k, s, λ) and G∗(k, s, λ) are monotone nondecreasing
as k increases.

(b) For all k ≥ 1 and s ≥ 0, the matrices U∗(k, s, λ) and G∗(k, s, λ) are nonnegative and
strictly substochastic.

Let U∗(s, λ) = limk→∞ U∗(k, s, λ) and G∗(s, λ) = limk→∞ G∗(k, s, λ), for s such that
Re(s) > 0. Our next result shows that, for s > 0, U∗(s, λ) = Ũ (s, λ) and G∗(s, λ) = G̃(s, λ),
so that the iterative schemes in Algorithm 1 and Algorithm 2 yield the same results for s > 0.

Lemma 6. Let s ≥ 0. Then the following statements hold.

(a) For all k ≥ 1, U∗(k, s, λ) ≥ Ũ (k, s, λ) and G∗(k, s, λ) ≥ G̃(k, s, λ).

(b) U∗
12(s, λ) = �(s).

(c) U∗(s, λ) = Ũ (s, λ) and G∗(s, λ) = G̃(s, λ).

Proof. (a) We will prove this part by induction. Note that U∗(1, s, λ) = Ũ (1, s, λ) and
G∗(1, s, λ) = G̃(1, s, λ). From (13) and (14), we can see that

Ũ12(k, s, λ) = P11G̃12(k − 1, s, λ) + P12G̃22(k − 1, s, λ) + P13G̃32(k − 1, s, λ)

− s

λ
C−1

1 Ũ12(k − 1, s, λ)G̃22(k − 1, s, λ)

− s

λ
C−1

1 [Ũ12(k, s, λ) − Ũ12(k − 1, s, λ)]G̃22(k − 1, s, λ)

and

U∗(2, s, λ) − Ũ (2, s, λ)

= [A1(s, λ) + A0(s, λ)G∗(1, s, λ)]
−

[
A1(s, λ) + A0(s, λ)G̃(1, s, λ) − s

λ
[Ũ (2, s, λ) − Ũ (1, s, λ)]G̃(1, s, λ)

]

= s

λ
[Ũ (2, s, λ) − Ũ (1, s, λ)]G̃(1, s, λ)

≥ 0.

It then follows that

G∗(2, s, λ) − G̃(2, s, λ)

= (I − U∗(2, s, λ))−1A2(s, λ) − (I − Ũ (2, s, λ))−1A2(s, λ)

=
∞∑
i=1

[{U∗(2, s, λ)}i − {Ũ (2, s, λ)}i]A2(s, λ)

≥ 0,
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because U∗(2, s, λ) ≥ Ũ (2, s, λ). For k ≥ 2, if we assume that U∗(k, s, λ) − Ũ (k, s, λ) ≥ 0
and G∗(k, s, λ) − G̃(k, s, λ) ≥ 0, then

U∗(k + 1, s, λ) − Ũ (k + 1, s, λ)

= [A1(s, λ) + A0(s, λ)G∗(k, s, λ)]
−

[
A1(s, λ) + A0(s, λ)G̃(k, s, λ) − s

λ
[Ũ (k + 1, s, λ) − Ũ (k, s, λ)]G̃(k, s, λ)

]

= A0(s)[G∗(k, s, λ) − G̃(k, s, λ)] + s

λ
[Ũ (k + 1, s, λ) − Ũ (k, s, λ)]G̃(k, s, λ)

≥ 0,

and

G∗(k + 1, s, λ) − G̃(k + 1, s, λ)

= (I − U∗(k + 1, s, λ))−1A2(s, λ) − (I − Ũ (k + 1, s, λ))−1A2(s, λ)

=
∞∑
i=1

[U∗(k + 1, s, λ)i − Ũ (k + 1, s, λ)i]A2(s, λ)

≥ 0.

This completes the proof by induction of part (a). Note that part (c) is a direct consequence of
part (b) and Corollary 1, so we only need to prove part (b). From part (a) of this lemma and
part (b) of Lemma 1, it is enough to show that

U∗
12(s, λ) ≤ �(s) = Ũ12(s, λ),

and we will prove this by induction. First, we can easily see from Corollary 1 that

U∗(1, s, λ) = A1 ≤ Ũ (s, λ),

which implies that

G∗(1, s, λ) = (I − U∗(1, s, λ))−1A2 ≤ Ũ (s, λ))−1A2.

Now, for k ≥ 1, assume that

U∗(k, s, λ) ≤ Ũ (s, λ) and G∗(k, s, λ) ≤ G̃(s, λ).

Then, from Algorithm 2,

U∗(k + 1, s, λ) = A1 + A0G
∗(k, s, λ) ≤ A1 + A0G̃(s, λ) = Ũ (s, λ),

which implies that

G∗(k + 1, s, λ) = (I − U∗(k + 1, s, λ))−1A2 ≤ (I − Ũ (s, λ))−1A2 = G̃(s, λ).

Therefore,

lim
k→∞ U∗(k, s, λ) ≤ Ũ (s, λ) and lim

k→∞ G∗(k, s, λ) ≤ G̃(s, λ).
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Having established the above lemma, it is now a trivial matter to see that, for all s such
that Re(s) > 0, the two iterative schemes converge and yield the same transforms. We can
prove this by appealing to an analytic continuation argument or directly, using the dominated
convergence theorem, by comparing the matrices of absolute values of the iterates. We omit
the details but, in light of its importance, we state the result as a theorem.

Theorem 7. Let Re(s) ≥ 0. Then the iterative schemes in Algorithms 1 and 2 yield the required
matrices Ũ and G̃ in the limit as k → ∞.

6.2. A quadratically convergent algorithm

We now present a faster version of Algorithm 2.

Algorithm 3. Fix ε > 0 and set diff = 100. Initialize as H ∗∗(1, s, λ) = (I − A1(s, λ))−1 ×
A0(s, λ), L∗∗(1, s, λ) = (I − A1(s, λ))−1A2(s, λ), G∗∗(1, s, λ) = L∗∗(1, s, λ), and T (1) =
H ∗∗(1, s, λ).

do while (diff > ε)

k = k + 1;

U∗∗(k, s, λ) = H ∗∗(k − 1, s, λ)L∗∗(k − 1, s, λ) + L∗∗(k − 1, s, λ)H ∗∗(k − 1, s, λ);

M = (H ∗∗(k − 1, s, λ))2;

H ∗∗(k, s, λ) = (I − U∗∗(k, s, λ))−1M;

M = (L∗∗(k − 1, s, λ))2;

L∗∗(k, s, λ) = (I − U∗∗(k, s, λ))−1M;

G∗∗(k, s, λ) = G∗∗(k − 1, s, λ) + T (k − 1)L∗∗(k, s, λ);

T (k) = T (k − 1)H ∗∗(k, s, λ);

diff = maxi,j∈S |[G∗∗(k, s, λ)]i,j − [G∗∗(k − 1, s, λ)]i,j |;
end

�(s) � G∗∗
12(k, s, λ)[G∗∗

22(k, s, λ)]−1; G̃(s, λ) � G∗∗(k, s, λ).

Theorem 8. As k → ∞, G∗∗(k, s, λ) converges quadratically and, furthermore,

lim
k→∞ G∗∗(k, s, λ) = G∗(s, λ) = G̃(s, λ).

Proof. As before, it suffices to prove the result for s ≥ 0. In this case, the iterative scheme of
Algorithm 2 is precisely the linear iteration scheme of Latouche ([12, p. 170]) andAlgorithm 3 is
the Latouche–Ramaswami algorithm (see [12, p. 193]) for the QBD defined by the nonnegative
matrices Ai(s, λ), i = 0, 1, 2. Thus, the result follows from [11]; see also Chapter 8 of [12]
since the kth iterate of Algorithm 3 is in fact the (2k)th iterate of Algorithm 2. A direct proof
can be given in terms of forbidden paths that go up by at most 2k levels and by identifying
the kth iteration here as resulting from the restriction to such paths; however, given that these
details can be found in the cited references, we omit them here. Incidentally, the results in [12,
Chapter 8] also show that the error in the kth iterate is asymptotically O([η(s)]2k

).
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Remarks 3. (a) Note that a comparison of Algorithm 2 with the linear scheme of Latouche
at best only shows that the former converges. The fact that it converges to �(s) has been
established by us by comparing its iterates to those of Algorithm 1. Unfortunately, we have not
been able to develop an argument leading to Algorithm 3 directly.

(b) With s = 0, Algorithm 3 provides a powerful means to compute �(0), using which it is
easy [1] to compute the steady-state distribution of the fluid flow, when it exists.

7. Numerical results

We have shown that all the iterative schemes developed by us converge to the quantities of
interest. To facilitate their implementation, we have devised procedures that yield numerically
stable schemes that do not appear to suffer from round-off and truncation errors. While a
careful error analysis of the algorithms has not been possible yet, our experimentation thus far
has confirmed that the procedures developed by us are sound and work well. In this section,
we report on a model class studied earlier by Sericola [17] and also used by the authors in [2,
Section 8] for comparison.

0 20 40 60 80 100
0

50

100

150

200

250

It
er

at
io

n
nu

m
be

r

algorithm 1
algorithm 2
algorithm 3

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

algorithm 1
algorithm 2
algorithm 3

C
PU

tim
e

(s
)

Dimension of Q Dimension of Q

Figure 2: Comparison of the algorithms in the case s = 2 and ρ = 0.9.
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Figure 3: Comparison of the algorithms in the case s = 2 + 3i and ρ = 0.9.

The model class comprises of a fluid flow model wherein each of a set of m on–off sources
provides fluid input at rate 1 while it is on, and the combined fluid is drained at a constant rate
0.8 per unit time. The means of the on and off periods are respectively 1 and 1/γ , and the
traffic intensity of the model is given by ρ = mγ/0.8(1 + γ ). For a large number of cases, we
used our algorithms to compute the transient distribution of the fluid flow and compared the
results with those of Sericola [17] (where the latter is available), obtaining extremely favorable
comparisons for our methods.

The procedure we adopted for numerical experimentation with the algorithms is as follows.
For each problem, we considered several values of s, both real and complex. For each fixed s

value, Algorithm 3 was used to compute �(s) with ε = 10−15. The resulting value of �(s) was
used as the target value, and other algorithms were then used and iterative processes continued
until the iterates differed from �(s) by at most 10−10 in absolute value. Given, in Figures 2
and 3, are the results we obtained; our emphasis here is only on providing a glimpse of the
relative speeds of the various algorithms in computing the key transform �(s). A detailed
complexity analysis has not been performed on them. For brevity, we have shown only two
cases: s = 2 and s = 2 + 3i. For each, we plot the number of iterations and the CPU time
(in seconds) taken by each of the algorithms to reach the same level of accuracy for �. All
computations reported here were performed using MATLAB®. Each example was run 20 times,
and what is reported is the average CPU use per run.
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Based on these examples and the many others we have worked out, we can assert that we
have an excellent algorithm for computing the transient results for stochastic fluid flow models.
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