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Abstract. We prove some results on algebras, satisfying many generic relations.
As an application we show that there are Golod–Shafarevich algebras which cannot
be homomorphically mapped onto infinite dimensional algebras with finite Gelfand–
Kirillov dimension. This answers a question of Zelmanov (Some open problems in the
theory of infinite dimensional algebras, J. Korean Math. Soc. 44(5) 2007, 1185–1195).
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1. Introduction. In this paper the Gelfand–Kirillov dimension of algebras,
satisfying many generic relations, is studied. As an application, we prove some results
on the growth of Golod–Shafarevich algebras. In 1964 Golod and Shafarevich proved
the theorem given below [2].

THEOREM 1. Let Rd be a non-commutative polynomial ring of d variables over a field
K, and let I be the ideal generated by an infinite sequence of homogeneous elements of a
degree larger than one, where the number of elements of degree i is equal to ri. We put
ri ≤ si. If the coefficients of the power series

(
1 − dt +

∞∑
i=2

siti

)−1

are all non-negative, then the factor algebra Rd/I is infinite-dimensional.

We say that Rd/I is a Golod–Shafarevich algebra if there is a number 0 < t0,
such that H(t) = ∑∞

i=2 riti converges at t0 and 1 − dt0 + H(t0) < 0. Golod–Shafarevich
algebras were used to solve the General Burnside problem, Kurosh problem for
algebraic algebras and the Class Field Tower problem [1, 2]. It is known that Golod–
Shafarevich algebras have exponential growth. In [4] Zelmanov asked whether every
Golod–Shafarevich algebra can be mapped onto an infinite-dimensional algebra with
finite Gelfand–Kirillov dimension. We show that the following result holds.

THEOREM 2. Let K be a field of infinite transcendence degree. Then there is a Golod–
Shafarevich algebra R such that every infinite-dimensional homomorphic image of R has
exponential growth.
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This answers a question of Zelmanov [4, Problem 5]. It is not known if a similar
result holds for algebras over fields of finite transcendence degree. It is also not known
if finitely presented Golod–Shafarevich algebras can be homomorphically mapped
onto infinite-dimensional algebras with polynomial growth. The next result gives some
information about quadratic Golod–Shafarevich algebras.

THEOREM 3. Let K be a field of infinite transcendence degree, and let m > 8. Then
there exists a graded algebra A = A1 + A2 + . . . generated by A1, with dimK A1 = m and
presented by less than m2/4 quadratic relations, such that for every i, the subalgebra of A
generated by Ai cannot be epimorphically mapped onto the polynomial ring K [t].

This answers another question of Zelmanov [4, Conjecture3]). It is not known if in
arbitrary quadratic Golod–Shafarevich algebras almost all Veronese subalgebras can
be mapped onto algebras with linear growth or onto polynomial-identity algebras [E.
Zelmanov, private communication].

For a general information about the Golod–Shafarevich algebras we refer the
reader to [4] and about the Gelfand–Kirillov dimension to [3].

2. The main result. In this paper K is a field, and F is the prime subfield of K . Let
R be a K-algebra. Given subsets S, Q of R, let us denote S + Q = {s + q : s ∈ S, q ∈ Q},
SQ = {∑n

i=1 siqi : si ∈ s, qi ∈ Q, where n is a natural number}. Given a subset S of K ,
by F [S] we denote the field extension of F generated by elements from S and by FS
the linear space over F spanned by elements from S. Given set S, card(S) will denote
the cardinality of S. We start with the lemma given next.

LEMMA 1. Let K be a field and F be a prime subfield of K. Let R be a K-algebra and
M be a subset of R. Let N1 = M, and for each i > 1, let Ni be a subset of FMi, such that
KMi = KNi. Denote αi = card(Ni). Then there are subsets Si ⊆ K such that S1 = {1},
card(Si+1) ≤ card(Si) + αi+1αiα1 and Mi ⊆ F [Si]Ni for all i.

Proof. We will proceed by induction on i. For i = 1 it is true because N1 = M.
Suppose the result holds for some i. We will show it is true for i + 1. Observe
that Mi+1 consists of finite sums of elements mi+1 = mim1 for some mi ∈ Mi,
m1 ∈ M. By the inductive assumption mi ⊆ F [Si]Ni. Therefore, mi+1 ⊆ F [Si]NiN1.

Recall that NiN1 ⊆ KMi+1 = KNi+1. Consequently, every element nin1 with ni ∈ Ni

and n1 ∈ N1 can be written as a linear combination over K of elements from
Ni+1. Namely nin1 = ∑

ni+1∈Ni+1
kni+1,ni,n1 ni+1 for some kni+1,ni,n1 ∈ K. Denote Ki+1 =

{kni+1,ni,n1 : ni+1 ∈ Ni+1, ni ∈ Ni, n1 ∈ N1}. Observe that NiN1 ⊆ F [Ki+1]Ni+1. Denote
Si+1 = Si ∪ Ki+1. Then, Mi+1 ⊆ F [Si]NiN1 ⊆ F [Si+1]Ni+1. Note that card(Si+1) ≤
card(Si) + card(Ki+1). Hence, card(Si+1) ≤ card(Si) + αi+1αiα1.

Let K be a field, and let F be the prime subfield of K . We say that elements
a1, a2, . . . , an are algebraically independent over F if the algebra generated over F by
elements a1, a2, . . . , an is free. �

The main result of this paper is the theorem given next.

THEOREM 4. Let K be a field, and let F be the prime subfield of K. Let R be
a K-algebra, and let M be a finite subset of R. Denote α1 = card(M) and for i > 1,
αi = dimK KMi for all i. Let m, n, t be natural numbers, and let x1, . . . , xt ∈ FMm and
m > 1. Assume that there are elements ki,j ∈ K which are algebraically independent over
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F, such that for all i ≤ n we have

t∑
j=1

ki,jxj = 0.

If n > 1 + ∑m
i=2 αiαi−1α1, then

x1 = x2 = . . . = xt = 0.

Proof. Suppose the contrary, and let γ be the smallest number, such that xγ 	= 0. We
can assume that γ = 1 and x1 	= 1. Consider subsets N1 ⊆ FM, . . . Nm ⊆ FMm such
that x1 ∈ Nm. Moreover, assume that N1 = M, and for 1 < i ≤ m elements from the set
Ni are linearly independent over K . By Lemma 1, there is set Sm ⊆ K with cardinality
not exceeding c = 1 + ∑m

i=2 αiαi−1α1, such that FMm ⊆ F [Sm]Nm. This implies that
there are elements ξi,q ∈ F [Sm] for 2 ≤ i ≤ t and q ∈ Nm, such that xi = ∑

q∈Nm
ξi,qq.

By substituting these expressions for elements xi for the equations
∑t

j=1 ki,jxj = 0, we
get ki,1x1 + ∑t

j=2 ki,j(
∑

q∈Nm
ξj,qq) = 0. Elements q ∈ Nm are linearly independent over

K ; therefore the sum of the coefficients by x1 should be 0, since x1 ∈ Nm. It follows
that ki,1 + ∑t

j=2 ki,jξj,x1 = 0, for i = 1, 2, . . . , n. Denote V = {ki,j : i = 1, 2, . . . , n, j =
2, 3, . . . , t} and E = F [V ]. By the above equations, we get E[k1,1, k2,1, . . . , kn,1] ⊆
E[Sm]. Note that the field E[k1,1, k2,1, . . . , kn,1] has transcendence degree n over the
field E, by the assumptions. On the other hand, the transcendence degree of the field
E[Sm] over E doesn’t exceed the cardinality of Sm, which is smaller than n, by the
assumptions – which is a contradiction. �

3. Golod–Shafarevich algebras. Let K be a field, and let Rd = K [x1, . . . , xd ] be
the non-commutative polynomial ring of d variables over a field K . Assigning the
degree one for elements x1, . . . , xd , let us define a gradation on Rd . We say that f ∈ Rd

is a homogeneous element in Rd if f is a sum of monomials of the same degree. Let I
be the ideal in Rd , generated by homogeneous elements f1, f2, . . . of degrees larger than
one. Suppose that the number of elements of degree i among f1, f2, . . . is ri. Denote
H(t) = ∑∞

i=2 riti. Then Rd/I is a Golod–Shafarevich algebra if there is 0 < t0, such
that H(t) converges at t0 and 1 − dt0 + H(t0) < 0. By the Golod–Shafarevich theorem,
every Golod–Shafarevich algebra has an exponential growth [1, 2, 4].

Proof of Theorem 2. Let Rd = K [x1, . . . , xd ] be the non-commutative polynomial
ring of d variables over a field K . Denote M = {x1, . . . , xd}. Let ki,nj ∈ K be
algebraically independent over F elements of K , for j = 2, 3, . . ., nj ∈ Mj, i =
1, 2, . . . , 2j. Let I be the ideal in Rd , generated by 2j generic relations of degree j,
for all j > 1, namely by relations ∑

nj∈Mj

ki,nj nj,

for j > 1, 1 ≤ i ≤ 2j. Assume that d > 16. Notice that if t0 = 1/8, then H(t0) =∑n
i=2 2iti

0 < 1/8, and so 1 − dt0 + H(t0) < 1 − (d/8) + (1/8) < 0. It follows that Rd/I
is a Golod–Shafarevich algebra. Suppose now that Q is an ideal in A = Rd/I , such that
A/Q is infinite-dimensional. Given nj ∈ Mj let n̄j denote the image of nj in A/Q and M̄
denote the image of M in A/Q. Then for every number j, there is element nj ∈ Mj such

https://doi.org/10.1017/S0017089508004667 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004667


256 AGATA SMOKTUNOWICZ

that n̄j 	= 0, because A/Q is infinite-dimensional and generated in degree one. Observe
that algebra A/Q satisfies the following relations:∑

nj∈Mj

ki,nj n̄j,

for j > 1, 1 ≤ i ≤ 2j. By Theorem 4, applied to the algebra R = A/Q and the set
M̄ ⊂ R, we get

2i < 1 +
i∑

j=2

αjαj−1α1,

where α1 = card(M) = d, and for j > 1, αj = dimK KM̄j (because there is n̄i 	= 0
for every i). It follows that 2 ≤ [limsupi→∞log(dimK KM̄i)]2. It also follows that
limsupi→∞log(dimK KM̄i) ≥ √

2, and hence R = A/Q has exponential growth.

4. Quadratic algebras. In this section we will prove Theorem 3.

Proof of Theorem 3. Let Rm be the free K-algebra, generated by elements
x1, . . . , xm. Denote yi = ∑m

j=1 di,jxj, where di,j ∈ K are algebraically independent over
F . Let I be the ideal in Rm generated by relations y2

i = 0 for i = 1, . . . , 2m. Denote
A = Rm/I . Let ai be the image of xi in Rm/I and ci the image of yi in Rm/I . Then
a1, . . . , am are generators of A, and A = A1 + A2 + . . ., where A1 = Ka1 + . . . + Kam

and At = At
1. We will show that for every t, the subalgebra S(At) generated by At cannot

be mapped onto a domain, and so S(At) cannot be mapped onto K [t]. Suppose the
contrary, and let t be a natural number and f : S(At) → D be a ring homomorphism
onto a domain D. Then, 0 = f (rcicir′) = f (rci)f (cir′) = 0 for every i ≤ 2m and every
r, r′ ∈ At−1. (If t = 1 take r, r′ ∈ K .)

Since D is a domain, it follows that for each i, either f (ciAt−1) = 0 or f (At−1ci) = 0.

(We put A0 = K .) Hence, there is a set E ⊆ {1, . . . , 2m} of cardinality at least m, such
that either f (At−1ci) = 0 for all i ∈ E or f (ciAt−1) = 0 for all i ∈ E. Observe that for
every k ≤ m, ak ∈ ∑

i∈E Kci, because elements di,j are algebraically independent over
F . (So the determinant of the related matrix is not zero.)

Hence, if f (At−1ci) = 0 for all i ∈ E, then f (At−1ak) = 0 for every k ≤ m.
Consequently, f (At) = 0. Similarly, if f (ciAt−1) = 0 for all i ∈ E, then f (akAt−1) = 0
for every k ≤ m – which is a contradiction, since f (At) generates D.
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