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ON GROUPS WITH A TRIPLE FACTORISATION
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The aim of this paper is to discuss groups G = HK = HA = KA with a triple factorisation as a product of two
subgroups H and K and a nilpotent normal subgroup A. It is of interest to know whether such a group G
satisfies some nilpotency or supersolubility condition if H and K satisfy the same condition. A positive answer
to this problem is given for certain group classes under the hypothesis that A is prefactorised in G = HK.
Some applications of the main theorem are also mentioned.

1991 Mathematics subject classification: 20F19.

1. Introduction and statement of the main theorem

Following Amberg and Hofling [9], a subgroup S of a factorised group G = HK is
called prefactorised if S=(H r\S)(K n S), and if in addition S contains H n K, then S is
said to be factorised (see Wielandt [20] or Amberg [1]). If N is normal in G = HK, then
the factoriser X(N): = HN n KN can be written as follows:

X(N) = N(H nKN) = N(K n HN) = (H n KN)(K n HN),

see [1, Theorem 1.7, p. 108]. Thus the investigation of factorised groups very often
reduces to a triply factorised group G = HK = HA = KA, where A<\ G; see [7].
Moreover, it is of interest to know whether G belongs to a class of groups if H and K
belong to the class and if the normal subgroup A is nilpotent (see [2, 4, 5, 6, 7, 8 and
11]).

The first two examples will provide some motivation for our main theorem.

Example 1. Let S be a non-zero subring of the ring C of complex numbers under
the usual operations. Consider the group

' u x y
= G{S):= i\0 u z \ \ue<-l\x,y,zeS

0 0 u
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of 3 x 3 upper triangular matrices with respect to matrix multiplication. In short we
write

The following subgroups of G are required:

and

It is easily checked that G = HK = HA = KA and also that A is prefactorised in G = HK.
Furthermore G'^A n C{G), which implies that A<i G and G is nilpotent.

Example 2. Again let S be a non-zero subring of the ring C of complex numbers
under the usual operations. Consider the group

u,v6(-l},xeS},
0 v

of 2 x 2 upper triangular matrices with respect to matrix multiplication. (Note: for
simplicity we will usually suppress S.) As in Example 1 we define the following
subgroups of G:

It is readily seen that G = HK = HA = KA. Clearly A is prefactorised in G = HK. Also
A = U x £(G) is abelian and normal in G. We now note:

(i) It is easy to show that U is contained in the FC-centre of H which in turn is
properly contained in H. Now U is maximal and of index 2 in H and so U is the FC-
centre of H. Thus H is FC-nilpotent of FC-class 2. Obviously the Klein 4-group K is
FC-nilpotent. One can easily verify that A is the FC-centre of G = AK. Consequently G
is FC-nilpotent of FC-class 2, whence also FC-hypercentral and locally FC-nilpotent.

(ii) For each non-zero ideal / of the ring Z of integers one can easily show that
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G = G(I) is supersoluble, hence trivially, hypercyclic, locally supersoluble and locally
polycyclic.

In both examples we note that <4#Fit G and A is not factorised in the Wielandt
sense. This suggests our main result.

Theorem 1. Let G=HK=HA=KA be the product of two subgroups H and K and a
nilpotent normal prefactorised subgroup A of G = HK. If H and K belong to any of the
following classes, then so does G.
(a) Nilpotent, hypercentral and locally nilpotent groups.
(b) FC-nilpotent, FC-hypercentral and locally FC-nilpotent groups.
(c) Finite-by-nilpotent groups.
(d) Hypercyclic, locally supersoluble and locally polycyclic groups.

It appears as if the prefactorised condition is a rather strong condition. Nevertheless,
from the preceding discussion it is evident that we have an abundance of examples at
our disposal. In fact, the groups G = G(C) in both Example 1 and 2 satisfy the theorem,
and so do (infinitely) many of their subgroups.

The prefactorised condition is also likely to occur in some finite groups as we
demonstrate in the next example (see [9] for other cases).

Example 3. Let p be an odd prime. Replace C in Example 1 by the finite field Zp

(under the usual operations). Then G = G(IP) = HK = HA = KA, where A = A{Zp) is
normal and prefactorised in G = HK = H(Zp)K(Zp), and G is nilpotent.

We can also utilise Theorem 1 to provide simpler proofs for known results (see for
instance Section 4: Applications, and especially Corollary 2).

If we remove the prefactorised condition, then the theorem becomes false in general.
This is illustrated by an example due to Sysak [19], see Amberg [2].

Example 4. There exists a non-hypercentral group G = AB-AM=BM, where A, B
and M are abelian and M is normal, but not prefactorised in G = AB. Indeed, we have
the following general construction of such a group (see [2; pp. 1-3]): Let R be a radical
ring and let A be the set R with operation

ros = r + s + rs for every r, seR.

Then A is a group which operates on the additive group M = R + of R via the rule

mr = mor—r = m+mr for every meM, re A.

Consider the semi-direct product G = Av. M = {(r,m)\reA, meR} with multiplication
defined by
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(r, s)(r', s') =(r + r' + rr', s + s'+sr').

Identify the subgroups {{r,0)\reA}, {{0,m)\meR}^R+ and {{r,r)\reA} of G with A,M
and B respectively. Then it can be shown that G = AB = AM = BM, where A, B and M
are abelian and (A n M)(B n M)= 1 = C(G).

2. Notation and preliminaries

Our notation is standard (see [7], [17] or [18].
The terms of the lower central series of G will be denoted by yr(G) for r>0, with the

usual convention that y2(G) = G', the derived group of G.
The terms of the upper central series of G will be denoted by (r(G) for r^O, with

C,(G) = C(G), the centre of G.
Recall that the FC-centre F^G) of a group G is the set of all elements of G which

have only finitely many conjugates in G. The upper FC-central series of G is defined by
the rules:

FO(G) = 1,
Fx+l{G)/Fa{G) = the FC-centre of G/Fa(G) for every ordinal a,
Fy(G) = (Jp<yFp(G) for limit ordinals y.

A group G is called FC-hy'per-central if FZ(G) = G for some ordinal T, and G is said to
be FC-nilpotent if r is finite.

The following two lemmas will be needed in the sequel.

Lemma 1. Let G = HK be factorised by H and K, with N a normal prefactorised
subgroup ofG. IfL-oG, then NL/L is prefactorised in G/L = (HL/L)(KL/L).

Proof. The easy proof is left as an exercise.

Lemma 2. Let G = HA, where H and A are nilpotent subgroups and A<\ G. If No G
and if yr(N) ^H n A for some positive integer r, then N is nilpotent.

Proof. First of all assume that A is abelian. We prove by induction on t that
yr+,(N)^yt + i(H) n A. The case t=\ is evident from the normality of H n A in G. For
£>1 it follows readily that yr+((N)^[}'l.+I_1(N),H]^yI + i(//) n A, which completes the
induction. The nilpotency of H now clearly forces N to be nilpotent. On the other hand,
if A is not abelian, then a routine check shows that yr(NA'/A')^(HA'/A')n(A/A').
Hence by the first part of the proof it is clear that NA'/A' is nilpotent. By Fitting's
Theorem [18; 5.2.8, p. 128] NA/A' is nilpotent. Now P. Hall's nilpotency criterion [18;
5.2.10, p. 129] yields NA is nilpotent, whence so is N.
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3. Proof of Theorem 1

The proof of the theorem will be accomplished in a series of steps.

3.1. Proof of Theorem l(a).

(i) The nilpotent case: By P. Hall's nilpotency criterion and Lemma 1, we may assume
that A is abelian. Thus HnA and KnA are normal in G = HA = KA. Clearly
G = K(H n A), which implies that G/(H n A) is nilpotent. Consequently G is nilpotent by
Lemma 2.

(ii) The hypercentral case: By Robinson [16; Theorem 3, p. 228] and Lemma 1, we
may assume that A is abelian. Then the normal subgroup HnA of HA = G is
centralised by A and it is normalised by H. Now since H is hypercentral, it follows that
HnA contains a non-trivial central element of G, which means that d(G)#l. By
Lemma 1 the prefactorised property is inherited by every quotient group of G. Therefore
G is hypercentral.

(iii) The locally nilpotent case: In view of [16, Theorem 3, p. 230] and Lemma 1 we
may assume that A is abelian. It follows that L = HnA is normal in HA = G. Since
G = KL we have that G/L^K/(K nL) is locally nilpotent. Let U be a finitely generated
subgroup of G. Then UL/L=U/(U n L) is finitely generated and hence nilpotent. So we
may assume that 1 / n L / l . Therefore by [17, Part 1, Lemma 1.43, p. 32] there exists a
finitely generated subgroup E of UnL such that U nL = Ev, because U/(UnL) is
finitely presented. Put U= (tul,...,ut) and write u,-=a,-/il-, where atsA and /i,eH.
Consider the subgroups H, = (hu...,ht} and A, = <«,,...,«,> of U. Since L centralises A,
it follows that H, normalises UnL. For each element u e U we obtain that E" = E\ for
some heHt. Now it is easily checked that

This implies that

Clearly <£,//,> is nilpotent. Thus <£,//,) satisfies the maximal condition on sub-
groups, whence UnL is finitely generated. This implies that M = (U n L,Ht} is
nilpotent. So since A centralises the normal subgroup ( / n L of M, there is a positive
integer c such that [C/n L, CMA~] = 1. Now U is clearly contained in MA. Therefore U is
nilpotent and hence G is locally nilpotent.

3.2. Proof of Theorem l(b).

By virtue of [3, Proposition 3.1, p. 108] and Lemma 1 we may throughout this proof
assume that A is abelian.

(i) The FC-nilpotent case: Denote the upper FC-central series of H by
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1 = F0(H) ^ F^H) *S ^ F,(H) ^ ^ Fn(H).

Clearly we may assume that the normal subgroup H n A of HA = G is non-trivial. So by
[17, Part 1, Lemma 2.16, p. 47] we have that Fi{H)r\A^l. Since G = K(HnA) it
follows that G/(HnA) is FC-nilpotent. The fact that A centralises each Ft(H)r\A
implies that each F,(//) n A is normal in G. It is now easily checked that G/(F,-(//) n /I)
is FC-nilpotent, for each i=l,...,n. In particular, G/Ft(H) is FC-nilpotent. It is also
clear that Fj(//)n,4 is contained in Fi(G), whence C/Fj(G) is FC-nilpotent. Therefore G
is FC-nilpotent.

(ii) The FC-hypercentral case: Analogously as in the FC-nilpotent case above one can
show that Fi{G)¥=\- Clearly by invoking Lemma 1 we conclude that G is
FC-hypercentral.

(iii) The locally FC-nilpotent case: Clearly L = HnA is normal in HA = G. Further-
more, G = KL and so G/L^K/(K n L) is locally FC-nilpotent. Let B be a finitely
generated subgroup of G. Then BL/L is FC-nilpotent and we infer from [13, Theorem 2,
p. 40] that it is finitely generated nilpotent-by-finite. Moreover, it follows that
B/(B nL)^ BL/L is finitely presented. Consequently there exists a finitely generated
subgroup E of BnL such that BnL = EB. Set B = (bu...,b,'} and write fe, = a,/J(, where
a{eA and hteH. Consider the subgroups Ht = (hu...,hty and i4, = <a,,...,a,> of B.
Then since L centralises ,4, it follows that H, normalises BnL. For each k B we now
obtain that Eb = Eh, for some h e Ht. Therefore

and hence

Since H is locally FC-nilpotent, it again follows by [13, Theorem 2, p. 40] that the
finitely generated subgroup <£,//,> of// is nilpotent-by-finite. This implies that <£,//,>
satisfies the maximal condition on subgroups. It follows that B n L is finitely generated
and so M = (BnL,H,)> is FC-nilpotent. Now since BnL is normal in M, there exists
an FC-central series BnL = Bl^ •• ^ B ; ^ - - ^Bn= 1 of M. Obviously A centralises
BnL and so this is also an FC-central series of MA. Moreover, since B^MA it is
apparent that B n L is contained in some term of finite ordinal type of the upper FC-
central series of B. Thus B is FC-nilpotent and hence G is locally FC-nilpotent.

3.3. Proof of Theorem l(c).

The fmite-by-nilpotent case: By [17, Part 1, Theorem 4.25, p. 117] and Lemma 1, we
may assume that A is abelian. Moreover, a further application of the aforementioned
result from [17] yields that | / / :( r( / /) | is finite, for some positive integer r. Obviously we
may assume that H n A i= 1. Suppose now that the normal subgroup H n A of HA = G is
infinite. Then it has non-trivial intersection with C£H). This implies that £(//) n A # 1 . So
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it follows that ((G) # 1 and we are done. On the other hand, if H n A is finite, then
G/(// n A)^K/(K n H n A) is finite-by-nilpotent and so G is finite-by-nilpotent.

3.4. Proof of Theorem l(d).

(i) The hypercyclic case: By invoking [16, Theorem 2, p. 228] and Lemma 1 it may be
assumed that A is abelian. Consequently the normal subgroup H n A of the hypercyclic
group H has an ascending //-invariant series with cyclic factors. However, since A
centralises the normal subgroup H n A of HA = G the series is indeed G-invariant. The
fact that G/(H n A) s K/(K n H n A) is hypercyclic finally forces G to be hypercyclic.

(ii) The locally supersoluble case: Using [16, Theorem 3, p. 230] and Lemma 1, we
may assume that A is abelian. Let U be a finitely generated subgroup of G. By
exploring similar arguments as in the proof of the locally nilpotent case 3.1 (iii), one can
show that the normal subgroup U n H n A of U has a finite [/-invariant series with
cyclic factors. However, the fact that U/(Ur\HnA) is clearly supersoluble guarantees
that U is supersoluble. Thus G is locally supersoluble.

(iii) The locally polycyclic case: Again by [16, Theorem 3, p. 230] and Lemma 1 we
may assume that A is abelian. Then it is obvious that G/(H n A) is locally polycyclic.
Let U = (uu...,u,y be any finitely generated subgroup of G. It follows that the factor
group U/(UnHnA) is polycyclic. So there are finitely many elements vu...,vs such
that

Put ui = hiai where hteH and ateA ( l g i ^ t ) - Now write U, = AH,, where / / , =
</ii,...,h,}. It follows that

and hence every group vf is polycyclic. From this we conclude that U n / / n A is
polycyclic. This implies that U is polycyclic, in which case G is locally polycyclic. This
completes the proof of Theorem 1.

4. Applications

We are in position to supply alternative proofs for two well-known results.

Corollary 1. (See [5,7 or 8]) If the finite group G = HK = HA = KA is the product of
nilpotent subgroups H, K and A with A<± G, then G is nilpotent.

Proof. Write F = Fit G and observe that G = HK = HF = KF. We infer from [14,
Corollary, p. 82] that F is prefactorised in G = HK. So G is nilpotent by Theorem 1 (a).

This is of course not the classical result of Kegel [12] (for that see Amberg and
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Fransman [8, Theorem A, p. 10]). Indeed, it is not clear to us how Theorem 1 could be
used to derive Kegel's result.

However, in the final corollary we are able to give a surprisingly short proof, thereby
avoiding quite heavy tools such as cohomology theory and splitting theorems for
infinite groups (see [10]).

Corollary 2. (See [10, Lemma 4, p. 387]) Let G be a minimax group and suppose that
G=HK=HA=KA where H, K and A are nilpotent and A<iG. Then G is nilpotent.

Proof. Obviously G = HK = HF = KF, where F = Fit G. Since G is soluble we can
apply [2, Theorem 5.1, p. 10] to obtain that F is prefactorised in G = HK. But F is
contained in the Baer radical of G, which is nilpotent (see [15, Lemma 6.4, p. 46]).
Therefore F is nilpotent and hence G is nilpotent by Theorem 1 (a).
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