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1. Introduction

Let S(a) denote the class of functions

regular and analytic in the unit disc E = {z: | z | < 11} and satisfying the con-
dition

(2) R

It was shown by Robertson (1936) that if/(z) = z + E"=2aBz" is uni-

valent and starlike in E then /(z) satisfies Re / > - . In this paper we

determine the radius of starlikeness of functions belonging to the class S(a).
We also obtain coefficient estimates for functions in the class S(a), thus

generalizing a result due to Dvorak (1967).
It was further shown by Dvorak (1967) that every function /(z) = z + E"= 2anz"

regular and univalent in E satisfies the condition Re[/(z)/z]* > \ in a circle of
radius r0 with 0.83 < r0 < 0.84. The exact value of r0 has been obtained by sev-
eral authors in Durren and Schober (1971), Kiihnau (1971 and 1971a), Reade
and Umezawa (1971). We shall find the exact value of ro(a) for which the
univalent function/(z) = z + Z"=2 anz" satisfies the condition (2).

2. Radius of starlikeness

THEOREM 2.1. Let /(z)eS(a). Let a0 > 1 denote the smallest positive
root of the equation

32a2 - 104a2 + 98a - 27 = 0.
46
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(i) for l ^ a ^ a 0 , / (z) is starlike in

1 ' L 1 8 a - 1 7

(ii) for a ^ a0, /(z) is starlike in

V(20a2-28a + 9)-(4a-3)
2 ( l )

T/iese bounds are sharp.

PROOF. Since /(z) e S(a), we can write

where p(z) is regular in E and satisfies the conditions p(0) = 1 and Re p(z) > 0
for zeE. Also we know that any such function p(z) can be written in the form

(4) i X * ) 1 1 1 ^^ ' ~ l + w ( z ) '

where w(z) is regular in E and satisfies the conditions w(0) = 0 and I w(z) I < 1
for zeE.

(3) and (4) yield

z <x(l + w(z) "

Differentiating (5) we get

(6)
/(z) (1 + w(z)) (1 - A w(z)Y

where A = 1 — I/a, a 2: 1. If we let $(z) = w(z)/z, then | $(z) | < 1 and 0(z)
is regular in | z | < 1. Hence (Nehari (1952; page 168))

(') <P(Z) = — ; — n r -

Substituting for <p(z) in terms of w(z) we obtain from (7)

|:u-'(~-) u - ( r ) l - r 2 " | w ( z ) | 2 r = | z |

which, with (6) yields
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-\w(z)\2r2

_! + 2Re -r 2 ) |Kz) | J
where p(z) = [l-.4w(z)]/[l + w(z)], 0 S A ̂  1.

It is easy to see that the transformation p(z) - [l-4w(z)]/[l + w(z)~\ maps the
circle |w(z)| ^ r onto the circle

m\ \ s \ I ̂  J ! + ^ r 2 j (1 + -4)'" II

(9) | p ( z ) - a | ^ d , a = 1 _ r 2 • d~ 1 _ 1 A ' r = l z l -
If we put p(z) = Re1'8 and denote the right hand side of (8) by S(R, 6). Then

(10) S(R, 9) = j - ^ - i y - 1 + 2R + 2 U - ^-2aj cos9
Now

where T(R) = 2a + AfR -R, a-d fLR^a + d. Since T(R) clearly is a
monotone decreasing function of R, and since

4 + ^
- r 2 1 + Ar 1 — r

2(l + ^r2) 1+Ar] 4(1 - r)
1-r2 1 - r J l+Ar

1 + r ' 1 + Ar ' " '

It follows that T(R) remains positive for a — d^R^a + d. Therefore, the
maximum of S(R, 9) inside the circle | p(z) — a | ^ d is attained for 9 = 0. By
Putting 9 = 0 in (10) we obtain

Since
8S _ 2 V A ( a 2 - ^ ) 1

3K l + A [ R2 R2 \

(1-A)(l+Ar2) 1] _ 2 r9_(l-^)a]
1 ^ »2" "~ 1 i A \ p2 '

1 — r - K J l + y l [ _ i< Jl + A
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We see that the absolute minimum of S(R, 0) in (0, oo) is attained at
R = J({l-A)a)l2 and equals

(12) ~-j UA - 1 + 4^/2(1-A)a- 4a\.

It is easy to see that Ro < a + d, but Ro is not always greater than a — d. In such
a case when Ro<£ [a — d, a + d] the minimum of S(i?,0) on the segment [a—d,
a + d] is attained at Rt = a — d and equals

(13) ^mpr-Ar*
The two minima given by (12) and (13) coincide for such values of A for which
Ro =Rt. We thus conclude that

(14) Re \~^\ ^ Y^—A UA - 1 - 4a + 4^2(1-A)a] for R0^Rlt

and

as) Re i ^ i ^1 J1*:;:" ~ for

The equality sign in (14) is attained for the function

The equality sign in (15) is attained for the function
1 ~ l/«cos0z + ( l / a - l ) z 2 l 2

l - 2 c o s 0 - 2 + z^ J

where cos 8 is determined from

1- (1 + A)rcosd
l - 2 r c o s 0 + r2

Hence the radius of starlikeness for the class S(a) which may be obtained from
(14) and (15) is given by

(18) IA - 1 - 4a + 4^/2(1 -A)a = 0 , Ro ^ Rx,

(19) 1 - (1 + 3A)r -Ar2 = 0,A = l - I/a, Ro^Rlt

which yield
OM r - p(4*-2)-(6a + 5)1*
(20) r, - y j ^ - ^ j , R0ZRlt

and
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r _ V(20a2-28a
s 2(g

The two minima given by (14) and (15) become equal to each other for such a
,4(0 ^ A < 1) for which

(22) Ro =

Hence the values of a for which the two values of rs given (20) and (21) become
equal are obtained by eleminating r from (19) and (22). We obtain -
+ 11.4 + 1 = 0 , and hence

(23) K{<x) = 32a3- 104a2 + 98a - 27 = 0,

Since K(l) = — 1 < 0 and K(co)) = + oo, it follows that a0 in the theorem lies
in (l,co).

The functions given by (16) and (17) show that the bounds are sharp.

3. Coefficient estimates

THEOREM 3.1. / / /(z) = z + a2z
2 + ••• + anz" + ••• is regular and ana-

lytic in E and satisfies (2), then

These bounds are sharp.

PROOF. On putting p(z) = 1 + Y.?=lpnz
n in (3) we get

(24) /(z) =

On substituting the power series exapnsion for /(z) from (1) in (24) and then
equating the coefficients of z2m and z2m+1 we get

(25) a2m+l = 2̂ 1 - ^jp2m + ( l - ^ ) ( r i + 2 S prp^, r + s = 2m,

and

(26) a2m+2 = 2 M - 2^jP2m+i + 2U - ^ j S prps, r + s = 2m + 1.

Since Rep(z) > 0 for zeE, we have (Nehari (1952; page 170))

(27) I p . I ^ 2 for n = 1 , 2 , 3 , - .
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From (25), (26) and (27) we easily obtain the bounds

The bounds are attained by the extremal function

This completes the proof of the theorem.

REMARK 1. On putting a = 1 in Theorem 3.1. we get

\an\ ^ n, n = 2 ,3, •••,

which is a result obtained by Dvorak (1967).

4. An inequality for univalent functions

THEOREM 4.1. Let f(z) = z + 1?n=1anz be regular and univalent in E.
Then f(z) satisfies (2) for \z\< ro(a) where ro(a) is the smallest positive root
of the equation

where S i(x) and E *(x) are the inverses of S(x) = x/sinx and £(x) = xe~x

respectively. The result is sharp.

PROOF. Condition (2) is equivalent to the inequality

(30)

Since /(z) = z + Z ™=2anz
n is regular and univalent in E, we have Gulusin

(1947; page 113)

(30

Putting W = l o g y ^ / 7 ( z ) , A = i l o g ( l - | z | 2 ) , B = | l o g ( l + |z |) /( l - \z\),
Wi, = ew = Re1* in (30) and (31) we obtain

(32) #<2<xcos<£

and
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(33) (logR~A)2 + <f>2<B2,

respectively.

If | z | = r is small, it is evident that the region defined by (33) lies in the
region (32). As r increases, the boundary of (33) touches the boundary of (32)
before r reaches 1. At such a point of contact we must have

(34) logR = Iog(2oecos0) =

and

-AX = ~2a s i n $ =

On eliminating <f> from (34) and (35) we get

(36) \BeA = «JB2 - <j>2 exp[ -

From (35) and 36) we obtain

(37) . , = B.v ' sin 0

If we denote by E~i(x) and S- 1(x) the inverses of E(x) = xe~x and
S(x) = x/sinx respectively, then (36) and (37) yield (29).

The result is sharp because the inequality (31) is sharp.

THEOREM 4.2. Let g(z) = z + a3z
3 + ••• be analytic, univalent and odd in

E. Then Re[(#(z))/z] > l/2a for | z | < rx(oi), where r t(a) is the smallest positive
root of the equation

4a 6 1 - V V

The result is sharp.

PROOF. If we take / (z 2 ) = (g(z))2, then / (z) is analytic and univalent in E
and we then apply Theorem 4.1 to obtain the above theorem.

REMARK. On putting a = 1 in Theorems 4.1 and 4.2. We obtain Theorem C
and D proved by Reade and Umezawa (1971). This shows our theorems generalize
the results obtained earlier by Reade and Umezawa (1971) and Duren and Scho-
ber (1971).

The author wishes to thank the referee for his suggestions.
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