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Quantum cohomology of orthogonal Grassmannians

Andrew Kresch and Harry Tamvakis

Abstract

Let V be a vector space with a non-degenerate symmetric form and OG be the
orthogonal Grassmannian which parametrizes maximal isotropic subspaces in V . We give
a presentation for the (small) quantum cohomology ring QH∗(OG) and show that
its product structure is determined by the ring of P̃ -polynomials. A ‘quantum Schubert
calculus’ is formulated, which includes quantum Pieri and Giambelli formulas, as well as
algorithms for computing Gromov–Witten invariants. As an application, we show that the
table of three-point, genus zero Gromov–Witten invariants for OG coincides with that for
a corresponding Lagrangian Grassmannian LG, up to an involution.

1. Introduction

Consider a complex vector space V together with a non-degenerate symmetric form. Our aim is
to study the structure of the small quantum cohomology ring of the orthogonal Grassmannian of
maximal isotropic subspaces in V . In a companion paper to this one [KT], we provide a similar
analysis in type C, i.e. for the Lagrangian Grassmannian, and the reader is referred there and to
[FP97, LT97] for further background material. The story in the orthogonal case is similar, but with
significant differences, both in the results and in their proofs.

Assuming the dimension of V is even and equal to 2n+ 2 for some natural number n, then the
space of maximal isotropic subspaces of V has two connected components, each isomorphic to the
even orthogonal Grassmannian or spinor variety OG = OG(n + 1, 2n + 2) = SO2n+2/Pn+1. Here
Pn+1 is the maximal parabolic subroup of SO2n+2 associated to a ‘right end root’ in the Dynkin
diagram of type Dn+1. We note that OG(n+1, 2n+2) is isomorphic (in fact, projectively equivalent)
to the odd orthogonal Grassmannian OG(n, 2n + 1) = SO2n+1/Pn. Therefore, it suffices to only
work with the even orthogonal example and we do so throughout this paper. We agree that a class
α in the cohomology H2k(X,Z) of a complex variety X has degree k to avoid doubling all degrees.

The cohomology ringH∗(OG,Z) has a Z-basis of Schubert classes τλ, one for each strict partition
λ = (λ1 > λ2 > · · · > λ� > 0) with λ1 � n. Their multiplication can be described using the
P̃ -polynomials of Pragacz and Ratajski [PR97]. Let X = (x1, . . . , xn) be an n-tuple of variables and
define P̃0(X) = 1 and P̃i(X) = ei(X)/2 for each i > 0, where ei(X) denotes the ith elementary
symmetric polynomial in X. For non-negative integers i, j with i � j, set

P̃i,j(X) = P̃i(X)P̃j(X) + 2
j−1∑
k=1

(−1)kP̃i+k(X)P̃j−k(X) + (−1)jP̃i+j(X), (1)
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and for any partition λ of length � = �(λ), not necessarily strict, define

P̃λ(X) = Pfaffian[P̃λi,λj
(X)]1�i<j�r, (2)

where r = 2�(�+ 1)/2�. Let Dn be the set of strict partitions λ with λ1 � n.
Let Λ′

n denote the Z-algebra generated by the polynomials P̃λ(X) for all λ ∈ Dn; Λ′
n is isomorphic

to the ring Z[X]Sn of symmetric polynomials in X. By the results of [Pra91, § 6] and [PR97] we
have that the map sending P̃λ(X) to τλ for all λ ∈ Dn extends to a surjective ring homomorphism
φ : Λ′

n → H∗(OG,Z) with kernel generated by the relations P̃i,i(X) = 0 for 1 � i � n. The map φ
can be realized as the evaluation on the Chern roots of the tautological quotient vector bundle Q
over OG (note that the top Chern class of Q vanishes). In this way, we obtain a presentation for the
cohomology ring of OG and Equations (1) and (2) become Giambelli-type formulas, which express
the Schubert classes in terms of the special ones.

We present an extension of these results to the (small) quantum cohomology ring of OG, denoted
QH∗(OG). This is an algebra over Z[q], where q is a formal variable of degree 2n (the classical
formulas are recovered by setting q = 0).

Theorem 1. The map which sends P̃λ(X) to τλ for all λ ∈ Dn and P̃n,n(X) to q extends to a

surjective ring homomorphism Λ′
n → QH∗(OG) with kernel generated by the relations P̃i,i(X) = 0

for 1 � i � n−1. The ringQH∗(OG) is presented as a quotient of the polynomial ring Z[τ1, . . . , τn, q]
modulo the relations

τ2
i + 2

i−1∑
k=1

(−1)kτi+kτi−k + (−1)iτ2i = 0 (3)

for all i < n, together with the quantum relation

τ2
n = q (4)

(it is understood that τj = 0 for j > n). The Schubert class τλ in this presentation is given by the
Giambelli formulas

τi,j = τiτj + 2
j−1∑
k=1

(−1)kτi+kτj−k + (−1)jτi+j (5)

for i > j > 0 and

τλ = Pfaffian[τλi,λj
]1�i<j�r, (6)

where quantum multiplication is employed throughout. In other words, classical Giambelli and
quantum Giambelli coincide for OG.

We remark that the statements in Theorem 1 are direct analogues of the corresponding facts for
SLN -Grassmannians [Ber97]. However, these results stand in contrast to the case of the Lagrangian
Grassmannian LG(n, 2n), where quantum Giambelli does not coincide with classical Giambelli on
LG(n, 2n) (see [KT] for more details).

Our proof of Theorem 1 follows the scheme of [KT], with two main differences. We require a
Pfaffian identity for type D Schubert polynomials [KT02, § 3.3], which gives a key relation in the
Chow group of a certain orthogonal Quot scheme OQd. The latter scheme compactifies the moduli
space of degree d maps P1 → OG; however, our definition of OQd differs from that in the Lagrangian
case of [KT], as the direct analogue of the Grothendieck Quot scheme [Gro61a] here is not suitable
for doing computations.

In QH∗(OG) there are formulas

τλ · τµ =
∑

〈τλ, τµ, τν̂〉dτνqd,
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where the sum is over d � 0 and strict partitions ν with |ν| = |λ| + |µ| − 2nd, and ν̂ is the dual
partition of ν, whose parts complement the parts of ν in the set {1, . . . , n}. Each quantum structure
constant 〈τλ, τµ, τν̂〉d is a genus zero Gromov–Witten invariant for OG and is a non-negative integer.
We present explicit formulas and algorithms to compute these numbers. This includes a quantum
Pieri rule, which extends the classical result of Hiller and Boe [HB86]. As an application, we show
that there is a direct identification between the three-point, genus zero Gromov–Witten invariants
on OG with corresponding ones for the Lagrangian Grassmannian LG(n− 1, 2n− 2) (Theorem 6).

This paper is organized as follows. In § 2 we study the P̃ -polynomials and type D Schubert
polynomials, and prove a remarkable Pfaffian identity for the latter. The orthogonal Grassmannians
are introduced in § 3, which includes a proof of the presentation for QH∗(OG). The proof of the
quantum Giambelli formula (6) of Theorem 1 is done in §§ 4 and 5, by studying intersections on
the orthogonal Quot scheme. In § 6 we formulate a ‘quantum Schubert calculus’ for OG. Finally,
the Appendix establishes an identity for P̃ -polynomials which is used in [KT02].

The main results of this paper and its companion paper [KT] were announced at the Bonn
Mathematische Arbeitstagung 2001 [Tam01].

2. P̃ -polynomials and type D Schubert polynomials

2.1 Basic definitions

All the notational conventions used in this section follow [KT02] and [KT]. In particular, for strict
partitions λ and µ, the difference λ � µ denotes the partition with parts given by the parts of λ
which are not parts of µ. A composition is a sequence of non-negative integers with only finitely
many non-zero parts. The P̃ -polynomials make sense when indexed by any composition ν and satisfy
Pfaffian relations

P̃ν(X) =
g−1∑
j=1

(−1)j−1P̃νj ,νg(X) · P̃ν�{νj ,νg}(X), (7)

where g is an even number such that νi = 0 for i > g. Define also the Q̃-polynomial Q̃ν(X) =
2�P̃ν(X) for each composition ν with � non-zero parts. The Q̃-polynomials have integer coefficients
and span the ring Z[X]Sn of symmetric functions in n variables.

Let W̃n be the Weyl group for the root system Dn, whose elements are denoted as barred
permutations. Recall that Wn is generated by the elements s�, s1, . . . , sn−1: for i > 0, si is the
transposition interchanging i and i+ 1 and s� is defined by

(u1, u2, u3, . . . , un)s� = (u2, u1, u3, . . . , un).

Let w̃0 denote the element of maximal length in W̃n. For each λ ∈ Dn−1 we have a maximal
Grassmannian element wλ of W̃n, defined as in [KT02, § 3.2].

Each generator si acts naturally on the polynomial ring A[X], where A = Z[12 ]; for i > 0, si

interchanges xi and xi+1, while s� sends (x1, x2) to (−x2,−x1); all other variables remain fixed.
There are divided difference operators ∂′i and ∂� on A[X]; for i > 0 they are defined by

∂′i(f) = (f − sif)/(xi+1 − xi)

while

∂�(f) = (f − s�f)/(x1 + x2),

for all f ∈ A[X]. These give rise to the operators ∂′w : A[X] → A[X] for each element w ∈ W̃n, as
in [KT02, § 3.2].
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For all w ∈ W̃n, we have a type D Schubert polynomial Dw(X) ∈ A[X] defined by

Dw(X) = (−1)n(n−1)/2∂′w−1w̃0
(xn−1

1 xn−2
2 · · · xn−1P̃n−1(X)).

These type D polynomials were defined in [KT02, § 3.3]; they agree with the orthogonal Schubert
polynomials of [LP00] up to a sign, which depends on the degree. The polynomial Dw(X) represents
the Schubert class associated to w in the cohomology ring of the flag manifold SO2n/B. Let us
define D′

λ(X) = Dwλs�(X). It follows from the definitions and [KT02, Theorem 7] that D′
λ(X) =

∂�(P̃λ(X)), for all non-zero partitions λ ∈ Dn−1.

2.2 A Pfaffian identity
We require the identity in the following theorem for our proof of the quantum Giambelli formula
for OG(n + 1, 2n + 2).

Theorem 2. Fix λ ∈ Dn of length � � 3 and set r = 2�(� + 1)/2�. Then

r−1∑
j=1

(−1)j−1D′
λj ,λr

(X)D′
λ�{λj ,λr}(X) = 0. (8)

Proof. We first observe, using the homogeneity of the two sides, that (8) is equivalent to the identity

r−1∑
j=1

(−1)j−1∂�(Q̃λj ,λr(X)) · ∂�(Q̃λ�{λj ,λr}(X)) = 0 (9)

for Q̃-polynomials, which should hold for λ and r as in the theorem.
Let X ′′ = (x3, . . . , xn) and define

mr,s(x1, x2) =

{
xr

1x
s
2 + xs

1x
r
2 if r �= s,

xr
1x

r
2 if r = s

to be the monomial symmetric function in x1 and x2. For any partition λ and non-negative integers
a and b, let C(λ, a, b) denote the set of compositions µ with λi−µi ∈ {0, 1, 2} for all i and λi−µi = 1
(respectively λi − µi = 2) for exactly a (respectively b) values of i.

Proposition 1. For any non-zero strict partition λ, we have

∂�(Q̃λ(X)) = 2
∑

0�s�r��
r+s even

mr,s(x1, x2)
∑

a+2b=r+s+1
0�b�s

(
a− 1
s− b

) ∑
µ∈C(λ,a,b)

Q̃µ(X ′′). (10)

Proof. Let X ′ = (x2, . . . , xn). According to [KT, Proposition 1], for any partition λ of length � (not
necessarily strict), we have

Q̃λ(X) =
�∑

k=0

xk
1

∑
µ∈B(λ,k)

Q̃µ(X ′), (11)

where B(λ, k) is defined to be the set of all compositions µ such that |λ|−|µ| = k and λi−µi ∈ {0, 1}
for each i. By applying (11) twice we obtain

Q̃λ(X) =
∑

0�s�r��

mr,s(x1, x2)
∑

j+2k=r+s
0�k�s

(
j

s− k

) ∑
µ∈C(λ,j,k)

Q̃µ(X ′′). (12)
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Suppose that r � s � 0. If r + s is even, then ∂�(mr,s(x1, x2)) = 0. If r + s is odd, we have

∂�(mr,s(x1, x2)) = 2
∑

c+d=r+s−1
c,d�s

(−1)c−sxc
1x

d
2.

We now apply this to (12) and gather terms to obtain (10).

Example. For all a, b with a > b � 0, we have

∂�(Q̃a,b(X)) = 2(Q̃a−1,b(X ′′) + Q̃a,b−1(X ′′)) + 2x1x2(Q̃a−2,b−1(X ′′) + Q̃a−1,b−2(X ′′)). (13)

In (13) and later on we agree that Q̃µ(X ′′) = 0 if any of the components of µ are negative.

As in [KT, § 2.3], the rest of the argument can be expressed using only the partitions which
index the polynomials involved. We thus begin by defining a commutative Z-algebra B with formal
variables which represent these indices. The algebra B is generated by symbols (a1, a2, . . . ), where the
entries ai are barred integers; each ai can have up to two bars. The symbol (a1, a2, . . . ) corresponds
to the polynomial Q̃µ(X ′′), where µ is the composition with µi equal to the integer ai minus the
number of bars over ai. We identify (a, 0) with (a).

Let µ be a barred partition; that is, a partition in which bars have been added to some of the
entries. For �(µ) � 3, we impose the Pfaffian relation

(µ) =
m−1∑
j=1

(−1)j−1(µj , µm) · (µ� {µj, µm}), (14)

which corresponds to (7) for ν = µ (here m = 2�(�(µ) + 1)/2�, as usual). Iterating this gives

(µ) =
∑

ε(µ, ν)(ν1, ν2) · · · (νm−1, νm), (15)

where the sum is over all (m−1)(m−3) · · · (1) ways to write the set {µ1, . . . , µm} as a union of pairs
{ν1, ν2}∪ · · · ∪ {νm−1, νm}, and where ε(µ, ν) is the sign of the permutation that takes (µ1, . . . , µm)
into (ν1, . . . , νm); we adopt the convention that ν2i−1 � ν2i.

We also define the square bracket symbols [a] = (a) and [a, b] = (a, b)+ (a, b), where a and b are
integers, each with up to one bar. For example, the right-hand side of Equation (13) corresponds
to the sum 2[a, b] + 2x1x2[a, b] in B[x1, x2]. Finally, we impose the relations

[a, b] = (a)(b) − (a)(b) (16)

for integers a, b, with up to one bar each; this agrees with the corresponding identity

Q̃a−1,b + Q̃a,b−1 = Q̃a−1Q̃b − Q̃aQ̃b−1

of Q̃-polynomials.
Using these conventions and Equations (10) and (13), we are reduced to showing that S1+S2 = 0,

where

S1 =
∑

a+2b=r+s+1
0�b�s

(
a− 1
s− b

) r−1∑
j=1

(−1)j−1[λj , λr]
∑

µ∈C(λ�{λj ,λr},a,b)

(µ),

S2 =
∑

a′+2b′=r+s−1
0�b′�s−1

(
a′ − 1

s− b′ − 1

) r−1∑
j=1

(−1)j−1[λj, λr]
∑

µ∈C(λ�{λj ,λr},a′,b′)

(µ),

486

https://doi.org/10.1112/S0010437X03000204 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000204


Quantum cohomology of orthogonal Grassmannians

and r � s � 0 are fixed integers with r+ s even. The proof of this is rather similar to the proofs of
Theorems 2 and 3 of [KT], and we only point out the main difference here.

We first apply (15) to expand the terms (µ) in both S1 and S2. The cancellation technique of
[KT, § 2.3], notably the identity

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0, (17)

implies the vanishing of the sum of those summands in S1 which contain a pair with exactly one
bar, or at least two pairs with exactly three bars. The remainder is a sum S′

1 consisting of those
summands in S1 with a unique pair containing three bars and no pair with only one bar. In the
same way, we check the vanishing of the sum of those summands in S2 which contain a pair with
exactly three bars, or at least two pairs with exactly one bar. There remains a sum S′

2 consisting of
those summands in S2 with a unique pair containing only one bar and no pair with exactly three
bars. Hence, it is enough to show that S′

1 + S′
2 = 0.

There is an obvious bijection between the summands in S′
1 and S′

2, obtained by adding two bars
to the unbarred part of the pair in S′

2 which contains only one bar (note that the corresponding
binomial coefficients agree, as (a, b) = (a′, b′ + 1) for these two summands). To prove that the sum
of all corresponding terms is zero, it suffices to show that the expression

([a, b][c, d] − [a, c][b, d] + [a, d][b, c]) + ([a, b][c, d] − [a, c][b, d] + [a, d][b, c]) (18)

vanishes identically in B (we then apply this with a = λr, always). To check this, begin from the
basic identities

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0 (19)

and

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0 (20)

which are easily shown using (16). Let 〈x, y〉 = [x, y] + [x, y] and note that

〈a, b〉 〈c, d〉 − 〈a, c〉 〈b, d〉 + 〈a, d〉 〈b, c〉 = 0, (21)

which is shown using 〈x, y〉 = (a)(b) − (a)(b) (another consequence of (16)). The vanishing of (18)
follows by combining (19), (20) and (21).

3. Orthogonal Grassmannians

3.1 Schubert varieties and incidence loci

Let V be a fixed (2n + 2)-dimensional complex vector space equipped with a non-degenerate
symmetric bilinear form on V . The principal object of study is the orthogonal Grassmannian
OG(n+ 1, 2n+ 2) which is one component of the parameter space of (n+ 1)-dimensional isotropic
subspaces of V . When n is fixed, we write OG for OG(n+1, 2n+2). We have dimCOG = n(n+1)/2.
The identities in cohomology that we establish in this section remain valid if we work over an arbi-
trary base field and use Chow rings in place of cohomology.

Let F• be a fixed complete isotropic flag of subspaces of V . By convention, then, OG parametrizes
maximal isotropic spaces Σ ⊂ V such that Σ ∩ Fn+1 has even codimension in Fn+1. We define the
alternative flag F̃• to be the flag F1 ⊂ · · · ⊂ Fn ⊂ F̃n+1, where F̃n+1 is the unique maximal isotropic
space containing Fn but not equal to Fn+1. We let

F
(i)
• =

{
F• if i ≡ (n + 1) mod 2,
F̃• otherwise.

(22)
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The Schubert varieties Xλ ⊂ OG are indexed by partitions λ ∈ Dn. We record two ways to write
the conditions which define the Schubert variety Xλ:

Xλ = {Σ ∈ OG | rk(Σ → V/Fn+1−λi
) � n+ 1 − i, i = 1, . . . , �(λ)} (23)

= {Σ ∈ OG | rk(Σ → V/F
(i)⊥
n+1−λi

) � n+ 1 − i− λi, i = 1, . . . , �(λ) + 1}. (24)

Let τλ be the class of Xλ in H∗(OG,Z). The classical Giambelli formula (6) for OG is equivalent
to the following identity in H∗(OG,Z):

τλ =
r−1∑
j=1

(−1)j−1τλj ,λr · τλ�{λj ,λr}, (25)

for r = 2�(�(λ) + 1)/2�. Let ρn = (n, n − 1, . . . , 1) and for µ ∈ Dn, denote by µ̂ = ρn � µ the dual
partition. The Poincaré duality pairing on OG satisfies∫

OG
τλτµ = δλµ̂.

Given an isotropic space A ⊂ V of dimension n − k (k � 0), the variety of maximal isotropic
spaces containing A is a translate of the Schubert variety Xn,n−1,...,k+1. We have the following result
on intersections of such varieties with the Schubert varieties Xλ; this is analogous to a similar
result in type C [KT, Proposition 3].

Proposition 2. Let k � 0 and λ ∈ Dn. Let A be an isotropic subspace of V of dimension n − k
and let Y ⊂ OG be the subvariety of maximal isotropic subspaces of V which contain A. Then
Xλ ∩ Y is a Schubert variety in Y � OG(k+ 1, 2k + 2). Moreover, if �(λ) < k then the intersection,
if non-empty, has positive dimension.

Proof. As in [KT], the intersection is defined by the attitude of Σ/A with respect to F ′•, where
F ′

i = ((Fi +A)∩A⊥)/A. For the intersection to be a point would require at least k rank conditions
and hence �(λ) � k.

The space OG(n− 1, 2n + 2) is the parameter space of lines on OG. For a non-empty partition
λ, the variety of lines incident to Xλ is the Schubert variety Yλ, consisting of those Σ′ ∈ OG(n −
1, 2n + 2) such that

rk(Σ′ → V/F
(i)⊥
n+1−λi

) � n+ 1 − i− λi, for i = 1, . . . , �+ 1. (26)

The codimension of Yλ is |λ| − 1. Note that: i) the rank conditions (26) are identical to those in
(24); ii) the rank condition corresponding to i = �(λ) + 1, which was redundant in defining the
Schubert varieties in OG, is necessary here.

3.2 A Pfaffian identity on OG(n − 1,2n + 2)

Let F = FSO(V ) denote the variety of complete isotropic flags in V = C2n+2. There is a natural
projection map from F to the orthogonal Grassmannian OG(n − 1, 2n + 2), inducing an injective
pullback morphism on cohomology. Introduce an extra variable xn+1 and let X+ = (x1, . . . , xn+1).
Referring to [KT02, §§ 2.4 and 3], we check that the Schubert class [Yλ] in H∗(OG(n− 1, 2n+ 2))
pulls back to the class represented by D′

λ(X+) in H∗(F ), for each λ ∈ Dn−1. Here X+ corresponds
to the vector of Chern roots of the dual to the tautological rank n+1 vector bundle over F , ordered
as in [KT02, § 2]. Theorem 2 remains true with X+ in place of X and gives the following.
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Corollary 1. For every λ ∈ Dn of length � � 3 and r = 2�(�+ 1)/2� we have

r−1∑
j=1

(−1)j−1[Yλj ,λr ][Yλ�{λj ,λr}] = 0 (27)

in H∗(OG(n − 1, 2n + 2),Z).

3.3 Quantum relations and two-condition Giambelli
Recall that in QH(OG), the degree of q is∫

OG
c1(TOG) · τ1̂ = 2n.

It follows, for degree reasons, that the relations in cohomology (3) and the quantum Giambelli
formula for the two-condition Schubert classes (5) – which we know to hold classically – hold in
QH(OG). The degree 2n quantum relation (4) follows from the elementary enumerative fact that
there is a unique line on OG through a given point, incident to two general translates of Xn.
Arguing as in [ST97], we now obtain a presentation of QH∗(OG) as a quotient of the polynomial
ring Z[τ1, . . . , τn, q] modulo the relations (3) and (4) (see also [FP97, § 10]).

The proof of the more difficult quantum Giambelli formula (6) occupies §§ 4 and 5.

4. Orthogonal Quot schemes

4.1 Overview
In the next two sections, we define the orthogonal Quot scheme and establish an identity in its Chow
group, from which identity (6) in QH∗(OG) readily follows. We make use of type D degeneracy
loci for isotropic morphisms of vector bundles [KT02] to define classes [Wλ(p)]k (p ∈ P

1) of the
appropriate dimension k := n(n + 1)/2 + 2nd − |λ| in the Chow group of the orthogonal Quot
scheme OQd, which compactifies the space of degree-d maps P1 → OG. Let p′ ∈ P1 be distinct
from p and denote by W ′ the degeneracy locus defined by a general translate of the fixed isotropic
flag F•. We produce a Pfaffian formula analogous to (25):

[Wλ(p)]k =
r−1∑
j=1

(−1)j−1[Wλj ,λr(p) ∩W ′
λ�{λj ,λr}(p

′)]k, (28)

for any λ ∈ Dn with �(λ) � 3 and r = 2�(�(λ) + 1)/2�.
As in [KT], we need the cycles in (28) to remain rationally equivalent under further intersection

with some (general translate of) Wµ(p′′), for µ ∈ Dn and p′′ ∈ P1 distinct from p, p′, Also, as in
loc. cit., we accomplish this by working on a modification OQd(p′′), on which the evaluation-at-p′′

map is globally defined, and by employing a refined intersection operation from OG.
The rational equivalences that we produce – (28) and a similar equivalence on OQd(p′′) – come

from combining equivalences of the following types:

i) the classical Pfaffian formulas on OG (25);

ii) the Pfaffian identities (27) on OG(n− 1, 2n + 2);

iii) rational equivalences {p} ∼ {p′} on P1.

Indeed, the essence of item iii is that we can replace p′ with p in (28); the intersection Wλj ,λr(p) ∩
W ′

λ�{λj ,λr}(p) now has k-dimension components supported in the boundary of the Quot scheme.
The cancellation of these contributions in the Chow group is precisely Equation (27).
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4.2 Definition of OQd

Let V be a complex vector space V of dimension N = r + s and fix d � 0. Following Grothendieck
[Gro61a], there is a smooth projective variety Qd, the Quot scheme, which parametrizes flat families
of quotient sheaves of OP1⊗V with Hilbert polynomial p(t) = st+s+d. This variety compactifies the
space of parametrized degree-d maps from P

1 to the Grassmannian of r-dimensional subspaces of V .
On P

1 ×Qd there is a universal exact sequence of sheaves

0 −→ E −→ O ⊗ V −→ Q −→ 0 (29)

with E locally free of rank r. From now on, we fix V as in § 3 and r = s = n+ 1.

Definition 1. Let d be a non-negative integer. The isotropic locus Qiso
d is the closed subscheme of

Qd which is defined by the vanishing of the composite

E −→ OP1 ⊗ V
α−→ OP1 ⊗ V ∗ −→ E∗

where α is the isomorphism defined by the given bilinear form on V .

The embedding of OG in the Grassmannian G(n+1, 2n+2) of (n+1)-dimensional subspaces of
V is degree-doubling; that is, in the sheaf sequence (29) corresponding to degree-d maps P1 → OG,
the sheaf Q has degree 2d. For any d, Qiso

2d contains an open subscheme isomorphic to the moduli
space M0,3(OG, d).

Definition 2. Let d be a non-negative integer. Then OMd is the open subscheme of Qiso
2d defined

by the conditions:

i) E → OP1 ⊗ V has everywhere full rank;

ii) the image of E → OP1 ⊗ V at any point has an intersection with Fn+1 of dimension congruent
to (n+ 1) mod 2.

Unfortunately, Qiso
2d generally has components of dimension larger than the dimension of OMd.

The remedy is to throw away any point of (29) where the rank of E → O ⊗ V drops by just one at
some point of P1. We can do this and still be left with a closed subscheme of Qiso

2d , because in any
degeneration situation in which the rank of E → O ⊗ V drops from full to less than full, the drop
is by at least two.

Definition 3. For d ∈ (1/2)Z, the orthogonal Quot scheme OQd is the subset of Qiso
2d consisting of

points whose sheaf sequence (29) satisfies rk(Ep → V ) �= n for all p ∈ P1 and such that where it has
full rank, the image has intersection with Fn+1 of even codimension in Fn+1. This subset, evidently
constructible and closed by virtue of Proposition 3 below, is given the reduced scheme structure.

Lemma 1. Let ψ : C0 → G(n+ 1, 2n+ 2) be a morphism with C0
∼= P1 and let C be a tree of P1’s

containing C0 and ϕ : C → G(n + 1, 2n + 2) a map which restricts to ψ on C0. Let

C̃ := C1 ∪ C2 ∪ · · · ∪ Cm (m � 1)

denote a chain of components in C, with Ci �= C0 for all i � 1, and assume C1 meets C0 at the
point p and Ci is collapsed by ϕ for all i with 1 � i � m− 1. Let π : C → C0 denote the morphism
which collapses all components of C except C0. Let

0 → E0 → O ⊗ V → Q0 → 0

denote the pullback of the universal sequence via ψ and let

0 → E → O ⊗ V → Q → 0
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denote the pullback of the universal sequence via ϕ (so that E|C0 � E0). Assume the restriction of
E to Cm splits as

O(−b1) ⊕ · · · ⊕ O(−bj) ⊕On+1−j

with b1, . . . , bj � 1. Then the morphism π∗E → π∗(O ⊗ V ) = O ⊗ V factors through E0 and the
cokernel of π∗E → E0 is a torsion sheaf whose fiber at p has dimension at least j.

Proof. We may choose n − j independent sections s1, . . . , sn−j of E|Cm . These extend uniquely to
n− j independent sections of E|C̃ and, hence, span an (n− j)-dimensional subspace Σ of the fiber
of E at the point p. The map (π∗E)p → (E0)p on fibers at p has an image contained in Σ. Hence the
dimension of the fiber at p of the cokernel of π∗E → E0 is at least j.

Proposition 3. For any d ∈ (1/2)Z, the subset OQd ⊂ Qiso
2d is closed under specialization.

Proof. Suppose x1 ∈ OQd specializes to x0 ∈ Q2d. Then there is a discrete valuation ring R and
a morphism ϕ : SpecR → Q2d such that the generic point maps to x1 and the special point maps
to x0.

Denote the fraction field of R by K and the residue field by k. It suffices to consider the case
where x0 is a closed point, hence k = C is algebraically closed. We show that given the exact
sequence of coherent sheaves at the generic point

0 → E → O ⊗ V → Q → 0 (30)

on P
1
K , we can reconstruct the map ϕ and hence the sheaf sequence at the special point (possibly

replacing R by its integral closure in a finite extension of K). Then, we note that the torsion of the
quotient sheaf at the special point cannot have rank one at any point of P1

k.
Let the sequence (30) be given. The support of Qtors specializes to a well-defined closed subset

Z ⊂ P1
k; we let Y = Supp(Qtors) ∪ Z. Now consider

0 → E ′ → O ⊗ V → Q/Qtors → 0 (31)

on P1
K . This corresponds to a morphism P1

K → OG (the actual map to the orthogonal Grassmannian
underlying the sheaf sequence (30)). By replacingK by a finite extension andR by its integral closure
in the extension, if necessary, then there exists, by semistable reduction, a modification

π : S → P
1
R

with exceptional divisor, a tree of P1’s and a morphism S → OG, such that π restricts to the given
morphism P1

K → OG. We consider the pullback of the universal exact sequence

0 → Ẽ → O ⊗ V → Q̃ → 0

on S. Pushing forward the map E → O ⊗ V by π yields an exact sequence

0 → π∗Ẽ → O ⊗ V → C → 0. (32)

The cokernel C, being a subsheaf of π∗Q̃, is torsion-free over SpecR and, hence, flat: Equation (32)
corresponds to the map from SpecR to the (possibly smaller degree) Quot scheme determined
by (31).

We extend (30) to all of P1
R by patching and pushing forward. The sequences (30) on P1

K and
(32) on P1

R � Y patch to give the sequence

0 → Ê → O ⊗ V → Q̂ → 0

on P1
R � Z. Pushing forward via i : P1

R � Z → P1
R gives

0 → i∗Ê → O ⊗ V → D → 0 (33)
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(where D is the indicated cokernel), flat over P1
R since i∗Ê is locally free. This gives the morphism

ϕ : SpecR→ Q2d that we started with.
We now consider the restriction of (33) to the special fiber

0 → (i∗Ê)k → O⊗ V → Dk → 0,

and verify that it satisfies the rank conditions. By semicontinuity, the dimension of the fiber of Dtors
k

is greater than or equal to two at every point of Z. Suppose p is a point in P
1
k � Z. Then Dk, on

a neighborhood of p, is isomorphic to Ck := C ⊗R k, so it suffices to show every non-zero fiber of
Ctors

k has dimension greater than or equal to two. Letting (·)k denote restriction to the special fiber,
we have that (π∗Ẽ)k → O ⊗ V factors through (πk)∗(Ẽk) → O ⊗ V , which in turn factors through
a vector subbundle [(πk)∗(Ẽk)]′ of O ⊗ V (the pullback of the universal subbundle by the actual
map P

1
k → OG at the special fiber) and dim(Ctors

k ⊗ Op) is greater than or equal to the dimension
of the fiber at p of [(πk)∗(Ẽk)]′/(πk)∗(Ẽk). However, now we are in the situation of Lemma 1: this
dimension is at least the number of negative line bundles in the direct sum decomposition of the
pullback of the universal subbundle of OG under some positive-degree map from a copy of P

1
k to

OG and this must be at least two.

4.3 Degeneracy loci
Degeneracy loci for vector bundles in type D were defined using rank inequalities in [KT02].

Definition 4. The degeneracy loci Wλ and Wλ(p) (λ ∈ Dn, with � = �(λ), and p ∈ P
1) are the

following subschemes of P
1 ×OQd:

Wλ = {x ∈ P
1 ×OQd | rk(E → O ⊗ V/F

(i)⊥
n+1−λi

)x � n+ 1 − i− λi, i = 1, . . . , �+ 1},
Wλ(p) = Wλ ∩ ({p} ×OQd).

Also define
h(n, d) = n(n+ 1)/2 + 2nd,

which is the dimension of the orthogonal Quot scheme OQd when d is a non-negative integer. As
in types A and C, we establish a moving lemma and deduce from this that all three-term Gromov–
Witten invariants on OG count points in intersections of degeneracy loci on OQd.

Lemma 2 (Moving Lemma). Let k be a positive integer and let p1, . . . , pk be distinct points on P1.
Let λ1, . . . , λk be partitions in Dn and let us take the degeneracy loci Wλ1(p1), . . . ,Wλk(pk) to be
defined by isotropic flags of vector spaces in a general position. Consider the intersection

Z := Wλ1(p1) ∩ · · · ∩Wλk(pk).

Then Z has dimension at most h(n, d)−∑k
i=1 |λi|. Moreover, Z∩OMd is either empty or generically

reduced and of pure dimension h(n, d) − ∑
i |λi|; also, Z ∩ (OQd � OMd) has dimension at most

h(n, d) − ∑k
i=1 |λi| − 1.

The following are immediate consequences of Lemma 2.

Corollary 2. Let p, p′, p′′ ∈ P1 be distinct points. Suppose λ, µ, ν ∈ Dn satisfy |λ| + |µ| + |ν|
= h(n, d). With degeneracy loci defined with respect to isotropic flags in a general position,
the intersection Wλ(p) ∩Wµ(p′) ∩Wν(p′′) consists of finitely many reduced points, all contained
in OMd, and the corresponding Gromov–Witten invariant on OG satisfies

〈τλ, τµ, τν〉d = #(Wλ(p) ∩Wµ(p′) ∩Wν(p′′)).

Corollary 3. If p and p′ are distinct points of P1 and if |λ|+|µ| = h(n, d), thenWλ(p)∩W ′
µ(p′) = ∅

for a general translate W ′
µ(p′) of Wµ(p′).
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Lemma 2 itself is proved using an analysis of the boundary of OQd. As in [Ber97] and [KT], this
boundary is covered by Grassmann bundles over smaller Quot schemes.

Definition 5. For c ∈ (1/2)Z, with c � 1, we let πc : Gc → P
1 × OQd−c denote the Grassmann

bundle of (2c)-dimensional quotients of the universal bundle E on P
1 × OQd−c. The morphism

βc : Gc → OQd is given by the modification of the sheaf sequence E → O ⊗ V along the graph
of the projection to P1. Precisely, let Fc denote the universal quotient bundle on Gc; if ic denotes
the morphism Gc → P1 ×Gc given by (pr1 ◦ πc, id), then Ec is defined as the kernel of the natural
morphism of sheaves (id× (pr2 ◦πc))∗E → ic∗π∗cE composed with ic∗ applied to the morphism to Fc.

We also consider degeneracy loci with respect to the bundles Ec.

Definition 6. We define Ŵc,λ and Ŵc,λ(p) to be the following subschemes of Gc:

Ŵc,λ = {x ∈ Gc | rk(Ec → O⊗ V/F⊥
n+1−λi

)x � n+ 1 − i− λi, i = 1, . . . , �+ 1},
Ŵc,λ(p) = Ŵc,λ(p) ∩ π−1

c ({p} ×OQd−c).

4.4 Boundary structure of OQd

The boundary of OQd is made up of points where E → O ⊗ V drops rank at one or more points
of P

1; note that wherever it drops rank, it does so by at least two (by our definition of the Quot
scheme).

Theorem 3. For any d ∈ (1/2)Z, with d � 0 and d �= 1/2, we have

dimOQd =

{
h(n, d) if d ∈ Z,

h(n, d) − 5 otherwise.

Furthermore, for c ∈ (1/2)Z, c � 1, the map βc : Gc → OQd satisfies:

i) given x ∈ OQd, if Qx has rank at least n+ 1 + c at p ∈ P1, then x lies in the image of βc;

ii) the restriction of βc to π−1
c (P1 ×OMd−c) is a locally closed immersion;

iii) we have

β−1
c (Wλ(p)) = π−1

c (P1 ×Wλ(p)) ∪ Ŵc,λ(p)
where on the right-hand side, Wλ(p) denotes the degeneracy locus in OQd−c.

The proof of Theorem 3, as well as that of Lemma 2 (which uses Theorem 3), is similar to that
of the corresponding results in [Ber97] and [KT]. The details are left to the reader.

5. Intersection theory on OQd

The Chow group of algebraic cycles modulo rational equivalence of a scheme X is denoted A∗X. We
also employ the following notation.

Definition 7. Let p denote a point of P1.

i) evp : OMd → OG is the evaluation at p morphism;
ii) τ(p) : OQd(p) → OQd is the projection from the relative orthogonal Grassmannian OQd(p) :=

OGn+1(Q|{p}×OQd
); that is, the closed subscheme of the Grassmannian Grassn+1 of rank-(n+1)

quotients [Gro61b] of the indicated coherent sheaf, defined by isotropicity and parity conditions
on the kernel of the composite morphism from OGrassn+1 ⊗ V to the universal quotient bundle
of the relative Grassmannian;

iii) ev(p) : OQd(p) → LG is the evaluation morphism on the relative orthogonal Grassmannian;
iv) evp

c : π−1
c ({p} ×OMd−c) → OG(n+ 1 − 2c, 2n + 2) is evaluation at p.
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Lemma 3. [KT] Let T be a projective variety which is a homogenous space for an algebraic group G.
Let X be a scheme, equipped with an action of the group G. Let U be a G-invariant integral open
subscheme of X and let f : U → T be a G-equivariant morphism. Then the map on algebraic cycles

[V ] �→ [f−1(V ) ]

respects rational equivalence and hence induces a map on Chow groups A∗T → A∗X.

Corollary 4. Fix distinct points p, p′ ∈ P
1. For any λ ∈ Dn of length � = �(λ) � 3, the following

cycles are rationally equivalent to zero on OQd and on OQd(p′):

i) [(evp)−1(Xλ) ] − ∑r−1
j=1(−1)j−1[(evp)−1(Xλj ,λr ∩ X′

λ�{λj ,λr}) ];

ii)
∑r−1

j=1(−1)j−1[β1((ev
p
1)

−1(Yλj ,λr ∩ Y′
λ�{λj ,λr})) ].

Here and in the following, X′
µ and Y′

µ denote the translates of Xµ and Yµ by a general element
of the group SO2n+2.

As is standard, for any closed subscheme Z of a scheme X, [Z] ∈ A∗X denotes the class in the
Chow group of the cycle associated to Z; we let [Z]k be the dimension k component of [Z].

Proposition 4.

a) Suppose λ and µ are in Dn and let p, p′, p′′ be distinct points in P1. Assume that �(λ) equals
one or two and µ has even length greater than or equal to two. Let k = h(n, d) − |λ| − |µ|.
Then

[Wλ(p) ∩W ′
µ(p′)]k = [Wλ(p) ∩W ′

µ(p)]k in A∗OQd,

[τ(p′′)−1(Wλ(p) ∩W ′
µ(p′))]k = [τ(p′′)−1(Wλ(p) ∩W ′

µ(p))]k in A∗OQd(p′′),

where W ′
µ(p) denotes degeneracy locus with respect to a general translate of the isotropic flag

of subspaces.

b) In A∗OQd, we have

[Wλ(p) ∩W ′
µ(p)]k = [(evp)−1(Xλ ∩ X′

µ) ] + [β1((ev
p
1)

−1(Yλ ∩ Y′
µ)) ] (34)

and in A∗OQd(p′′), the cycle class [τ(p′′)−1(Wλ(p) ∩W ′
µ(p))]k is equal to the right-hand side

of (34).

Proof. By a dimension count which uses Proposition 2, the irreducible components of dimension
k in Wλ(p) ∩W ′

µ(p) are those indicated on the right-hand side of (34). As in [KT] the result now
follows from the rational equivalence {p} ∼ {p′} on P1, pulled back to Y := (P1 ×Wλ(p)) ∩W ′

µ

(or further pulled back to OQd(p′′)), once we know that the irreducible components of Wλ(p)∩W ′
µ(p)

of dimension k are generically smooth and in the closure of the complement of the fiber of Y
over p (and that this remains true after pullback by τ(p′′)). The ‘in the closure’ portion of the
claim follows by an argument involving the Kontsevich compactification of OMd, as in op. cit.
Generic smoothness is clear for (evp)−1(Xλ∩X′

µ). Transverality of a general translate also establishes
generic smoothness for the other component, once we note that any point x in a dense open subset
of β1((ev

p
1)

−1(Yλ∩Y′
µ)) has the property that for any local C-algebra R with residue field R/m � C

and any ψ : R → Wλ(p) ∩W ′
µ(p) with closed point mapping to x, the map ψ factors through the

restriction of β1 to π−1
1 ({p} ×OMd−1).

This assertion follows from elementary linear algebra, but because of some tricky cases involving
parity, we give a sketch of the argument. Fix a basis {vi} of V so that the symmetric form is given
by 〈vi, vj〉 = δi+j,2n+3. Without loss of generality, the two general-position flags are

Fi = Span(v1, . . . , vi)
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and
G

(0)
i = Span(v2n+3−i, . . . , v2n+2),

where the latter specifies Gn+1 or G̃n+1 equal to Span(vn+2, . . . , v2n+2) according to parity; see (22).
We show that the condition on x holds whenever x is in the preimage of the intersection of the
Schubert cells corresponding to Yλ and Y′

µ, subject to the further condition that the line on OG
parametrized by the point in OG(n − 1, 2n + 2) is incident to Xλ and X′

µ at two distinct points.
Consider first the case �(λ) = 1. Let x correspond to (n− 1)-dimensional A ⊂ V at the point p.

The condition to be in the Schubert cell for Yλ implies that A∩F⊥
n = 0, so rk(A→ V/F

(i)
n+1) = n−1

for any i. By Definition 4, the sheaf sequence corresponding to ψ satisfies the rank condition

rk(E → O ⊗ V/F
(0)
n+1) � n− 1. (35)

Turning to the conditions coming from µ, we have rk(A ∩G(1)
n+1) = n − �, from membership in

the Schubert cell. Suppose n is even, so that F (0)
n+1 = F̃n+1 and G(1) = Gn+1 are disjoint. Note that

in this case Definition 4 imposes the condition

rk(E → O ⊗ V/Gn+1) � n− �. (36)

The following basic argument is used to show that ψ factors through the restriction of β1 to
π−1

1 ({p} × OMd−1). We have a sheaf sequence on P1
R; after restricting to A1

R the sheaf E can be
trivialized, so let us assume that the map to O⊗V is given by the (2n+ 2)× (n+ 1) matrix L with
values in R[t], with coordinates assigned so the top half of the matrix corresponds to F̃n+1 and the
bottom half corresponds to Gn+1. We may assume t = 0 defines p and also assume that mod m,
the two rightmost columns of L vanish at t = 0. We localize at m + tR[t]. It suffices to show that
conditions (35) and (36) imply, after column operations, that the two rightmost columns of L have
values in the ideal generated by t. We have rk(A→ V/Fn+1) = n−1; that is, some (n−1)× (n−1)
minor in the bottom half of L has full rank. Now by performing column operations and invoking
(35) we have all the entries in the bottom right (n+1)× 2 submatrix of L lying in the ideal (t). Let
L′ denote the top right (n+ 1)× 2 submatrix of L. The remaining isotropicity and rank conditions
amount to UL′ = 0 mod t for some matrix U , whose entries are polynomial functions of the entries
of L in the first n− 1 columns. The condition that the line corresponding to A meets the Schubert
varieties in distinct points implies that the nullspace of U is trivial and hence L′ has entries in (t)
as well.

If, instead, n is odd, we use the fact that rk(A ∩ Gn+1) = n + 1 − � (also a condition to be in
the Schubert cell). From Definition 4,

rk(E → O ⊗ V/Gn+1) � rk(E → O ⊗ V/G⊥
n ) � n+ 1 − �. (37)

Now F
(0)
n+1 = Fn+1 and Gn+1 are disjoint and the basic argument applies using (35) and (37).

In the case �(λ) = 2, we have A∩F (0)
n+1 = 0 and (35) still holds, so the argument is the same.

We now establish the rational equivalences on OQd – and on OQd(p′′) – which directly imply
the quantum Giambelli formula of Theorem 1.

Proposition 5. Fix λ ∈ Dn with � = �(λ) � 3. Set r = 2�(� + 1)/2�. Let p, p′, p′′ denote distinct
points in P1. Then we have the following identity of cycle classes:

[(evp)−1(Xλ) ] =
r−1∑
j=1

(−1)j−1[((evp)−1(Xλj ,λr) ∩ (evp′)−1(X′
λ�{λj ,λr})) ], (38)

both on OQd and on OQd(p′′), where X′
µ denotes the translate of Xµ by a generally chosen element

of the group SO2n+2.
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Proof. Combining parts a and b of Proposition 4 gives

[((evp)−1(Xλj ,λr) ∩ (evp′)−1(X′
λ�{λj ,λr})) ] = [(evp)−1(Xλj ,λr ∩ X′

λ�{λj ,λr}) ]

+ [β1((ev
p
1)

−1(Yλj ,λr ∩ Y′
λ�{λj ,λr})) ]

for each j, with 1 � j � r − 1. Now (38) follows by summing and applying parts i and ii of
Corollary 4.

Theorem 4. Suppose λ ∈ Dn, with � = �(λ) � 3, and set r = 2�(� + 1)/2�. Then we have the
following identity in QH∗(OG):

τλ =
r−1∑
j=1

(−1)j−1τλj ,λrτλ�{λj ,λr}. (39)

Proof. The classical component of (39) follows from the classical Giambelli formula for OG. To
handle the remaining terms, apply a refined cap product operation [Ful98, § 8.1] along ev(p′′) to
general translates of Xµ for all µ ∈ Dn with |µ| = h(n, d)− |λ| and invoke Corollaries 2 and 3 (as in
the proof of [KT, Theorem 5]).

6. Quantum Schubert calculus

Our aim in this section is to use Theorem 1 and the algebra of P̃ -polynomials to find combinatorial
rules that compute some of the quantum structure constants that appear in the quantum product
of two Schubert classes.

6.1 Algebraic background

Let En denote the set of all partitions λ with λ1 � n. The main properties of Q̃-polynomials that we
need are collected in [KT, §§ 2.1 and 6.1]. They imply corresponding facts about the P̃ -polynomials;
in particular, that the set {P̃λ(X) | λ ∈ En} is a free Z-basis of the ring Λ′

n that they span. Hence,
there exist integers f(λ, µ; ν) such that

P̃λ(X)P̃µ(X) =
∑

ν

f(λ, µ; ν)P̃ν(X); (40)

the constants f(λ, µ; ν) are independent of n and defined for any λ, µ, ν ∈ En. The corresponding
coefficients e(λ, µ; ν) in the expansion of the product Q̃λ(X)Q̃µ(X) are related to these by the
equation

e(λ, µ; ν) = 2�(λ)+�(µ)−�(ν)f(λ, µ; ν). (41)

There are explicit combinatorial rules (involving signs in general) for computing the integers
f(λ, µ; ν), which follow from corresponding formulas for decomposing products of Hall–Littlewood
polynomials; for more details, see [KT, § 6.1]. Define the connected components of a skew Young
diagram by specifying that two boxes are connected if they share a vertex or an edge. We then have
the following Pieri type formula for λ strict :

P̃λ(X)P̃k(X) =
∑
µ

2N ′(λ,µ)P̃µ(X), (42)

where the sum is over all partitions µ ⊃ λ with |µ| = |λ| + k such that µ/λ is a horizontal strip
and N ′(λ, µ) is one less than the number of connected components of µ/λ. In particular, we have
P̃λ(X)P̃n(X) = P̃(n,λ)(X) for all λ ∈ Dn.
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When λ, µ and ν are strict partitions, f(λ, µ; ν) are classical structure constants for OG(n +
1, 2n + 2),

τλτµ =
∑

ν∈Dn

f(λ, µ; ν)τν ,

and hence are non-negative integers. In this case, Stembridge [Ste89] has given a combinatorial rule
for the numbers f(λ, µ; ν), analogous to the usual Littlewood–Richardson rule in type A. Specifically,
f(λ, µ; ν) is equal to the number of marked tableaux of weight λ on the shifted skew shape S(ν/µ)
satisfying certain conditions (see [Ste89] and [Pra91, § 6] for more details).

6.2 Quantum multiplication

Recall from the introduction that for any λ, µ ∈ Dn there is a formula

τλ · τµ =
∑

f ν
λµ(n)τνqd

in QH∗(OG(n + 1, 2n + 2)), with each f ν
λµ(n) equal to a Gromov–Witten invariant 〈τλ, τµ, τν̂〉d

(defined when |λ|+ |µ| = |ν|+2nd). The non-negative integer f ν
λµ(n) counts the number of degree-d

rational maps ψ : P
1 → OG such that ψ(0) ∈ Xλ, ψ(1) ∈ Xµ and ψ(∞) ∈ Xν̂ , when the three

Schubert varieties Xλ, Xµ and Xν̂ are in a general position.
We adopt the convention that τλ = 0 for all non-strict partitions λ. Now Theorem 1 and the

Pieri rule (42) give the following.

Corollary 5 (Quantum Pieri rule). For any λ ∈ Dn and k � 0 we have

τλτk =
∑
µ

2N ′(λ,µ)τµ +
∑

µ⊃(n,n)

2N ′(λ,µ)τµ�(n,n)q

where both sums are over µ ⊃ λ with |µ| = |λ| + k such that µ/λ is a horizontal strip and the
second sum is restricted to those µ with two parts equal to n.

In a recent work with Buch [BKT], we give a more direct proof of the quantum Pieri rule for
OG and the corresponding rule for the Lagrangian Grassmannian.

For any d, n � 0 and partition ν, let (nd, ν) denote the partition

(n, n, . . . , n, ν1, ν2, . . . ),

where n appears d times before the first component ν1 of ν. Theorem 1 now gives the following.

Theorem 5. For any d � 0 and strict partitions λ, µ, ν ∈ Dn with |ν| = |λ|+ |µ|−2nd, the quantum
structure constant f ν

λµ(n) satisfies f ν
λµ(n) = f(λ, µ; (n2d, ν)).

We deduce that for any strict partitions λ, µ, ν ∈ Dn, the coefficient f(λ, µ; (nd, ν)) is a non-
negative integer. The constants f(λ, µ; ν) can be negative; for example,

f(ρ3, ρ3; (4, 4, 2, 2)) = −1.

This follows from the remark in [KT, § 6.2].

6.3 The relation to QH∗(LG(n − 1,2n − 2))

The quantum Pieri rule of Proposition 5 implies that

τnτλ =

{
τ(n,λ) if λ1 < n,

τλ�(n)q if λ1 = n
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in the quantum cohomology ring of OG(n + 1, 2n + 2). Therefore, to compute all the Gromov–
Witten invariants for OG, it suffices to evaluate the 〈τλ, τµ, τν〉d for µ, ν ∈ Dn−1. Define a map
∗ : Dn → Dn−1 by setting λ∗ = (n − λ�, . . . , n− λ1) for any partition λ of length � and (0)∗ = (0).

Partitions in Dn−1 also parametrize the Schubert classes σλ in the (quantum) cohomology ring
of the Lagrangian Grassmannian LG(n− 1, 2n− 2), which was studied in [KT]. For the remainder
of this paper, we let ′ : Dn−1 → Dn−1 denote the duality involution for this space, so that the parts
of λ′ complement the parts of λ in the set {1, 2, . . . , n − 1}. Note that the restriction of ∗ to Dn−1

defines a second involution on this set, which was considered in [KT, § 6.3].

Theorem 6. Suppose that λ ∈ Dn is a non-zero partition with �(λ) = 2d + e + 1 for some non-
negative integers d and e. For any µ, ν ∈ Dn−1, we have an equality

〈τλ, τµ, τν〉d = 〈σλ∗ , σµ′ , σν′〉e (43)

of Gromov–Witten invariants for OG(n+ 1, 2n+ 2) and LG(n− 1, 2n− 2), respectively. If λ is zero
or �(λ) < 2d+ 1, then 〈τλ, τµ, τν〉d = 0.

Proof. Assume first that λ1 < n, so λ ∈ Dn−1. We then have

〈τλ, τµ, τν〉d = f(λ, µ; (n2d+1, ν ′))

= 2n+2d−�(λ)−�(µ)−�(ν)e(λ, µ; (n2d+1, ν ′))

= 2n+4d+1−�(λ)−�(µ)−�(ν)〈σλ, σµ, σν〉2d+1

where the last equality comes from [KT, Theorem 6]. The result now follows by applying the eight-
fold symmetry [KT, Theorem 7] for QH∗(LG(n − 1, 2n − 2)), which dictates

2n+2d〈σλ, σµ, σν〉2d+1 = 2�(µ)+�(ν)+e〈σλ∗ , σµ′ , σν′〉e. (44)

If λ1 = n, then
〈τλ, τµ, τν〉d = 〈τλ�(n), τµ, τ(n,ν)〉d = f(λ� (n), µ; (n2d, ν ′)),

and the previous analysis applies, since λ∗ = (λ� (n))∗.

Of course this theorem also provides an equality of Gromov–Witten invariants going the other
way. For any λ, µ, ν ∈ Dn−1, we have

〈σλ, σµ, σν〉e =

{
〈τλ∗ , τµ′ , τν′〉d if �(λ) − e = 2d+ 1 is odd,
〈τ(n,λ∗), τµ′ , τν′〉d if �(λ) − e = 2d is even.

The (Z/2Z)3-symmetry (44) enjoyed by the Gromov–Witten invariants for LG(n−1, 2n−2) implies
a similar one for QH∗(OG).

Proposition 6. Let λ ∈ Dn be non-zero and µ, ν ∈ Dn−1. For any d, e � 0 with 2d+ e+ 1 = �(λ),
we have

2�(µ)+�(ν)+e+δ〈τλ, τµ, τν〉d = 2n+2d

{
〈τλ∗ , τµ′ , τν′〉g if e = 2g + 1 is odd,

〈τ(n,λ∗), τµ′ , τν′〉g if e = 2g is even,

where δ = δλ1,n is the Kronecker symbol.

We now obtain orthogonal analogues of [KT, Proposition 10] and [KT, Corollary 8].

Corollary 6. Let λ, µ, ν and δ be as in Proposition 6. Then the inequalities

�(µ) + �(ν) − n+ δ � 2d � �(λ) + �(µ) + �(ν) − n (45)

are necessary conditions for the Gromov–Witten invariant 〈τλ, τµ, τν〉d to be non-zero. Moreover, if
the two sides of either of the inequalities in (45) differ by zero or one, then 〈τλ, τµ, τν〉d is related by
the eight-fold symmetry to a classical structure constant.
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Corollary 7. For any λ ∈ Dn, we have

τλ · τρn−1 =

{
τλ∗′qd if �(λ) = 2d is even,

τ(n,λ∗′)q
d if �(λ) = 2d+ 1 is odd

in QH∗(OG). In particular,

τρn · τρn =

{
τnq

n/2 if n is even,

q(n+1)/2 if n is odd.
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Appendix. An identity in P̃ -polynomials

We give a proof of the following identity, which is used to simplify a formula for degeneracy loci in
type D [KT02]. The proof uses the algebraic formalism of § 2.2.

Proposition A.1. Let X = (x1, . . . , xn) be an n-tuple of variables and consider also X̃ = (−x1, x2,
. . . , xn) and X ′ = (x2, . . . , xn). Then, for any λ ∈ En of length � � 1 we have

�∑
i=1

(−1)i−1P̃λ�{λi}(X)eλi
(X ′) = P̃λ(X̃) + (−1)�+1P̃λ(X). (A.1)

Proof. By homogeneity, (A.1) is equivalent to the identity

�∑
i=1

(−1)i−1Q̃λ�{λi}(X)Q̃λi
(X ′) =

1
2
(Q̃λ(X̃) + (−1)�+1Q̃λ(X)). (A.2)

To establish (A.2), we use identity (11) and are reduced to

�∑
i=1

(−1)i−1Q̃λi
(X ′)

∑
µ∈B(λ�{λi},k)

Q̃µ(X ′) =

{∑
µ∈B(λ,k) Q̃µ(X ′) if k �= � mod 2,

0 if k = � mod 2,

for all integers k, where B(λ, k) is defined as in the proof of Proposition 1. This corresponds to an
identity in the algebra A of formal variables with imposed relations of [KT, § 2.3], which is similar
to the algebra B of § 2.2, except that only single bars appear.

Using the equalities

[a, b](c) − [a, c](b) + [b, c](a) = 0 (A.3)

and

[a, b](c) − [a, c](b) + [b, c](a) = 0 (A.4)

in A, we can verify, for each combination of parities of k and �, that the corresponding identity in
A is true (one case, that of k odd, � even, also uses the identity (17)). For example, when k is even
and � is odd, we need to show that

�∑
i=1

(−1)i−1(λi)
∑

µ∈B(λ�{λi},k)

∑
ε(µ, ν)(ν1, ν2) · · · (ν�−2, ν�−1) =

∑
ν∈B(λ,k)

(ν) (A.5)
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where the innermost sum on the left-hand side is over all (�− 2)(�− 4) · · · (1) ways to write the set
of entries of µ as a union of pairs {ν1, ν2} ∪ · · · ∪ {ν�−2, ν�−1}. Using (A.3), the sum of the terms on
the left-hand side which contain a pair with exactly one bar vanishes. The remaining terms are seen,
using (A.3) and (A.4), to be equal to the Pfaffian expansion of the right-hand side of (A.5).
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HB86 H. Hiller and B. Boe, Pieri formula for SO2n+1/Un and Spn/Un, Adv. Math. 62 (1986), 49–67.
KT02 A. Kresch and H. Tamvakis, Double Schubert polynomials and degeneracy loci for the classical groups,

Ann. Inst. Fourier (Grenoble) 52 (2002), 1681–1727.
KT A. Kresch and H. Tamvakis, Quantum cohomology of the Lagrangian Grassmannian, J. Algebraic

Geom., to appear.
LP00 A. Lascoux and P. Pragacz, Orthogonal divided differences and Schubert polynomials, P̃ -functions,

and vertex operators, Michigan Math. J. 48 (2000), 417–441.
LT97 J. Li and G. Tian, The quantum cohomology of homogeneous varieties, J. Algebraic Geom. 6 (1997),

269–305.
PR97 P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; Q̃-polynomial

approach, Compositio Math. 107 (1997), 11–87.
Pra91 P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in Séminare d’Algèbre
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