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1. Introduction

Let S(x) denote the class of functions

1) f@) =z+az2*+ - +az"+ -
regular and analytic in the unit disc E = {z: |z| < 1|} and satisfying the con-
dition
f@1t 1
) Re[z > 50 «a21,|z|<l.

It was shown by Robertson (1936) that if f(z) = z + X P.,a,z" is uni-
valent and starlike in E then f(z) satisfies Re f(z_z)>% In this paper we

determine the radius of starlikeness of functions belonging to the class S(«).

We also obtain coeflicient estimates for functions in the class S(), thus
generalizing a result due to Dvorak (1967).

It was further shown by Dvorak (1967) that every function f(z)=z+ X ,a,z"
regular and univalent in E satisfies the condition Re[f(z)/z]* > 4 in a circle of
radius ry, with 0.83 < r, < 0.84. The exact value of ry has been obtained by sev-
eral authors in Durren and Schober (1971), Kiihnau (1971 and 1971a), Reade
and Umezawa (1971). We shall find the exact value of ro(a) for which the
univalent function f(z) = z + X -, a,z" satisfies the condition (2).

2. Radius of starlikeness

THEOREM 2.1. Let f(z)eS(x). Let oy >1 denote the smallest positive
root of the equation

320? — 1042% 4 980 — 27 = 0.
46
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(i) for 1 £ a £ oy, f(2) is starlike in

8/4a—2 —(6a + 5)|*
|] <[ 18a—17 ] ’

(ii) for a = oy, f(2) is starlike in

12| < J(200% — 28a + 9) — (4x—3)
2(a—1) .

These bounds are sharp.

Proor. Since f(z) e S(x), we can write

where p(z) is regular in E and satisfies the conditions p(0) = 1 and Re p(z) > 0
for ze E. Also we know that any such function p(z) can be written in the form

_1=w(2)
C)) p(z) = m,
where w(z) is regular in E and satisfies the conditions w(0) = 0 and [ w(z)l <1
for zeE.
(3) and (4) yield
[f(2) _ a+(1—0w(z)
©) z  al+wiz
Differentiating (5) we get
©) '@ _ 2(1 + A)zw'(2)
f(@) 1+ w2) A — 4 wz)y

where A = 1 —1/a, « 2 1. If we let ¢(z) = w(z)/z, then |$(z)| <1 and ¢(2)
is regular in |z[ < 1. Hence (Nehari (1952; page 168))

) 16@)| = ——(%

Substituting for ¢(z) in terms of w(z) we obtain from (7)
,w(z)]

|zw’(z) w(z)l ——————, r=|z|,

which, with (6) yields
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D)o, w(z)

® Re[TD] 21204 DR )

r —Iw(z)l2 ]
(A=) 1+ w@)| |1 - Aw(2)
_ A ) B 2(r? |p(z) +A|2—|1—P(2)|2)]

1+4 p(2) (1 —=r3)|p()|

where p(z) = [1-Aw(2)]/[[1 +w(z)], 0 S A< 1.

It is easy to see that the transformation p(z) = [1—Aw(z)]/[1 + w(z)] maps the
circle |w(z)| < r onto the circle

[3A—1+2Re (p(z) -

1+ Ar? 1+ Ar

) |p(z)—a|§d,a= T—2 d=—1—_7—, r=|z|.
If we put p(z) = Re® and denote the right hand side of (8) by S(R, 6). Then

1 A 2(a®—~d?

R - kSl A

(10) SR,0) = T4 [3A 1+2R+2(R R 2a)cos0+ R ]
Now

as 2 .

5 ~T+A 0T

where T(R) =2a+ A/IR—R, a—d < R=a+d. Since T(R) clearly is a
monotone decreasing function of R, and since

1+4r*  A(l-r) 1+A4r
1-r2 " 14+ Ar 1-r

Ta+d) = 2

_ [2(1 +Ar2)_ 1 +Ar] + Al —-r)
- 1-r? 1—r 1+ Ar
1—Ar Al —7)

BRI T TR

It follows that T(R) remains positive for a—d < R < a + d. Therefore, the
maximum of S(R,0) inside the circle ]p(z) — a| =< d is attained for 6§ = 0. By
Putting 6 = 0 in (10) we obtain

1 A 2a® — d?)
Since a-dsRzatd.
S A (a2—d2)]
o g4 42 ¢ 4]
JR 1+ A [ + R? R?
- 2 [ (1—A)(1+Ar2)_1_J 2 [2_(1—A)a]
1+4 1—r? R? 1+ 4 R? ’
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We see that the absolute minimum of S(R,0) in (0, o) is attained at
R =./((1—A)a)/2 and equals
12) 1 f34-1 +4/2(1—A)a — 4

1 F A ajl.
It is easy to see that R, < a + d, but R, is not always greater than a—d. In such
a case when Ry ¢ [a~d,a + d] the minimum of S(R,0) on the segment [a—d,
a + d] is attained at R, = a—d and equals

1~ + 34)r — Ar?
(13) A+nd - 4n

The two minima given by (12) and (13) coincide for such values of A for which
Ry, = R, . We thus conclude that

(14) Re [ff—(—z)] g—l—— [3A—1—4a+4¢m] for Ry = Ry,

T =1+ 4
and
zf'(2) 11— +34)r— Ar?
> ke [T | 2 i o Ra S R

The equality sign in (14) is attained for the function

_ 2
(19 1@ = o LR

The equality sign in (15) is attained for the function

1 —1jacosf-z + (1ja—1)z272
1—2cos8-z 4+ 22

a7 f@) =z [

where cos & is determined from

1—(1 + Arcosd + Ar?
1 —2rcosf + r?

=R,.

Hence the radius of starlikeness for the class S(¢) which may be obtained from
(14) and (15) is given by

(18) 34—1—4da + 4\/2(1—-A)a =0, Ry, 2 Ry,
19 1-(1+34)r—Ar* =0, A=1-1/ae,Ry S R,
which yield
8(4a—2) — (6 + S)1*
= >
(20) rs [ 18“_17 ’ RO = Rl ’
and
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ey - dEEEERC@) g

The two minima given by (14) and (15) become equal to each other for such a
A0 £ A < 1) for which

@ Ro = [452)" — amd = ..

Hence the values of « for which the two values of r, given (20) and (21) become
equal are obtained by eleminating r from (19) and (22). We obtain —2743—17432
+ 11441 =0, and hence

(23) K(x) = 32a% — 1040% + 980 — 27 = 0,
Since K(1) = —1 <0 and K(w)) = + w0, it follows that o, in the theorem lies
in (1, c0).

The functions given by (16) and (17) show that the bounds are sharp.

3. Coefficient estimates

TueoreM 3.1. If f(z) = z + a,z2* + -+ + a,z" + --- is regular and ana-
Iytic in E and satisfies (2), then

W4g40—%)P@—%)—O—%”mm=zam.

These bounds are sharp.

ProOOF. On putting p(z) =1 + X2, p,z" in (3) we get
1 1 © . 2

On substituting the power series exapnsion for f(z) from (1) in (24) and then
equating the coefficients of z?™ and z*"*! we get

1 1)\?
(25) Aam+1 = 2(1 - i&)plm + (1 - 2—;) (ptzn + 2 Z prps)’ r+s= 2m9

and
1 1)\2
@26) gy =2 1—5&p2m+1+2(1—2~a S0, rHs=2m+l.

Since Re p(z) > 0 for ze E, we have (Nehari (1952; page 170))
@7 |p.| <2 for n=1,23,-.
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From (25), (26) and (27) we easily obtain the bounds

|a,| < 4(1 _zl_a) (n_1 _ nz—az)
~ a5 - 2) (- )] =2

The bounds are attained by the extremal function

1@ = [+ (1-5) 12

This completes the proof of the theorem.

(28)

REMARK 1. On putting « = 1 in Theorem 3.1. we get
|a,,| <n, n=23,--,

which is a result obtained by Dvorak (1967).

4. An inequality for univalent functions

THEOREM 4.1. Let f(z2) = z + X%_,a,2 be regular and univalent in E.
Then f(z) satisfies (2) for |z| < roa) where ro(at) is the smallest positive root
of the equation

ool (o ] [ (T ) a2

where S™!(x) and E~'(x) are the inverses of S(x) = x[sinx and E(x) = xe~*
respectively. The result is sharp.

ProoOF. Condition (2) is equivalent to the inequality

(30) , J%—a ’<<x.

Since f(z) = z+ X ;-,a,z" is regular and univalent in E, we have Gulusin

(1947; page 113)

G |log /f(—j—ilog(l——|z|2) <5 l o)

Putting W = log/2[f(2), A = }log(1—|z[), B = }log(1 + |z])/(l — |z,
W, = ¥ = Re'® in (30) and (31) we obtain

32) R < 2acos¢

and
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(33) (logR — 4)* + ¢* < B?,
respectively.

If |z| = r is small, it is evident that the region defined by (33) lies in the
region (32). As r increases, the boundary of (33) touches the boundary of (32)
before r reaches 1. At such a point of contact we must have

34) logR = log(2xcos @) = (A + \/Bz ¢?
and
35) EIE = —2asingp = — —qs——exp(A + \/Bz ¢?).
\/BZ _ ¢2
On eliminating ¢ from (34) and (35) we get
(36) 1Be" = « /B> — ¢* exp[ ~/B* — ¢*].
From (35) and 36) we obtain
¢
37 Sng = B.

If we denote by E~'(x) and S~!(x) the inverses of E(x) = xe™* and
S(x) = x/sinx respectively, then (36) and (37) yield (29).

The result is sharp because the inequality (31) is sharp.

THEOREM 4.2. Let g(z) = z + a,z> + --- be analytic, univalent and odd in
E. Then Re[(g(2))/z] > 1/2a for |z| < ry(&), where r(«) is the smallest positive
root of the equation

[ )« [ (g - [ 2T

The result is sharp.

Proor. If we take f(z2) = (g(2))% then f(z) is analytic and univalent in E
and we then apply Theorem 4.1 to obtain the above theorem.

REMARK. On putting « = 1 in Theorems 4.1 and 4.2. We obtain Theorem C
and D proved by Reade and Umezawa (1971). This shows our theorems generalize
the results obtained earlier by Reade and Umezawa (1971) and Duren and Scho-
ber (1971).

The author wishes to thank the referee for his suggestions.
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