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Abstract. The generic multiverse was introduced in [74] and [81] to explicate

the portion of mathematics which is immune to our independence techniques.
It consists, roughly speaking, of all universes of sets obtainable from a given

universe by forcing extension. Usuba recently showed that the generic multi-

verse contains a unique definable universe, assuming strong large cardinal hy-
potheses. On the basis of this theorem, a non-pluralist about set theory could

dismiss the generic multiverse as irrelevant to what set theory is really about,

namely that unique definable universe. Whatever one’s attitude towards the
generic multiverse, we argue that certain impure proofs ensure its ongoing rel-

evance to the foundations of set theory. The proofs use forcing-fragile theories

and absoluteness to prove ZFC theorems about simple “concrete” objects.

1. Introduction

Purity of mathematical proof as an ideal dates at least to Aristotle’s Posterior
Analytics. Aristotle believed that proofs appealing to concepts outside of the domain
of the claim to be shown—impure proofs—could not reveal the true grounds of the
claim, and even cites proving geometrical theorems with the aid of arithmetic as
impure methodology.1 Two millennia later, Arana and Detlefsen describe a pure
proof as one in which the only resources used in the proof are in some sense intrinsic
to the theorem proved [5, p. 1]. The central topic of this paper is a class of wildly
impure proofs—indeed, it is difficult to conceive of a less pure style of proof. Suppose
we want to prove a statement ϕ in Zermelo-Fraenkel set theory with the axiom of
choice (ZFC). We work in a universe of set theory. Then we force some theory,
e.g. ZFC + the Continuum Hypothesis (CH), which will be useful to us in proving
ϕ. We “step into” the resulting forcing extension—another universe of set theory—
and show that ϕ holds there. Assuming ϕ is of low enough logical complexity, it
will be absolute between universes of set theory. So, since ϕ holds in the forcing
extension satisfying CH we have passed into, we may conclude that it already held
in the universe we started working in—even if the original universe thinks 2ω is ℵ54.
The ϕ’s we discuss are from the fields of computability theory, definable equivalence
relations, number theory, graph theory, combinatorics, and functional analysis.

The title of this paper is the claim we aim to emphasize, for it seems to get
somewhat lost in the pluralism/nonpluralism debate in the philosophy of set theory.
We will define the generic multiverse precisely in §2. Suffice it to say, in terms
of motivation, that the generic multiverse arises from the phenomenon of forcing
in set theory. A universe W of set theory is a ground of a universe U if U is
a forcing extension of W . Starting with a universe W of set theory, the generic
multiverse is the collection of universes of set theory which are either realizable as
forcing extensions of W or are grounds of such extensions. Forcing and, implicitly,

1See 75a29-75b12.
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2 DOUGLAS BLUE

the generic multiverse have greatly influenced discussions of mathematical truth.
To use the prototypical example, there seem to be “equally preferable” universes
of set theory U and W such that CH is true in U and false in W . Pluralists
about set theory take this to be the case. At the least, this seeming motivates the
question: Does CH have a determinate truth value? There are disparate views on
this question, but one which arises naturally from the generic multiverse is (generic)
multiversism, the view according to which the meaningful statements of set theory
are those which are true or false in all models of the generic multiverse. (On this
view, CH is indeterminate.) By establishing the titular claim, we establish that there
is a weak sense in which multiversism is right: The generic multiverse is relevant
to any conception of set theoretic truth, even nonpluralist or “universist” ones.

What we are after are results which use forcing fragile pieces of higher set
theory—theories which can be forced to hold and forced to fail. We want proofs
which show that forcing extensions can be useful outside of higher set theory. The
characteristic properties of the proofs we discuss are (1) the use of a forcing exten-
sion satisfying a theory extending ZFC and (2) absoluteness.2 The proofs are not
applications of the Baire category method to establish ZFC theorems.3

The project can be contrasted with H. Friedman’s. Friedman aims to produce
non-metamathematical statements of number theory and analysis—ideally state-
ments which number theorists and analysts would want to know the truth values
of—whose proofs require (the consistency of) large cardinals, thereby showing that
large cardinals are necessary for non-set theoretic mathematics.4 The aim of this pa-
per is much less ambitious. We aim only to establish that forcing-and-absoluteness
proofs show that the generic multiverse provides problem solving tools for proving
ZFC theorems, and insofar as it is useful in this way, it is here to stay as an object
of foundational relevance.

§2 introduces the generic multiverse and why one might think it is dispensable.
§3 describes the collection of proofs. We discuss what these proofs do and do not
support, philosophically, in §4. In §5 we consider an objection arising from the
impurity of forcing and absoluteness proofs. We suggest that impurity of proof has
a role to play in increasing our confidence in the coherence of the generic multiverse
and set theory generally.

2. Dispensing with the generic multiverse

Suppose we want to prove that a statement ϕ is relatively consistent with ZFC.
Given a ground universe W satisfying ZFC, we find an appropriate partial order P
in W , and construct from a filter G meeting every dense subset of P to obtain the
forcing extension W [G]. If ϕ is true in W [G], then we have shown that if ZFC is
consistent, then so is ZFC + ϕ.

Forcing has been used to show that many mathematical propositions are not
decided on the basis of the ZFC axioms via such relative consistency proofs. For
example, Borel’s conjecture that any set of strong measure zero is countable and
Kaplansky’s conjecture that every homomorphism on C[0, 1] is continuous are each

2This class of proofs was mentioned by Martin in [56] as evidence that “the effect of independence
proofs on mathematics is not entirely negative” [p. 83]. That is, the techniques can prove ZFC
theorems, not only relative consistency results.
3See [60].
4See the forthcoming [30].
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independent of ZFC.5 The intractability of CH is infamous. Not only can it be forced
and unforced, but the same is true in the presence of large cardinal axioms, and, by a
theorem of Solovay [72], the cardinality of the continuum “can be anything it ought
to be.” On the basis of these results about CH in particular, forcing has led some
philosophers and set theorists to reject the idea that there is an intended universe
V of set theory. To them, it no longer makes sense to ask whether Kaplansky’s
conjecture is true simpliciter—one must ask whether it holds in this or that universe
of set theory.

This relativism is in some sense a recurrence of an earlier worry about intended
interpretations of set theoretic discourse. That worry was precipitated by Skolem’s
paradox in the 1920s. Skolem saw the non-absoluteness of countability as a reason
to give up set theoretic foundations altogether, since its axioms cannot pin down
a unique structure, and von Neumann took it to indicate that higher set theory is
meaningless [80, p. 413]. While with hindsight we can say that these reactions were
predicated on an unrealistic expectation (that our foundational theory should have a
categorical domain), the power of forcing as a model construction technique and the
mathematically central statements it showed to be independent inspired a deeper
“second generation” of this worry. Logicians had become comfortable with the non-
absoluteness of countability. But forcing showed more than the non-absoluteness
of a notion. It showed that there are infinitely many foundational theories which
disagree about mathematical propositions, and their models are interesting.6 Some
set theorists and philosophers, including Cohen [16], Shelah [68], Field [28], and
Hamkins [38], began to feel that the idea that set theory is about a unique universe
V is at odds with the practice.

Views on the importance of forcing extensions to the question of whether there
is an intended interpretation, or to the intended interpretation itself, can be ar-
ticulated with reference to the generic multiverse, which is given by the following
theory.78 The multiverse language is the language of set theory with sorts for uni-
verses of set theory and for sets.

Definition 1 (Steel). The multiverse theory consists of the following axioms.

(1) ϕW , for each axiom ϕ of ZFC and each universe W .
(2) (a) Every universe is a transitive proper class, and an object is a set iff it

belongs to some universe.
(b) If U is a universe, and U = W [G] for some G which is P-generic over

W , then W is a universe.
(c) If W is a universe and P ∈ W is a forcing notion, then there is a

universe of the form W [G], where G is P-generic over W .
(d) If U,W are universes, then there are G,H which are generic over them

such that W [G] = U [H].

The multiverse language is a sublanguage of the language of set theory, and the
multiverse theory is conservative over ZFC.

5By work of Luzin and Laver in the former case, and Solovay and Woodin in the latter.
6Moreover, when forcing over countable transitive models, forcing extensions are standard.
7We work with Steel’s conception, but note that Steel’s and Woodin’s give the same set of generic

multiverse truths, those statements which are true in every universe in the generic multiverse.

Woodin’s version does not have the amalgamability property, and it is not formally axiomatizable.
8[53] is an extended discussion of Steel’s conception.
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Steel [74] describes three views one can have on the generic multiverse and its
relation to the purported intended interpretation of set theory. Weak Relativism is
the view that all statements in the language of set theory are expressible in the
language of the multiverse. The generic multiverse is all there is to set theory, in
essentially the way that generic multiversism holds that the truths of set theory are
those which are invariant in the generic multiverse. Strong Absolutism holds that
there is an intended universe V of set theory, but the generic multiverse has no
bearing on it. The generic multiverse language is too impoverished to capture the
meaning of talk about V : It makes sense to talk about V , but this sense cannot
be captured in the multiverse language. Weak Absolutism is the view that one can
talk meaningfully about V in the language of the generic multiverse, and hence V
is “present” in the multiverse. Precisely speaking, weak absolutism is the math-
ematical claim that there is a unique, definable world in the multiverse.9 This is
equivalent to the generic multiverse containing a model from which all others arise
as forcing extensions, a “core.” Steel concludes that, unless and until we are in a
position to specify V , it makes sense—for the weak relativist and weak absolutist
at least—to conceive of set theory as taking place in the generic multiverse, rather
than in an intended model.

It is now a theorem of Usuba [79] that if there exists an extendible cardinal,
then the weak absolutist thesis is true: The generic multiverse has a core. Usuba’s
theorem can be interpreted as grounds for doing away with the generic multiverse.10

After all, the generic multiverse is a formalization of a conception of set theory
(i) which was well supported by the independence phenomena and (ii) in which
no universe of set theory, on the face of it, stands out over any other. For the
Relativist had a point: not enough had been done to specify the V which non-
pluralists insisted exists. Whether there is such a V should be treated as an open
question, and Steel put forth the generic multiverse as a framework for developing
set theory in which an investigation into this question could take place. Usuba’s
theorem shows that within this neutral framework, one can uniquely identify a
world. And it is a consequence of the Definability of Grounds11 that if the generic
multiverse has a core, then the core is V . By a theorem of Woodin [81], the theories
of forcing extensions in the generic multiverse reduce to the theory of the core. So
V can figure out these theories; the generic multiverse is unnecessary. With Usuba’s
theorem in hand, the framework that allowed V to be identified can be kicked away.

9In contrast to the other views, the content of the weak absolutist view is a mathematical claim.
Steel calls it the Weak Absolutist Thesis.
10Weak Relativism only claims that the meaningful statements of set theory are those expressible
in the language of the multiverse. Since Usuba’s theorem implies that “V̇ ” is meaningful in that

language, the Weak Relativist assents to talking about it. Results about definability in the language
of the generic multiverse remain irrelevant to the Strong Absolutist, since she has antecedently
decided that the multiverse language has no bearing on V . As a consequence, the Strong Absolutist

cannot immediately infer that the core is V .
11Laver [52] and Woodin [81] independently showed that if W [G] is a forcing extension of a ground

universe W , then W is definable in W [G] from parameters, namely the powerset of the cardinality
of the forcing. The property of being a forcing extension is thus first order (so forcing extensions
in the generic multiverse “know” they are not the core). In fact there is a uniform definition of

the grounds of a forcing extension, see [31].
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If the Weak Absolutist adds the statement “V is the HOD of a model of de-
terminacy”12 to the multiverse theory, and if that statement is consistent with all
Σ2-definable large cardinal notions, then it is hard to see that we lose any mathe-
matics. We get a complete conception of V which founds everything mathematics
uses. Why not adopt this theory and turn attention to the core, dispensing with
the generic multiverse and the rival theories whose interconnections it allows us to
study?13

We will argue that this interpretation of Usuba’s theorem is too quick by il-
lustrating the utility of figuratively “hopping around the multiverse” in acquiring
mathematical knowledge relevant to all parties, relativist or absolutist. Specifi-
cally, this paper aims to (1) push back on the sentiment recorded in [58] that the
generic multiverse is dispensable or assailable and (2) document a body of forcing-
and-absoluteness proofs which use higher set theory to prove ZFC theorems about
concrete objects.

3. Forcing to prove theorems about the core

An immediate corollary of Shoenfield’s Absoluteness Theorem is that the truth
value of a logically simple enough statement cannot be changed by passing to a
forcing extension.

Theorem 2 (Shoenfield). (ZFC) If ϕ is a Σ1
2 formula and P is a forcing notion,

then

W [G] |= ϕ⇔ V |= ϕ,

where G is P-generic over W .

Such a formula ϕ is absolute between transitive models of set theory. In the
generic multiverse setting, Shoenfield’s theorem says that all worlds agree on Σ1

2

sentences. This opens the door to investigating problems in carefully tailored forcing
extensions of W .

Building on Shoenfield’s work, Platek proved metamathematical results which
give conditions under which one can eliminate appeals to GCH and the axiom of
choice in proofs of ZF theorems.

Theorem 3 (Platek [63]). Let ϕ be a sentence in the language of set theory.

(1) If ϕ is Π1
4 and ZFC + GCH ` ϕ, then ZF ` ϕ.

(2) If ϕ is Π2
1 and ZFC + GCH ` ϕ, then ZF + ℵ1-DC ` ϕ.

(3) If ϕ is Πn+2
1 and ZFC + “GCH holds for κ ≥ in” ` ϕ, then ZFC ` ϕ.

Remark. As observed by an anonymous reviewer, item (2) can be improved, using
a forcing-and-absoluteness proof, to show that ϕ is provable in ZF + DC. Let ϕ be
Π2

1 and A ⊆ R. Generically wellorder the reals of L(A,R) via G. Then L(A,R)[G]
is a model of ZFC, and hence L(A,R)[G] |= ϕ. Then ϕ is downward absolute to
L(A,R). DC is required so that there are no new reals in L(A,R)[G]. a

12Woodin’s axiom V = Ultimate-L, which says that there is a proper class of Woodin cardinals

and every true Σ2 sentence reflects into the HOD of L(A,R) where A is universally Baire, is one
way of formally explicating this. See [82, Definition 7.14]. This is expressible in the multiverse

language.
13Meadows’ reading [58] of Woodin’s arguments in [81] construes Woodin’s position as rejecting

the generic multiverse in this way, albeit on the basis of different arguments.
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Each result is best possible for the respective levels of logical complexity. (Item
(1) cannot be improved because there is a form of choice which is Σ1

4 and unprovable
in ZF [44], and item (2) cannot be improved because CH is Σ2

1 and unprovable in
ZF.) Platek’s theorem captures the reason why we cannot claim in general that
the proofs to be described show that the generic multiverse is formally necessary:
By their very nature, any such appeal to a world in the generic multiverse may be
eliminable.

Following [74], by concrete mathematics, we mean mathematics that is about the
natural numbers, the real numbers, or absolutely definable sets of real numbers. We
refer to set theories extending ZFC collectively as higher set theory. The structure of
the proofs to follow is: We begin in a ground universe W of ZFC. We want to prove
a statement in concrete mathematics, say of complexity Σ1

2. We pass to a forcing
extension W [G] of higher set theory, e.g. ZFC+¬CH. We show that W [G] |= ϕ, and
we conclude via absoluteness that W |= ϕ. We have used forcing and absoluteness
to prove a ZFC proposition about concrete mathematics using higher set theory.

Here is a simple example. Recall that a real x is Turing reducible to a real y
(x ≤T y) if there is a Turing machine which, given information about the bits of y,
can compute x. A Turing degree is an equivalence class of real numbers x, y which
can compute each other (x ≤T y and y ≤T x).

Theorem 4 (Kleene-Post). There are ≤T -incomparable Turing degrees.

We give a folklore proof. If there were no incomparable Turing degrees, then
≤T would be a linear order. Any Turing degree can compute only countably many
Turing degrees, so the cofinality of the degrees could be at most ω1. Then there must
be ω1-many Turing degrees, and since there are continuum-many Turing degrees,
we get that CH holds. Now we pass into a forcing extension V [G] in which 2ω > ω1.
Let ϕ be the Σ1

1 statement that there are two incomparable Turing degrees. Clearly
V [G] |= ϕ, since V [G] |= ¬CH. Moreover, ϕ is sufficiently simple so that Theorem
2 applies. Hence there are incomparable Turing degrees. a

There is no content in the theorem which suggests anything beyond recursion
theoretic tools is needed for its proof, and indeed the original proof is purely re-
cursion theoretic, using an oracle for 0′ and a finite extension construction. The
original proof explicitly constructs incomparable degrees so that one sees what dis-
rupts the computation of one degree from the other. So we have a case in which
Aristotle was right: the pure proof is preferable. The proof above is something that
a set theorist with little knowledge of recursion theory might come up with when
told that there are incomparable degrees.14

In the proof, we passed to an extension satisfying ZFC + ¬CH. Suppose for
the sake of discussion that CH is actually true (whatever that means). Then we
proved a true statement using a false theory. If statements of higher set theory have
determinate truth values, some subset of the proofs to come do the same. This
is a Hilbertian circumstance: mere consistency (of the higher set theory) implies
existence (of the concrete state of affairs to be shown).

3.1. The proofs. This section documents some forcing-and-absoluteness proofs of
ZFC theorems about concrete objects. Others are collected in Appendix A. Since

14In the context of hyperdegrees, if one did not know Spector’s measure theoretic proof that there
are incomparable hyperdegrees [73], it is plausible that one would come up with a proof like the

above using Σ1
2 absoluteness.
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my foremost purpose is to show that the method has something to tell us about
the relevance of the generic multiverse to the foundations of set theory, and to
foreground ensuing discussions in §4 and §5, I have opted to give diverse examples
accompanied by remarks about their individuating features. The nonexpert reader
can skim this section. The key takeaway is that there are forcing-and-absoluteness
proofs such that

• bespoke forcing extensions are used (Theorems 18, 19, 22, 23)
• bespoke generic absoluteness theorems are invoked (Theorems 11, 21, 35)
• generic absoluteness is invoked multiple times (Theorems 18, 35)
• distinct forms of generic absoluteness are invoked (Theorem 15)
• successive forcing extensions are taken (Theorem 22)
• a forcing extension satisfying ZFC is appealed to in proving a ZF+DC+AD

theorem (Theorem 8)
• mutual genericity is used to pull a fact into the ground universe from two

forcing extensions (Theorem 20)
• the language of forcing arguably allows the result proved to be stated in its

full generality, and in a readily applicable way (Theorem 20)
• CH is not a source of counterexamples but of useful structure (Theorems

8, 11, 29, 37)
• ¬CH is essential to the argument, perhaps in the form of MA +¬CH (The-

orems 22, 35, 16, 31)
• the argument adapts mutatis mutandis to prove stronger theorems in an

extension of ZFC (Theorems 5, 14, 18, 32)
• an object is constructed generically and shown, by absoluteness, to exist in

an inner model of the ground universe (Theorem 28)
• a finite object is generically constructed (Theorem 24)
• large cardinals are used (Theorem 33)
• the result established shows that forcing-and-absoluteness may suffice to

solve a further problem (Theorem 28)
• their pure or classical counterparts predated them (Theorems 4, 5, Theo-

rems 20, 21, 22, 23)
• their pure counterparts postdated them (Theorems 6, 35, 18, 37)
• no pure proof is currently known/published (Theorems 28, 8, 11, 31, 32,

33, 24)
• they are preferred to their pure counterparts by experts for epistemic or

methodological reasons (Theorems 5, 6, 18, 19, 20, 21, 22, 23)

The quotable forms of generic absoluteness appealed to include Shoenfield abso-
luteness, Martin-Solovay’s Σ1

3-absoluteness, and Stern’s absoluteness. The theorems
come from computability theory, definable equivalence relations, the partition cal-
culus, number theory,15 analysis, graph theory, and functional analysis.

3.1.1. Harrington’s proof of the Halpern-Läuchli Theorem. The first example is not
quite a forcing-and-absoluteness proof, but it has implications for the study of pu-
rity. Halpern and Läuchli wanted to produce a model of ZF+¬AC + “every Boolean
algebra contains a prime ideal.” At the time, it was known that the statement “ev-
ery Boolean algebra contains a prime ideal” cannot be proved in ZF alone, but is

15The example below, the Ax-Kochen theorem, was proved by working in Gödel’s L and applying
absoluteness. A forcing extension satisfying CH works just as well.
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provable with AC. The goal was to show that the theory is of intermediate strength
between ZF and ZFC. The Halpern-Läuchli Theorem, a Ramsey-like Theorem for
finite products of finitely branching infinite trees without terminal nodes, is a step
toward that goal. It was proved with metamathematical methods in the 1966 pa-
per [37], where the authors characterized their proof as “dissatisfying” due to its
indirectness. In 1978, Harrington gave a proof which, despite the current variety of
alternative proofs, “is regarded as providing the most insight” by Ramsey theorists
[20, p. 2], for whom the theorem is a widely applicable tool. It was Harrington’s
argument that was generalized by Shelah to establish a version of Halpern-Läuchli
for higher cardinals [66] and which motivates a research program on variations of
Halpern-Läuchli by Dobrinen and Hathaway and others (see [21, 22]).

Let T (n) be the nth level of T , i.e. the set of sequences in T of length n. We
refer the reader to [20] for the definition of strong subtree.

Theorem 5 (Halpern-Läuchli [37]; Harrington (see [20],[24])). Let Ti ⊆ ω<ω, for
each i < d < ω, be a finitely branching tree, and let

c =
⋃
n<ω

∏
i<d

Ti(n)→ k,

for some k < ω, be a coloring. Then there are an infinite set of levels L ⊆ ω and
strong subtrees Si ⊆ Ti, each with nodes exactly at the levels of L, such that c is
monochromatic on ⋃

n∈L

∏
i<d

Si(n).

Harrington’s proof uses the Cohen forcing adding d×κ-many Cohen reals to add
κ-many infinite paths through the trees Ti, where κ = i2d. It uses the forcing and
the forcing language to inductively search for the next monochromatic levels of the
strong subtrees.

The reason that Harrington’s proof does not fit the forcing-and-absoluteness
proof template exactly is that it neither uses absoluteness (although part of the
proof is an argument about what is preserved in c.c.c. forcing) nor requires actu-
ally working in a forcing extension. It only requires combinatorially analyzing the
forcing. Yet it is highly impure.

3.1.2. Silver’s Dichotomy. Silver’s proof of his well-known theorem on coanalytic
equivalence relations used forcing and absoluteness.

Theorem 6 (Silver [70]). Let E be a coanalytic equivalence relation on ωω with
uncountably many equivalence classes. Then there is a perfect set of mutually E-
inequivalent reals.

Silver’s Dichotomy extends to the coanalytic sets Suslin’s theorem that every
analytic set has the perfect set property. It shows that coanalytic equivalence re-
lations satisfy Vaught’s Conjecture and is regarded as a first step historically in
understanding the hierarchy of definable equivalence relations. Silver’s proof uses
GCH despite being about definable relations on reals. This appeal to higher set
theory was quite unusual, as proofs of other descriptive set theoretic dichotomies
were local. Silver shows that Theorem 6 is a Π1

3 statement and appeals to the folk-
lore result that any statement of this complexity proved in ZFC + GCH is provable
in ZF [70, §3].

Silver observed that

https://doi.org/10.1017/S1755020324000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000297


THE GENERIC MULTIVERSE IS NOT GOING AWAY 9

Since our theorem can be formulated in the language of so-called
“analysis” or “second-order number theory”, it might be expected
that it could be proved within the usual axiomatic system for
second-order number theory. Such is the case for almost all other
statements of second-order number theory which are known to be
provable in ordinary set theory and do not have a metamathcntati-
cal content. In fact, the only statements known to be counterexam-
ples to this rule relate to Borel determinacy. . . On the other hand,
for all we know, it may yet be possible to find a proof of the theorem
of this paper within second-order number theory. [70, p. 2]

Before [70] went to press, Harrington found such a proof using effective descriptive
set theory.16 This is the proof that is taught, and it is presented in the standard ref-
erence on set theory.17 It uses what is now called the Gandy-Harrington forcing—the
topology generated by the effectively analytic sets—which has become a standard
tool in proving dichotomy theorems in the theory of definable equivalence relations
(the Glimm-Effros dichotomy, Solecki’s dichotomy, and Hjorth’s Turbulence The-
orem), and it admits lightface relativizations. It also generalizes to prove Silver’s
theorem for Π1

3 equivalence relations. Silver’s theorem is another in which the pure
proof simply has more virtues than its impure counterpart.

Burgess extended Silver’s theorem to analytic equivalence relations:

Theorem 7 (Burgess [13]). Any Σ1
1 equivalence relation E on ωω either has at

most ω1 equivalence classes or a perfect set of E-inequivalent reals.

His proof directly appeals to Silver’s theorem, and Burgess’ theorem predated
Harrington’s “reproof” of it,18 so this can be viewed as another significant use of
forcing and absoluteness. Harrington and Shelah [40] extended Harrington’s ar-
gument to prove a theorem that subsumes and generalizes Silver’s and Burgess’
theorems.

3.1.3. Uses of Mokobodzki’s theorem. Slaman and Steel [71] asked: In ZF+DC+AD,
if d 7→<d is a map associating to each Turing degree d a linear ordering of d, do the
rationals order embed in <d for almost all d? Kechris [46] showed that the answer is
yes. To do so, he introduced the notion of amenability.19 Kechris’ theorem uses (i)
the non-amenability of Turing equivalence and its restrictions to Turing invariant
sets and (ii) the following lemma:

Lemma 8 (Kechris). (ZF+DC) Let E be a countable Borel equivalence relation on
2ω such that E extends ≡T . Let C 7→<C be a Borel map associating to each E-class
C a linear ordering of C. If µ is the standard measure on 2ω, then for µ-a.e. real
x, there is an order-preserving embedding of the rationals into 〈[x]E , <[x]E 〉.

16Whether a lightface proof of a boldface theorem is pure is a curious question. The definability
analysis of the continuum was motivated by concerns of effectivity before the analyses of intuitively

computable functions. The infusion of recursion theoretic techniques into descriptive set theory is

naturally construed as a refinement of the notion of effectivity at the heart of the fuller theory.
But we will return to this below in §5.
17See [45, Ch. 31].
18Burgess’ dissertation [12] was submitted in 1974, and Harrington’s proof was first written down

in a set of handwritten notes entitled “A powerless proof of Silver’s theorem” in 1976.
19A countable Borel equivalence relation E on a Polish space X is amenable if to every E-

equivalence class [x]E a finitely additive probability measure defined on all subsets of [x]E can be
associated in a universally measurable way.
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The proof of the lemma uses a CH theorem of Mokobodzki.

Theorem 9 (Mokobodzki). Assume CH. Then there is

(i) a universally measurable shift invariant mean on the integers, and
(ii) a universally measurable shift invariant mean on the natural numbers.

Kechris notes that because the property to be shown in Lemma 8 is Π1
2, one can

proceed from ZFC + CH (essentially by Theorem 3). So we pass into a CH world.
Then if the lemma is false, there is a Borel E-invariant X ⊆ 2ω such that the
rationals embed into 〈[x]E , <[x]E 〉 order preservingly for all x ∈ X. It follows using
the medial mean from Theorem 9 that E � X and ≡T � X are amenable, which
contradicts that Turing equivalence restricted to any invariant set is not amenable.
The lemma follows via absoluteness.

This is a particularly interesting example because absoluteness allows one to
obtain the lemma in the ZFC + CH world and transfer it, in the course of the proof
of Kechris’ main theorem and with some finessing to keep everything relevant Borel,
to a ZF + DC + AD world. There is no prima facie reason for Choice or CH to be
involved in answering a question posed in the effective setting of AD.20

Cieśla and Sabok likewise assume CH in order to apply Mokobodzki’s theorem
in their work on measurable circle squaring.21 They prove a custom absoluteness
lemma which ensures that proving in the forcing extension that there is an equide-
composition of two measurable sets into measurable pieces amounts to proving the
same in the ground model.

Lemma 10 (Cieśla-Sabok [15]). Let U ⊆W be models of ZFC. Suppose in U there
is a Borel space X with a Borel probability measure µ, two Borel subsets A,B ⊆ X
and Γ y (X,µ) is a Borel probability measure preserving action of a countable
group Γ. Then the statement that A and B are Γ-equidecomposable µ-a.e. using
µ-measurable pieces is absolute between U and W .

Working in an extension satisfying CH, they show, using the medial means given
by Mokobodzki’s theorem, the following characterization of circle squaring.

Theorem 11 (Cieśla-Sabok [15, Theorem 2]). Let Γ be a finitely generated abelian
group and let Γ be a free probability measure preserving action on a space (X,µ).
Suppose A,B ⊆ X are two measurable Γ-equidistributed sets of the same positive
measure. Then the following are equivalent:

(1) the pair A,B satisfies the Hall condition with respect to Γ µ-a.e.,
(2) A and B are Γ-equidecomposable µ-a.e. using µ-measurable sets,
(3) A and B are Γ-equidecomposable µ-a.e.

CH is often characterized as a source of “pathological” constructions of length
ω1. Mokobodzki’s theorem is an instance of CH implying useful structure.22

20In ZF + AD, neither ω1 nor R injects into the other.
21The problem of whether, given two measurable sets, one can be partitioned into finitely many

measurable pieces and rearranged so as to obtain the other.
22Larson has shown that Mokobodzki’s theorem 9 requires more than just ZFC [49], as the Filter

Dichotomy (the statement that every uniform non-meager filter on the integers is mapped to an
ultrafilter by a finite-to-one function) implies there are no universally measurable shift invariant

means. Normann showed that Martin’s Axiom suffices to obtain such means [61].
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3.1.4. Stern’s absoluteness. Stern [76] showed that if ω1 is inaccessible to reals, then
there is no thin Σ1

1 equivalence relation having ℵ1-many equivalence classes with
bounded Borel rank. To do so, he proved a form of generic absoluteness for Borel
sets which says that if a Borel set of rank α can be created by forcing (such a set is
described by a virtual Borel set), then it can be approximated in the ground model
by iα-Borel sets.

Theorem 12 (Stern; [43, Corollary 1.8]). Let M,N |= ZFC be well-founded and
suppose that M ⊆ N and iM−1+α < ωN1 . Suppose (P, p, τ) ∈ M is a virtual Borel
set, α < ω1, and

p P “τ is a Borel code of rank α,” and

(p, p) P×P “τ [g1] codes the same Borel set as τ [g].”23

Then there is a Borel code (Ṫ, ḟ) ∈ N of rank α such that

p P “B(∅, Ṫ, ḟ) is the Borel set coded by τ [g].”

Hjorth, describing Stern’s absoluteness and his own use of it, writes

Unlike, say, Shoenfield absoluteness, Stern’s absoluteness can only
be made understood in the terminology of forcing. Since forcing
is typically associated with the pursuit of independence results, we
could easily assume that Stern’s work has little relevance in proving
positive theorems about the Borel hierarchy.

However, this would be untrue. Using abstract and indirect meta-
mathematical arguments, and availing ourselves of Stern’s absolute-
ness principle, we will prove a string of ZFC theorems for which no
direct proof is known. [43, p. 663]

Among the items in this string are

Theorem 13 (Kanovei; [43, Theorem 2.2]). If A is a non-Borel Σ1
1 set, then the

constituents of A do not have bounded Borel rank.

Hjorth’s proof appeals to Π1
2-absoluteness and derives a contradiction with

Stern’s absoluteness Theorem 12. The proof of the next theorem appeals to Shoen-
field absoluteness.

Theorem 14 ([43, Corollary 4.5]). For α < β < ω1, there is no injection f : Π0
β →

Π0
α which is Borel (in the codes).

In fact this generalizes to the nonexistence of such an injection in L(R) assuming

ADL(R) using essentially the same argument [43, Theorem 4.7].

Theorem 15 (Harrington; [43, Theorem 5.5]). The continuous actions of S∞ on
Polish spaces induce a ≤B-unbounded, length ω1 sequence of Borel equivalence re-
lations.

Both Shoenfield and Stern absoluteness are appealed to in the proof.

Theorem 16 ([43, Theorem 5.19]). Isomorphism on countable sets of reals is not
Borel reducible to the orbit equivalence relation induced by continuous actions of a
Polish abelian group on any Polish space.

23Let g be V -generic for P× Q. Then g1 is the projection of g onto P.
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The proof passes to an extension of MAω1
to utilize the fact that Σ1

2 sets have
the Baire property.24

A result going beyond ZFC but still about the concrete is also shown and justified
by Hjorth as follows:

I should stress that this does not mean that the argument has
no relevance assuming the axiom of choice. In fact, Harrington’s
argument directly implies that in the presence of large cardinals
there is no simply definable uncountable sequence of Borel sets
with bounded rank. The method of proof is also fertile, in the sense
that it produces useful theorems just in ZFC.25

Theorem 17 (Harrington; [43, Theorem 3.1]). Assume ADL(R). Then there is no
injection f : ω1 → Π0

α, for α < ω1, in L(R).

3.1.5. Forcing constructions and countable Borel equivalence relations. [33] con-
tains many theorems about Borel complete sections of orbit equivalence relations
whose forcing-and-absoluteness proofs use forcings constructed specifically for their
proofs: orbit forcing, Cohen forcing on a countable group, minimal 2-coloring forc-
ing, and grid periodicity forcing. Most of the theorems proved in the paper using
forcing are positive existence results, and we restrict to just two.

Theorem 18 (Gao-Jackson-Krohne-Seward [33]). Let Γ y X be a continuous
action of a countable group Γ on a compact Polish space X, and let EXΓ be the
associated orbit equivalence relation. Let (An : n < ω) be a sequence of finite subsets
of Γ such that every finite subset of Γ is contained in an An. Let (Sn : n < ω) be a
sequence of Borel complete sections of EXΓ . Then there is an x ∈ X such that for
infinitely many n, An · x ∩ Sn 6= ∅.

The proof appeals to both Π1
1 and Σ1

1-absoluteness at distinct stages of the
argument. It generalizes to give the analogous result when the Sn’s are absolutely
∆1

2, in which case Π1
2 and Σ1

2-absoluteness are required. The authors give a pure
topological proof of the theorem using strong Choquet games to justify why they
proceed to use forcing and absoluteness in the rest of the paper. They see value in
the technique beyond its being an instrument for proof discovery. For one thing, the
forcing-and-absoluteness argument itself gives corollaries on when recurrent points
exist in the range of Borel equivariant maps ([33, Theorem 3.7]).

Theorem 19 (Gao-Jackson-Krohne-Seward [33]). Suppose f : F (2Z
2

) →
{0, 1, . . . , n−1} is a Borel function. Then there is x ∈ F (2Z

2

) and N ∈ N such that
for any chromatic 2-coloring t 7→ f(t · x) on [a, b]× [c, d], b− a, d− c ≤ N .

The authors note [33, Remark 6.10] that the usual measure and category methods
used to prove similar results cannot work to prove this theorem. We will return to
this below.

24Recall that MAκ is the assertion that for any forcing notion P whose antichains are countable,

and any family D of dense sets in P of size at most κ, there is a filter G ⊆ P that meets every dense
set in D. Martin’s Axiom (MA) is the assertion that MAκ holds for all κ less than the continuum,

and it is most interesting when it is assumed that CH is false.
25One of the ZFC theorems derivable from this is that there is no provably ∆1

2 injection from
countable ordinals to Borel sets of bounded rank.
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3.1.6. Turbulence. One of the central themes of the theory of countable Borel equiv-
alence relations is classification by complete sets of invariants. A Borel reducibility
E ≤B F tells us that E is no harder to classify by a complete set of invariants than
F is. A liberal class of invariants is the class of countable structures. An equiv-
alence relation E is classifiable by countable structures if it is Borel reducible to
the isomorphism relation on a class of countable structures. Hjorth identified the
notion of a turbulent group action and showed that orbit equivalence relations of
turbulent group actions cannot be classified by countable structures.26

Theorem 20 (Hjorth). Let Γ be a Polish group and X a Polish space. Suppose
Γ y X is a turbulent action, and let EXΓ be the associated orbit equivalence relation.
Let L be a countable language, let XL be the space of L-structures with domain N,
and let f : X → XL be a Borel function such that if xEXΓ y then f(x) ∼ f(y). Then
f is not a classification of EXΓ by countable structures.

Larson and Zapletal reproved Hjorth’s Turbulence Theorem using forcing and
absoluteness together with a new characterization of turbulence implying that if a
group action Γ y X is turbulent, and PΓ is Cohen forcing on Γ and PX is Cohen
forcing on X, then W [x] and W [g ·x] are mutually generic (i.e. W [x]∩W [g ·x] = V )
[50, Theorem 3.2.2]. Their proof of Theorem 20 is notable for using two forcing
extensions: It is shown that, since canonical Scott sentences are Σ1-absolute, the
interpretation of a particular canonical Scott sentence in W [g · x] and W [x] agree,
and hence (by the characterization) that interpretation exists already in W .27

Larson and Zapletal write that their work

restates and greatly generalizes Hjorth’s notion of turbulence in
forcing terms. This development shows that nonturbulent equiva-
lence relations are in fact parallel to pinned equivalence relations
in a very precise sense. The forcing relation encapsulates many dis-
tracting estimates needed in the traditional treatment of turbu-
lence, resulting in a clean and efficient general calculus. [50, p. 17]

Because it gives them new language with which to reformulate turbulence, the
theory developed in [50] leads to arguably the “right” statement—in the sense that
it is easily applicable in the wild—and proof of Hjorth’s theorem. Moreover, their
version generalizes to give a notion of turbulence for measure.

3.1.7. Baire-1 functions. The following theorems of Todorčević involve the class of
Baire-1 functions. For the first, Todorčević proves an absoluteness lemma ensuring
that a relatively compact subset of the Baire-1 functions over Baire space remains
relatively compact in generic extensions. Using this lemma, Todorčević first gives
a forcing-and-absoluteness proof of a theorem of Bourgain by forcing CH without
adding reals.

Theorem 21 (Bourgain; Todorčević [78]). Every compact subset of the first Baire
class contains a dense set of Gδ-points.

To establish the next theorem, Todorčević uses a forcing notion which Fremlin
[29] showed exists under the assumption MA + ¬CH. This is an example which
can be construed as using a forcing extension of a forcing extension; that is, two

26Hjorth’s Turbulence Dichotomy Theorem says that in fact turbulence is the obstruction to being

classifiable by countable structures.
27We found Marks’ exposition [55] helpful in understanding the structure of the proof.
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hops (one to the MA +¬CH world, another to the Fremlin extension) are taken in
proving the theorem.

Theorem 22 (Bourgain; Todorčević [78]). Every Radon measure on some compact
set of Baire class-1 functions has separable L1-space.

Finally, Todorčević uses the same proof technique to solve the problem whether
there exists a non-separable Rosenthal compactum satisfying the countable chain
condition.

Theorem 23 (Todorčević [78]). Every compact space that can be represented inside
the class of Baire-1 functions on a Polish space has a dense metrizable subspace.

The forcing notion Todorčević uses is the algebra of all regular open subsets of a
given set of the first Baire class. In addition to the technical lemma, the proof uses
Theorem 21.

3.1.8. A K4-free graph. We close with a particularly nice example from graph the-
ory which answers a question of Erdős and Hajnal. The graph K4 is the complete
graph with four vertices, and a graph is K4-free if it does not contain K4 as a
subgraph.

Theorem 24 (Shelah). There is a K4-free graph (G,E) such that for every coloring
c : E → 2, there is a monochromatic triangle contained in G.

Shelah forces the existence of an infinite graph with the monochromatic triangle
coloring property for ω many colors. By compactness, this graph contains a finite
subgraph with the triangle coloring property for 2 colors. Since the subgraph is a
finite object, it exists in the ground model.28 Thus a simple, finite object’s existence
is proved using complicated uncountable objects that are prima facie irrelevant.

4. Developing theories

The proofs in §3 demonstrate that theories which can be forced are interesting
and useful, even if they are not true. Consequently, and this is perhaps the ultimate
moral of the paper, it is important to develop set theories. Without Mokobodzki
having developed the theory of ZFC + CH, would Kechris have proved his theorem,
or Cieśla and Sabok theirs? Without the MA + ¬CH result of Fremlin, would
Todorčević have proved Theorem 22? The theory of selective ultrafilters enables the
methodology of forcing CH without adding reals to be useful for proving theorems

28Shelah uses forcing and absoluteness to show the following: (1) If all formulas ϕ(x̄, ȳ) ∈ L,
|y| = 1, have the NIP, then T has the NIP [65] and (2) any abstract elementary class admits
ordered graph blueprints. These results are not “concrete” mathematics in the sense we intend,

but they show the utility of the method. A direct proof of the first result by Laskowski led to
the study of the Vapnik-Chervonenkis property, with applications to real semi-algebraic geometry

[51].

With collaborators, Shelah has also used forcing and absoluteness at least twice more. There is a
step in the proof of a theorem of Harrington-Marker-Shelah [41]—that if 〈X,≤〉 is a thin ∆1

1 order,

then there is an α < ωCK1 and a ∆1
1 order-preserving embedding f : X → 2α—which uses forcing

to add a perfect set of elements which are incomparable in the order, and pulls this fact back
via absoluteness to derive a contradiction. Shelah and Gurevich use forcing and the absoluteness
of a decision procedure to solve Rabin’s uniformization problem for monadic second order logic

negatively [35]. These proofs do not use a higher set theory, but rather force to bring useful affairs
into focus. The Harrington-Marker-Shelah proof is an example of a pure(r) proof in which the
generic multiverse is useful.
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in analysis. These theories having been sufficiently developed made the set theorists’
work easier.

Two natural theories recur in the above examples: ZFC + CH and ZFC + MA +
¬CH. This is likely because of how developed they have become through intense
investigation into independence spanning decades, how familiar they are to set
theorists, and the role of the continuum in many of the theorems. But the proofs
of Theorems 18, 19, 22 and 23 show that it is useful to go to universes which one
is, so to speak, the first to inhabit, ones whose theories have never been studied
before.

This collection of proofs also suggests an explanation for why set theorists do not
e.g. reject papers proving theorems using hypotheses they personally do not believe
in. A theorem is a theorem, and a theorem proved from hypotheses one does not
believe, or for which one might think it does not make sense to ask about their truth
value at all, might still come in handy in proving something one does believe. This
suggests in turn that, taken too literally, views like Strong Absolutism might inhibit
the development of mathematics. If one rejected or tried to prevent research using
a “false” theory, one could miss out on ZFC theorems. Of course, no set theorist
holds such an extreme position. No one was claiming that accepting, e.g. V =
Ultimate L, requires foregoing forcing-and-absoluteness as a proof technique or

studying forcing extensions. But this fact seems to get lost in the debate between
pluralists and non-pluralists. The staunchest nonpluralist does not dismiss research
done using hypotheses they don’t believe hold in V . We learn a lot about how
things are by studying the ways things could be. Alternative theories can carry
instrumental value for proving theorems even in the nonpluralist’s theory.29

4.1. Absoluteness theorems and other multiverse conceptions. There are
more inclusive superstructures than the generic multiverse in the literature.
Hamkins describes some possibilities:

The generic multiverse [of a world W ] can be viewed as a small part,
a local neighborhood, of any of the much larger collections of models
that express fuller multiverse conceptions. For example, one could
look at the class-forcing multiverse, arising by closing W under class
forcing extensions and grounds, or the pseudo-ground multiverse,
obtained by closing under pseudo-grounds, or the multiverse arising
by closing under arbitrary extensions and inner models, and so on
[39, p. 1].

Just as the generic multiverse formalizes an intrinsic feature of the ground
universe—namely what can be forced over it with set-sized forcings—these other

29Number theorists study the way things could be by proving theorems conditioned on the Rie-

mann Hypothesis (“If the RH is true, then...”) and theorems conditioned on its negation. The
phenomenon I am describing seems to differ from this practice in ways having to do with truth and

belief. Since the RH is expected to be solvable in ZFC, theorems conditioned on RH are relevant

to all number theorists. They bear on solving the RH, and once the RH is solved, some of them
will become non-hypothetical. (See [11] for more discussion of this circumstance.) A rational basis

for belief in the RH is evidence as to its provability in our common mathematical framework.
There is of course no such evidence for independent-from-ZFC propositions; the basis for belief in

their truth lies elsewhere. Using such propositions goes beyond our common framework, changing

the rules of the game, so to speak. In forcing-and-absoluteness proofs, they serve as tools for
unconditional ZFC theorems. On the face of it, it is surprising that theorems proved using tools

like MA + ¬CH are relevant to all who use the standard axioms.
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multiverse conceptions strive to articulate e.g. what can be class-forced over the
ground universe. A class-forcing and absoluteness proof of a ZFC theorem about
concrete mathematics would be of great interest. Perhaps there will be such a proof
using coding into the continuum function, or making use of the Ground Axiom.30

Theories of class forcing extensions could conceivably contribute to our understand-
ing of V similarly to those of set forcing extensions.31 So developing these broader
multiverse conceptions may be similarly important for multiverse proponents and
nonpluralists alike.

Question 25. Is there a useful formal theory of a class generic multiverse?32

To get such proofs as those just speculated—and further generic multiverse
proofs—to work, generic absoluteness theorems tailored to particular extensions,
like in the proofs of Lemma 10 and Theorem 21, will presumably be required.
Generic absoluteness is intrinsically interesting, but the potential for forcing-and-
absoluteness proofs provides practical impetus for studying aspects of it that would
likely otherwise go unresearched.

4.2. Extent. Of course, most of the theorems surveyed were proved prior to the
generic multiverse being formalized in [74], so saying that the generic multiverse
is brought to bear in the proofs is admittedly a charitable construal. Likewise, the
extent to which the multiverse proofs show that the whole generic multiverse is not
going away is a matter of perspective. It seems enough to know that some forcing
extensions are useful in proving theorems in concrete mathematics, a significant
part of mathematics accepted by the weak relativist, the weak absolutist, and the
strong absolutist. We cannot predict exactly which extensions will prove useful in
future proofs, and it seems arbitrary to argue that multiverse proofs only show the
utility of a mere “submultiverse” consisting of the specific generic extensions used
in §3.1, or e.g. the c.c.c. multiverse.

There is a lacuna: The amalgamability asserted in condition (4) of Definition
2 has not factored into the proofs surveyed. A multiverse proof using amalgama-
tion would be of great interest, as Woodin’s generic multiverse does not satisfy
amalgamability and [53] questions whether there is a principled reason to accept
it.33

30The statement that the universe is not a (non-trivial) set-generic extension of an inner model.
31Not every multiverse conception promises to bear on V . Closing the multiverse under ultrapowers
will not help prove theorems about concrete mathematics, since an ultrapower is elementarily
equivalent to the structure which is ultrapowered. It does not get you any new theory to work

with.
32This seems like a hard problem. As Steel writes, “...our multiverse does not include class-

generic extensions of the worlds. There seems to be no way to do this without losing track of
the information in what we are now regarding as the multiverse, no expanded multiverse whose

theory might serve as a foundation. [Footnote: Amalgamation will fail if we start counting sets,
definable inner models, or class-generic extensions as worlds.] We seem to lose interpretative
power” [74, p. 167]. Indeed, some natural “submultiverses” of the class-generic multiverse fail to

include definable inner models with Woodin cardinals.

I use the indefinite article in Question 25 because it seems that restriction to certain class forcings
is necessary.
33Amalgamability is needed to give a formal axiomatization of Steel’s version of the generic mul-
tiverse and to ensure the existence of the translation function central to the discussion of the

generic multiverse in [74]. Woodin’s multiverse is not formally axiomatizable.
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4.3. The content of the Absolutist-Relativist debate. The generic multi-
verse must be kept distinct from the views about it like Weak Relativism or the
Generic Multiverse conception of truth.34 The former is an object, the object given
by the multiverse language and axioms. It is a category mistake to assent to or ar-
gue against an object as opposed to a claim.35 The Absolutist is committed to the
generic multiverse just as the Relativist is, since the first order theory of the forc-
ing extensions of V is part of what holds in V , and this theory is what the generic
multiverse theory captures. Forcing-and-absoluteness proofs indicate that there is
practical benefit to studying this theory: One can use worlds in the generic multi-
verse to prove ZFC theorems about concrete objects relevant to wider mathematics,
like definable equivalence relations.

The proofs embody the idea that, for proving ZFC theorems, any universe will
do. This is a practical maxim in the neighborhood of the Weak Relativist’s idea
that all worlds in the multiverse are on equal footing, although it is weaker. The
proofs do not substantiate other tenets of Weak Relativism or Generic Multiversism,
namely that forcing extensions “actually” exist as full-blooded universes (whatever
that is taken to mean), or that the only meaningful sentence in the language of set
theory are those that hold in all universes. (This is part of why they are proofs.
Their validity does not depend on metaphysics. Forcing allows the simulation of
the universe’s forcing extensions within the universe, and its legitimacy as a proof
technique turns on being able to treat forcing extensions entirely virtually.) In
these “best case” uses of the generic multiverse conception, the Absolutist is not
compelled to see the generic multiverse as anything more than the behavior of
the forcing relation, and the Absolutist sees the auxiliary theories used, which are
indeterminate for the Weak Relativist, as meaningful.

So Weak Relativist and Strong Absolutist alike are committed to the object, but
they disagree about its significance. On my reading, Steel put forth the Weak Abso-
lutist Thesis as a way of making this disagreement mathematically tractable in such
a way that a confirmation of it would bring the parties closer together. (A perhaps
silly way of putting this reading is that if the Weak Absolutist Thesis is true, then
we should all just be Weak Absolutists because the content of Strong Absolutism
and Weak Relativism that goes beyond the Weak Absolutist Thesis does not seem
to have strictly mathematical content or justification.) Usuba’s theorem confirms
the Thesis, assuming an extendible cardinal. This is satisfying to the Absolutist in
inverse proportion to how disappointing it would have been for there to provably
not be a core. The Strong Absolutist may believe the core is V . But the theorem
by itself does not refute the rival philosophical position. Weak Relativism is not the
negation of Weak Absolutism.

Usuba’s theorem does, however, put the Weak Relativist on their back foot. They
have to give a philosophically coherent answer to (something like) Question 26.

Question 26. Granting large cardinals, does there being a uniquely definable uni-
verse in the generic multiverse undermine the Weak Relativist tenet that all uni-
verses in the generic multiverse are on an equal footing? That the only meaningful
statements in the language of set theory are those that are generically invariant?

34[58] conflates the two.
35Perhaps this is an easier way to argue for the titular claim!
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For the Weak Relativist, the core is at minimum a universe with an interesting
metamathematical property. Simply saying that that’s all there is to it, that all
universes nonetheless remain on an equal footing, seems unsatisfactory as a response
to Question 26. That large cardinals imply exactly one world in the multiverse
enjoys a property—let alone the property of being the world from which all others
arise by generic extension and refinement—cannot be hand waved away. A complete
response has to make explicit what it means when the Weak Relativist claims all
universes are on an equal footing and how that equal footing is compatible with
there being a uniquely definable universe in the multiverse.36

Apart from Question 26, or the significance of the core generally, what is there to
give traction to the disagreement between the Weak Relativist and the Strong Abso-
lutist? Each view can interpret all of the relevant mathematics, at least if Question
26 has an answer. So insofar as Absolutism and Relativism countenance the same
proof techniques (like forcing-and-absoluteness) and are committed to the generic
multiverse, and assuming the Weak Relativist has a plausible answer to Question
26, is there content to the Relativist-Absolutist debate? If so, can that content be
made mathematically tractable? If either of these questions has a negative answer,
it seems to me that Weak Absolutism represents the limits of what can be said with
mathematical justification on the topic.

5. Purity of proof

In the introduction to the paper “Lusin’s restricted continuum problem,” the
only of the forcing-and-absoluteness papers discussed which was published in a
premier non-specialist mathematics journal, Stern assures the general mathematical
audience that the technique is rigorous:

It should be clear from the introduction that the present paper is of
metamathematical character. . . We also use throughout the paper
Cohen’s method of forcing, not only when generic subsets over inner
models are known to exist but also when we form generic extensions
of the universe of sets to derive various properties of the forcing
relation. This is known to be a valid method of proof. [76, p. 10]

The proof technique is so impure that a nonexpert could wonder whether it is
fallacious more than 20 years after the discovery of forcing.

There is a serious objection to this paper’s titular claim arising from consid-
erations of purity of proof. To state it, we must first clarify the sense in which
forcing-and-absoluteness proofs are impure.

Philosophical accounts of purity of method seek to identify what purity consists
of in practice and how it has historically constrained mathematicians’ sense of what
the “right” proof of a theorem is. We will draw on Arana’s account:

A purity constraint, restricting proofs of theorems to what is “close”
or “intrinsic” to that theorem, requires an account of how the dis-
tance between proof and theorem is to be measured. Two such

36Do more expansive multiverse views have to answer Question 26? If (1) the generic multiverse

is the only philosophically appealing multiverse conception which is formalizable, and (2) on that

conception (and assuming there is an extendible cardinal), the multiverse has a core, then a more
general Relativist position may stand or fall with the Weak Relativist’s answer to Question 26.

Consider this more motivation for formalizing more expansive multiverse views.

https://doi.org/10.1017/S1755020324000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000297


THE GENERIC MULTIVERSE IS NOT GOING AWAY 19

measures of distance are what we have called “elemental” and “top-
ical” distance. A proof is elementally close to a theorem if the proof
draws only on what is more elementary or simpler than the theorem.
A proof is topically close to a theorem if the proof draws only on
what belongs to the content of the theorem, or what we have called
the topic of the theorem. Each of these distance metrics induces a
purity constraint, viz. elemental purity and topical purity.[3]

The proofs in §3 are paradigmatically impure elementally (the forcing construc-
tions are like using a nuclear bomb as a flyswatter) and topically (none of the
theorems in §3 talk about generic extension or e.g. CH). In fact, I claim that given
a purity metric, if they do not qualify as impure, the metric is defective.37 The proofs
should be as far from the theorems they establish as is allowable by the metric. The
reason is that they appeal essentially to content expressed in independent-from-
ZFC-propositions: They answer whether ZFC ` ϕ by showing ZFC +A ` ϕ, where
A is independent of ZFC. This is unlike the standard examples of impure proof,
which tend to involve “detours” via higher type objects in the same universe.38

In contrast, the detours in forcing-and-absoluteness proofs involve new domains of
mathematical discourse.

Not only is there a sense that this content must be irrelevant to the conclusion
proved, in many cases it is formally provable that there is a ZFC proof of the
conclusion which eliminates A. So A is provably extraneous.39 One way of bringing
out the proofs’ impurity is to consider that an agent can consistently maintain
that the A appealed to is in fact false without holding a “limitative” position in the
philosophy of mathematics.40 For such an agent, these proofs derive true conclusions
from false premises. The knowledge gained from forcing-and-absoluteness proofs is
highly unstable in the sense of [5].41 Due to their logic, the proofs work whether or

37Arana has considered other natural ways of spelling purity out, and again the proofs in §3

are impure according to them. A proof is syntactically pure if all formulas appearing in it are
subformulas of its conclusion. This is motivated by Gentzen’s Cut Elimination Theorem. [1] argues

that this notion is unsatisfactory on many grounds, starting with the fact that Cut Elimination
fails for formal theories of arithmetic. There are two notions from [2]: First, a proof is logically

pure if it uses the minimally sufficient set of axioms required to prove the theorem. Second, a

proof is semantically pure if it draws only on what must be understood in order understand the
theorem (this is a prototype of topical purity).
38Feferman observes:

Abstraction and generalization are constantly pursued [in mathematics] as the
means to reach really satisfactory explanations which account for scattered
individual results. In particular, extensive developments in algebra and analysis
seem necessary to give us real insight into the behavior of natural numbers.

Thus we are able to realize certain results, whose instances can be finitistically
checked, only by a detour via objects (such as ideals, analytic functions) which

are much more “abstract” than those with which we are finally concerned [25,
p. 3]

39A formal characterization of when a hypothesis or inference is extraneous has not been obtained
in generality. [1] shows that using cut elimination in Gentzen proof systems as a criterion does

not work, and casts doubt on purity being a syntactic notion.
40Where “limitative” means “requires truncating the interpretability hierarchy below some point

widely accepted by the mathematical community.”
41“The epistemic significance of topical purity derives from the stability it brings to problem

solutions. Every topically pure solution E to a problem P is stable in the sense that were α to

retract a premise or inference from E, the content of P would change for her. In other words,
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not one accepts all of the auxiliary hypotheses that function in the argument. One
only has to recognize that the theories of the forcing extensions are consistent.42

Purity of proof involves a contrast between proofs, which implies that there are
distinct proofs of the same theorem. When is a proof of a known theorem genuinely
new? Dawson [17] describes the problem of formally differentiating between different
proofs conceptually. In brief, formal characterizations of proof differentiation face
challenges arising from what gets washed away by formalizing informal arguments.
But there certainly seems to be something mathematicians are talking about when
they talk about an argument using new ideas, or when claiming that an argument
is “really” the same as another.43 The forcing-and-absoluteness proofs are clearly
conceptually distinct from the direct proofs of the same theorems.

Finally, many of the results in §3, or the work they figure into, are central to the
fields they arise from. Silver’s theorem is foundational in the study of equivalence re-
lations, and whether the dichotomy it expresses holds for orbit equivalence relations
of Polish group actions is the Topological Vaught Conjecture (Burgess’ Theorem 7
is part of this story as well). Kechris’ work introduced the concept of amenable
equivalence relation, which has since been studied in the theory of countable Borel
equivalence relations. Todorčević’s work is fundamental to the theory of Rosenthal
compacta. Theorems 6, 35, 8, and 24 answered questions raised in the literature.
These results are representatives of sometimes disparate fields. One property they
have in common is that the disparate fields do not usually depend on higher set
theory.

To summarize, the proofs from §3 are striking examples of impurity because 1)
they are of sometimes fundamental results upon which much theory has been built,
2) it is uncontroversial that they are conceptually distinct from their pure coun-
terparts, 3) they use provably extraneous hypotheses, and 4) they are sufficiently
impure that any purity metric which does not register them as such is inadequate.

Miller’s program. Bolzano’s efforts to remove geometric intuition from proofs in
analysis constituted a research program explicitly aimed at achieving topical pu-
rity. There is an analogous program to find elementally pure proofs of some of
the theorems in §3: B. Miller [59] pursues classical, forcing-free proofs of classical
descriptive set theoretic dichotomies like Silver’s and Burgess’ theorems using chro-
matic numbers. Miller’s stated motivation is that techniques like Gandy-Harrington
forcing—and certainly forcing-and-absoluteness—should be unnecessary to estab-
lish these dichotomies. After all, Cantor, Hausdorff, and Suslin proved the per-
fect set property for closed, Borel, and analytic sets with elementary techniques.
Whether Silver’s Theorem is true could have been asked in Cantor’s time, whereas
forcing constituted a paradigm shift in set theory and emerged over half a century
later. Neither Silver’s nor Harrington’s proof is “classical” in the sense that it is a
proof that Cantor could have arrived at. While Harrington’s eliminates passing to
a forcing extension and does not need GCH, there’s a sense that any forcing should

her retraction would contentually dissolve P for her (i.e. E would be cofinal with P for her). By
contrast, if E were a topically impure solution to P, there would be premises or inferences in E
that the investigator could retract without contentually dissolving P. In that case, E would not

be stable in the aforementioned sense” [5, p. 13].
42And in the examples we’ve discussed, denying the consistency of those theories will induce a
change in the content of the theorem, as the theories are usually equiconsistent with ZFC.
43[69] bears this out, identifying a fundamental idea common to the over 40 proofs of the Cantor-

Bernstein theorem in [42] and concluding that there is ultimately just one proof in different guises.
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be unnecessary for establishing ZFC theorems about concrete sets of reals. Miller
describes the situation:

The proofs of the results established in the first half-century af-
ter Souslin’s theorem followed the same basic outline. Using the
tree structure afforded by analyticity, one defines an appropriately
chosen Cantor-Bendixson-style derivative, reducing the problem
to a combinatorially and topologically simple special case with a
straightforward solution.

This basic outline was cast aside, however, beginning with Sil-
ver’s generalization of the perfect set theorem. His proof was a tech-
nical tour de force, relying on sophisticated techniques from mathe-
matical logic in addition to a much larger fragment of the standard
set-theoretic axioms than typical. Although Harrington later found
a simpler proof, his argument still relied on a detailed recursion-
theoretic analysis of the real numbers, as well as the method of
forcing distilled from Cohen’s proof of the independence of the Con-
tinuum Hypothesis.

Over the next thirty years, Harrington’s techniques unearthed an
astonishing number of structural properties of Borel sets. While the
proofs of many results closely mirrored that of Silver’s theorem, oth-
ers used progressively more elaborate refinements of Harrington’s
ideas. [59, p. 555]

The epistemic payoffs of Miller’s program corroborate those which are thought
to be associated with purity: “In addition to eliminating the need for sophisticated
machinery from mathematical logic, this approach illuminates new connections be-
tween seemingly unrelated theorems, leads to a global view of dichotomy theorems
from which new results emerge, and readily generalizes to broader classes of defin-
able sets” [59, p. 555].

The objection. The objection to our main claim draws on two facts. First, theorems
like Platek’s Theorem 3 tell us that if forcing-and-absoluteness can be used to prove
a theorem of a certain logical complexity from GCH, then there is a proof of that
theorem which does not use GCH. GCH is provably extraneous to the theorem.
Interpolation theorems suggest that there should be proofs which avoid forcing
extensions. Second, the mathematical community esteems pure proofs, even when
they are not the first proof of a theorem. Finding a pure or explanatory proof, or
one that eliminates extraneous or controversial hypotheses, is one of the primary
reasons that mathematicians re-prove theorems [17, 18]. Forcing-and-absoluteness
proofs could not be more prime candidates for re-proof.

Together, these facts suggest that the generic multiverse is eliminable because
set theorists will seek direct ZFC proofs which use resources local to the theorems
they establish. Miller’s program §5 exemplifies this tendency.

5.1. Explanation. While hops in the generic multiverse are ultimately unneces-
sary to prove some of these results, one wonders whether and when the “pure”
proofs would have been discovered without their impure counterparts to guide
them. Todorčević, in regards to his theorems in §3.1.7, describes his use of forc-
ing as “the guiding force behind the discovery of these results” [78, p. 1183]. These
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proofs show that extreme impurity can be fruitful in the context of discovery. That
Harrington and Shelah have employed the technique so many times attests to this.

Aristotle’s distinction between deduction and demonstration—and the distinc-
tions of Leibniz between sequences of discoveries and orderings of truths and of
Bolzano between Gewissmachung and objektive Begründung—track the contexts of
discovery and justification. For Aristotle, a deduction is simply a valid argument,
whereas a demonstration is a deduction which is in addition explanatory in the
sense that it reveals the true grounds for a claim. More broadly, an explanatory
proof of a theorem is an argument that gives the reason why the theorem is true
as opposed to merely showing that the theorem is true. Deductions—which in-
clude impure proofs—are permissible, for Aristotle, in the context of discovery, but
demonstrations are required in the context of justification. The proofs discussed in
§3 seem to fall in the former category, as one might wonder why the result is true
even after digesting its proof, and the subsequent forcing-free proofs function as
demonstrations.

Harrington’s proof of the Halpern-Läuchli theorem clashes with the Aristotelian
account in a strong sense. It is impure and metamathematical. It was not the
first proof of the result. Yet practitioners report that Harrington’s proof provides
the true grounds of the theorem. It is the proof that allows the generalization
of the theorem to higher cardinals. Todorčević’s proofs give, at least to him, a
proper understanding of the results they establish. Similar for Gao et al.’s proofs.
The Larson-Zapletal proof of Hjorth’s turbulence theorem arguably give the proper
understanding of what the theorem is “really” saying, what its topic is. These are
examples of impure proofs which function in the context of justification better than
their pure counterparts—the impure proof is the demonstration, the pure proof a
deduction.

There is a philosophical literature on explanatory proof (see e.g., [75, 7, 8, 62,
48]), and how purity of method and explanation relate [48, 4, 64], much of which
seeks to identify just what it is that makes a proof explanatory. To be clear, I
am not sure of the significance of the distinction between explanatory proofs and
those which are supposedly not. A proof is why a theorem is true. Even the most
unwieldy, computer-assisted enumerative proof contains why the claim is shows is
true. It is immaterial if all of its cases cannot be grasped all at once by a human
mathematician. Dissatisfaction with a particular proof need not reflect epistemic
virtues inherent to the proof but rather one’s understanding of it. Explanations are
answers to “Why?” questions, after all, and the kinds of “Why?” questions one can
ask after being presented a proof reflect a lack of comprehension, not shortcomings
of the proof. Whether one gains understanding from this proof or that proof is too
autobiographical, too much a matter of an individual’s psychology, to be about the
proofs themselves.

By saying that some forcing and absoluteness proofs are explanatory, I do not
mean that they fall under any of the philosophical rubrics of explanatory proof. (I
think they do not, and I think no analysis of proofs will be successful in character-
izing explanatory proofs.) I just mean that among mathematicians in the relevant
research area, the proofs seem to be the “right” ones, probably by virtue of ex-
hibiting informative connections with other areas of mathematics or casting the
problem in a domain familiar to those mathematicians and in which their meth-
ods are applicable. There is nothing wrong with the non-forcing and absoluteness
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proofs, nor anything philosophically deep about the judgments that the forcing and
absoluteness proofs are “right.”

5.2. Essential uses. I read Gao et al’s inclusion of the purely topological proof of
Theorem 18 as a confirmation of the theorem justifying further use of the forcing-
and-absoluteness method in their paper. Together with their observation that from
the forcing-and-absoluteness proof of Theorem 18 further corollaries can be drawn,
this suggests that the authors see their proofs as being the “right” ones of their the-
orems. Another reason is that the limitations of measure techniques for establishing
Borel nonreducibilities and the fruitfulness of forcing-and-absoluteness suggest to
Gao et al. that the latter method may become essential:

It is our opinion that this is only the beginning of nontrivial results
about countable Borel equivalence relations that can be proved us-
ing forcing. It is curious to note the tension that the first five “pos-
itive” results all state the existence of points with certain regular-
ity properties, whereas the last three “negative” results state the
nonexistence of regular structure on orbits. Of course, the positive
results are all obtained by generically building such elements in the
generic extension (and then asserting their existence in the ground
model by absoluteness), and it is known that the results do not
hold for comeager or conull sets of reals. Thus what we are using
is some method that goes beyond the usual measure and category
arguments. [33, p. 4]

They predict that forcing proofs will be crucial to progress in definable equivalence
relations theory:

One of the central notions of the theory of countable Borel equiv-
alence relations is that of Borel reducibility. . . All known methods
to prove nonreducibility results for countable Borel equivalence re-
lations have been measure-theoretic (it is well known that cate-
gory arguments would not work). But measure-theoretic arguments
have their limitations. There have been persistent attempts by re-
searchers to invent new methods that are not measure-theoretic.
For instance, recent work of S. Thomas and A. Marks explore the
use of Martin’s ultrafilter and its generalizations as a largeness no-
tion. . . The forcing methods presented in this paper can also be
viewed as an attempt in this direction. [33, p. 4]

Similarly, Larson and Zapletal’s forcing formulation of turbulence provides
methodological advantages over Hjorth’s original. Their proof of Hjorth’s turbu-
lence theorem is an example of a proof which arguably gives insight into the content
of the theorem that is not revealed by the original proof. Forcing-and-absoluteness
may be a necessary tool in practice.

At least for human mathematicians. These forcing and absoluteness proofs are
natural for set theorists to find. They cast the problems in language the set theorist
is at home in, and human mathematicians—as opposed to computers—need heuris-
tics, intuitions, and creative insight to guide their proof searches. If carried out by
human mathematicians, then, developing theories requires forcing and absoluteness
proofs. But if the task of completing theories were left to computers programmed to
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find the proofs guaranteed to exist by e.g. Platek’s theorem and interpolation the-
orems, and if human understanding were no longer as central a goal of the pursuit
of mathematics, forcing and absoluteness could disappear from deductive mathe-
matical activity.44 What about non-deductive mathematical activity? If forcing and
absoluteness, as a technique, does not lead set theorists to useful new axioms, will
it remain a useful tool?

Question 27. Is there a scenario in which forcing and absoluteness could be used
to find new axioms?

5.3. An inversion. Arana and Detlefsen sought to formally characterize “a wide-
spread, persistent tendency to think that there are ways in which the resources
used in a proof/solution can match or fail to match the theorem proved/problem
solved, and that when proper match is achieved it in some way(s) adds to the value
of the proof/solution produced” [5, p. 1]. Kreisel was suspicious of the value of this
tendency.

Defects of ideals are generally seen most clearly in areas where they
have been realized, and so the results can be compared both with
earlier expectations and with alternatives (which violate the ideal
in question). In the cases under discussion, algebraic and number-
theoretic purity, plenty of comparisons are available since, with
time, impure proofs have become more common in practice, not less.
Moreover—and this is often neglected—(i) their actual reliability or
‘security’ is obviously unaffected by the possibility of pure proofs if
that possibility has not been realized, and (ii) impure methods are
not only used heuristically, for discovering conjectures and proofs,
but have turned out to be essential for checking proofs. . . . But also
there is the void created by simply not saying out loud what (knowl-
edge) is gained by impure proofs, for example by analytic proofs
in number theory: knowledge of relations between the natural num-
bers and the complex plane or, more fully, between arithmetic and
geometric properties. It is precisely this knowledge which provides
effective new means of checking proofs: if this conflicts with some
ideal of rigour, so much the worse for the ideal (which is being
tested). [47, p. 167]

With regards to forcing-and-absoluteness proofs, the rigor of the method and the
fact that many of the theorems in §3 have not been purely reproved bear out (i). The
potential Gao et al. see (§5.2) for the method to establish Borel nonreducibilities
would bear out (ii). Through the proofs we gain knowledge of how the structure
of V and the structure of its forcing extensions relate and bear on the concrete.
These relations are variegated and informative, and they give us confirmation of the
coherence of set theory in a sense reminiscent of the following passage by Dawson:

. . . the existence of multiple proofs of theorems serves an overarch-
ing purpose that is often overlooked, one that is analogous to the
role of confirmation in the natural sciences. For just as agreement
among the results of different experiments heightens credence in sci-
entific hypotheses (and so also in the larger theories within which

44Although, as a reviewer speculates, perhaps the forcing and absoluteness heuristic could lead
to more efficient proof search algorithms.
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those hypotheses are framed), different proofs of theorems bolster
confidence not only in the particular results that are proved, but in
the overall structure and coherence of mathematics itself. To para-
phrase a remark C. S. Peirce once made with regard to philosophy,
trust in mathematical results is based rather on ‘the multitude and
variety’ of the deductions that lead to them than on ‘the conclu-
siveness of any one’ of those deductions. Mathematical reasoning
forms not ‘a chain, which is no stronger than its weakest link, but
a cable’, whose fibers, though ‘ever so slender’, are ‘numerous and
intimately connected’. [17, p. 281]

That we can bring forcing extensions to bear on concrete problems in number
theory, analysis, or computability theory shouldn’t be possible, the thought goes,
unless the generic multiverse and set theory itself are coherent.45

Confirmations of set theory’s coherence are ultimately why the generic mul-
tiverse will not go away. Pure reproofs of the theorems in §3 will not have the
same confidence-bolstering effects. They will not reveal far-reaching connections
between generic extensions. Miller’s program has mathematical benefits that jus-
tify its pursuit—any directive that leads to finding more proofs is worthwhile—but
confirmations of the coherence of set theory are not among them. Following Kreisel,
if an ideal of purity precludes gaining knowledge of how generic extensions bear on
one another in productive ways, so much for that ideal—which is not to say that
seeking pure proofs should be discouraged. There are many different values a proof
can have. The variety of proofs of a theorem, with all the different values they
enjoy—like elemental purity or coherence-confirmation—collectively contribute to
our understanding of set theory.46

5.4. Conclusion. The generic multiverse is not going away, then, because—
through the forcing-and-absoluteness method—it aids in proof discovery; some of
the impure proofs discovered are the explanatory or “right” proofs of the theorem
they establish; and the method may be essential for certain purposes, like proving
Borel nonreducibilities. (Should the method somehow lead to new axioms, so much
the better.) Forcing-and-absoluteness proofs give a non-local kind of knowledge
about—a confirmation of—the coherence of set theory, knowledge which cannot be
gotten from pure, direct proofs of the same theorems. Bringing such machinery to
bear on theorems about concrete mathematics shouldn’t be possible unless we are
onto something.

The proofs put a weak version of the central claim of generic multiversism—that
every extension of set theory is as good as any other—to work in a way which is
relevant and useful to Absolutists. The proofs have to be rigorously accounted for,
and a rigorous setting for studying what forcing extensions V has is needed. The
generic multiverse theory does this. Jettisoning the generic multiverse is too strong
a reaction to Usuba’s theorem.

45I don’t think coherence-confirmation is limited to proofs about concrete objects. Silver’s proof

that the Singular Cardinals Hypothesis cannot first fail at a singular cardinal of uncountable
cofinality is no less coherence-confirming. The focus on the concrete in this paper is to emphasize

connections with other areas of mathematics than set theory.
46I think this is a virtue of intramathematical applications generally—they contribute to our

understanding of mathematics and how its disparate areas hang together.
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Appendix A. Forcing and absoluteness proofs

Automorphisms of the Turing degrees. In unpublished work combining recursion
theory, forcing, and absoluteness, Slaman and Woodin have shown that any non-
trivial automorphism of the Turing degrees D is definable. The following theorem
is a consequence.

Theorem 28 (Slaman-Woodin). Let I be a Turing ideal containing 0′ and suppose
ρ : I → I is a persistent automorphism.47 Then ρ can be extended to a global
automorphism π : D → D.

Slaman and Woodin show that an automorphism being persistent is absolute
to forcing extensions. So after forcing to make D (and hence I) countable, ρ is
persistent in the extensionW [g]. They show that ρ can be extended to any countable
ideal extending I, so it suffices to find in W [g] an automorphism of DV which is
persistent and agrees with ρ on IV . Being persistent, that automorphism actually
exists in L(RV ), hence in W .

As a corollary of Theorem 28, the statement “There is a nontrivial automorphism
of the Turing degrees” is Σ1

2, so forcing and absoluteness may provide the means
to settle the question whether there is one.

Selective ultrafilters and analysis. CH implies structure useful for proving theorems
in analysis, namely selective ultrafilters. [24] describes a general methodology: Force
CH without adding reals, apply a selective ultrafilter to derive the theorem, and
conclude that the theorem holds because the theorem is about reals and the forcing
did not add any. Here’s an example.

Theorem 29 ([24, Theorem 6.9]). For every sequence {fn} of continuous functions
from [0, 1]ω into [0, 1], there is a subsequence {gn} of {fn} and a sequence {Pn}
of perfect subsets of [0, 1] such that {gn} monotonically converges to a continuous
function on

∏
i<ω Pi.

The proof uses Sacks forcing and the following equivalent of a version of the
Halpern-Läuchli Theorem as an “upwards absoluteness” principle.

Theorem 30 ([24, Theorem 6.8]). If U is a selective ultrafilter, then U generates
a selective ultrafilter U∗ in the ω-product Sacks forcing extension.

Ergodicity under Martin’s conjecture. Slaman and Steel asked the question Kechris
answered in the context of their work on Martin’s conjecture. Thomas has investi-
gated the effects Martin’s conjecture has on the structure of countable Borel equiva-
lence relations. Many naturally occurring countable Borel equivalence relations are

47Intuitively, a persistent automorphism of a countable ideal I is one that can be extended to an
automorphism of any countable J ⊇ I which contains whatever Turing degree one wants.
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weakly universal,48 but it is unknown in general how extensive this phenomenon is.
Martin’s conjecture implies it is pervasive.

Theorem 31 (Thomas [77]). Martin’s conjecture implies that there are uncountably
many weakly universal countable Borel equivalence relations up to Borel bireducibil-
ity.

Thomas takes a Borel family of finitely generated groups {Gα : α ∈ 2ω} which
do not embed into one another and which do not have non-trivial finite normal
subgroups,49 and he takes the products Eα× ≡T of their orbit equivalence relations
Eα on the free part of the shift action of Gα with Turing equivalence. Each of
the Eα× ≡T is weakly universal. It suffices to show that none of them are Borel
reducible to each other. The proof of this uses MA + ¬CH. For the absoluteness
step, Thomas shows that Martin’s conjecture is equivalent to a Π1

2 statement and
holds in the extension. The statement that the product relations ≡T ×Eα and
≡T ×Eβ are not Borel reducible to each other when α 6= β is Π1

2 in α and β. Since
this statement holds in the extension satisfying MA +¬CH, it holds in the ground
universe.

Analytic equivalence relations. Let ∼=p be the isomorphism relation on countable
abelian p-groups, and let ≡TA be the bi-embeddability relation on countable torsion
abelian groups.

Theorem 32 (Calderoni-Thomas [14]). ∼=p is not Borel reducible to ≡TA.

Calderoni and Thomas use pinned names. They show that if an analytic equiv-
alence relation E is Borel reducible to an analytic equivalence relation F , then
λP(E) ≤ λP(F ).50 They calculate that λP(∼=p) = 2ω1 and λP(≡TA) = ωω2 . Now
suppose Theorem 32 were false and step into a forcing extension V [g] in which
2ω1 > ωω2 . By Theorem 2, the reduction lifts to a reduction from (∼=p)

V [g] to

(≡TA)V [g]. Then λP(∼=p) = 2ω1 > λP(≡TA), which is a contradiction.
Calderoni and Thomas also obtain a strong version of Theorem 32 which shows

the utility of large cardinals in forcing-and-absoluteness proof.

Theorem 33 (Calderoni-Thomas [14]). ∼=p is not ∆1
2 reducible to ≡TA.

The proof structure is virtually the same except that, first, a Ramsey cardinal
is used to get that if an analytic equivalence relation E is ∆1

2 reducible to analytic
equivalence relation F , then λP(E) ≤ λP(F ). And, second, Σ1

3-absoluteness as in
[57, §5] is appealed to.

Subspaces of separable Banach spaces. There is a research program [34] aiming to
classify Banach spaces up to isomorphism or, in light of the complexity of the class
of Banach spaces,51 up to their subspaces. The following theorem characterizes how
many subspaces a separable Banach space contains up to isomorphism.

48Let E,F be countable Borel equivalence relations on Polish spaces X,Y , respectively. A Borel

reduction of E to F is a Borel homomorphism f : X → Y such that xEy if and only if f(x)Ff(y).

A countable Borel equivalence relation E is weakly universal if for any countable Borel equivalence
relation F there is a countable-to-one Borel homomorphism of F to E.
49Finite subgroups which are invariant under conjugation.
50If E is an equivalence relation and P is a forcing notion, λP(E) is the number of E-pinned

P-names up to E-equivalence.
51In [27] Ferenczi, Louveau, and Rosendal show that isomorphism between separable Banach
spaces is a complete analytic equivalence relation.
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Theorem 34 (Ferenczi-Rosendal [26]). If X is a separable Banach space, then X
contains either

(1) a perfect set of non-isomorphic subspaces, or
(2) a block-minimal subspace with an unconditional basis.

Ferenczi and Rosendal show that the statement is Σ1
2 via an ingenious coding,

show that it holds in an extension satisfying MA + ¬CH, and apply Theorem 2.

The Baumgartner-Hajnal theorem. The following theorem of Baumgartner and Ha-
jnal answered a question of Erdős and Hajnal [23]: Is it true that ω1 → (α)2

k for all
finite k?52

Theorem 35 (Baumgartner-Hajnal [10]). θ → (ω)1
ω implies θ → (α)2

k for all
α < ω1 and finite k.

The higher set theory appealed to in the proof is Martin’s Axiom, which is used
to prove the following lemma.

Lemma 36. Let θ be an ordinal such that θ → (ω)1
ω. Let |θ| = κ and MAκ holds.

Then θ → (α)2
k for all α < ω1 and k < ω.

Baumgartner and Hajnal prove upward (allowing the transfer of a statement from
the ground universe to any extension) and downward absoluteness (allowing one
to infer a same statement holds in the ground universe if it holds in an extension)
lemmas for the statement “otp(C)→ (ω)1

ω”. Then given an ordered set 〈A,<〉, let
θ be the order type of A and let β = |θ|. Suppose θ → (ω)1

ω. Pass to a forcing
extension which is correct about ω1 and satisfies MAβ . By the upward absoluteness
lemma, θ → (ω)1

ω holds. By Lemma 36, the extension satisfies θ → (α)2
k for α < ω1

and k < ω. The downward absoluteness lemma implies that this holds in the ground
universe.

Taking θ = ω1, one needs to use MAω1
, so this is a proof using MA+¬CH. Galvin

removed the metamathematics in a subsequent proof [32].5354

p-adic forms. The paper in which the following number theoretic theorem is proved
does not explicitly use forcing, but it appeals to CH and absoluteness.

Theorem 37 (Ax-Kochen [6]). For any d > 0 there is an N > 0 such that for any
prime p > N , any homogeneous polynomial over the ring Zp of p-adic integers with
degree d and more than d2 variables has a nontrivial zero over Zp.

52We are using standard notation from the partition calculus. Let θ and γ be ordinals. We write
θ → (ω)nγ for the assertion that for any coloring f of the n-element subsets of θ with γ-many
colors, there is a subset X ⊆ θ such that the order type of X is ω and f is monochromatic on

every n-element subset of X.
53See [36] for a detailed history.
54[9, §3.1.1] discusses the Baugartner-Hajnal theorem as an example of forcing proving a theorem
about the ground model, emphasizing that the theorem is not, to use our distinction, concrete. We
have included it particularly to emphasize the specificity of the absoluteness lemmas Baumgartner
and Hajnal proved.
The Malliaris-Shelah theorem—that two cardinal characteristics of the continuum, the tower num-

ber t and the pseudointersection number p, are equal—is also discussed in [9, §3.1.1]. It is proved in
[54] by assuming p < t in the ground universe and deriving a contradiction in a forcing extension.
This illustrates the utility of forcing extensions but does not use absoluteness.
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A key step in the Ax-Kochen proof is showing that certain ultraproducts by
nonprincipal ultrafilters over the primes are elementarily equivalent. This is implied
by the Ax-Kochen isomorphism theorem:

Theorem 38 (Ax-Kochen). Assume CH. Then if U is a nonprincipal ultrafilter
over prime numbers, then the ultraproduct

∏
p Fp((t))/U is isomorphic to the ultra-

product
∏
pQp/U .

Shelah has shown ZFC cannot prove the Ax-Kochen isomorphism theorem—
something like CH is needed [67]. Ax and Kochen describe why CH can nevertheless
be removed from their proof of Theorem 37:

It is easily shown that the statement of [Theorem 37] is equivalent to
an elementary number-theoretic statement; moreover the proof of
this equivalence may be carried out in the set theory Σ described in
[Gödel’s “On the consistency of the continuum hypothesis”]. Also
the proof we have given that the continuum hypothesis and the
axiom of choice imply the statement of [Theorem 37] may be car-
ried out in Σ. Now it is known (and follows easily from [Gödel’s
paper]) that a proof in Σ of an elementary number-theoretic state-
ment which uses the continuum hypothesis and the axiom of choice
may be transformed into a proof (in Σ) of the number-theoretic
statement which does not use these assumptions. [6, p. 628]

Denef has given an algebraic geometric proof of the Ax-Kochen theorem [19].
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