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In stellarator optimization studies, the boundary of the plasma is usually described
by Fourier series that are not unique: several sets of Fourier coefficients describe
approximately the same boundary shape. A simple method for eliminating this
arbitrariness is proposed and shown to work well in practice.

1. Introduction

In optimized stellarators, the magnetic field lines usually trace out simply nested flux
surfaces. Large magnetic islands or regions with chaotic field lines are avoided, at least in
the plasma core, in the interest of good confinement. Kruskal and Kulsrud have shown that
magnetostatic equilibria with this property (insofar as they exist) are uniquely determined
by the shape of the toroidal boundary and by the plasma current and pressure profiles
(Kruskal & Kulsrud 1958; Helander 2014). The rotational transform profile can be used in
place of the current profile to uniquely determine the equilibrium.

This fundamental result provides the theoretical basis for fixed-boundary
magnetohydrodynamic (MHD) equilibrium calculations, which are commonly used in
stellarator optimization studies. The shape of the plasma boundary is prescribed, usually
as a Fourier series in poloidal and toroidal angles (Hirshman & Whitson 1983; Nührenberg
& Zille 1988),

R(θ, ϕ) =
M∑

m=0

N∑
n=−N

Rm,n cos(mθ − nϕ),

Z(θ, ϕ) =
M∑

m=0

N∑
n=−N

Zm,n sin(mθ − nϕ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

and provides input to a fixed-boundary MHD equilibrium code. Here (R, ϕ, Z) denote
cylindrical coordinates and θ is a ‘poloidal’ angle parameter, whose choice is the topic of
this paper. For simplicity, we restrict our attention to fields with stellarator symmetry,

R(θ, ϕ) = R(−θ,−ϕ),

Z(θ, ϕ) = −Z(−θ,−ϕ).

}
(1.2)
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Relinquishing this symmetry is not difficult, but the number of coefficients then needs to
be doubled because one has to include the coefficients of the opposite parity.

In stellarator optimization, the Fourier coefficients Rm,n and Zm,n are varied until an
optimal magnetic equilibrium has been found, where the optimum is defined by the
minimum of some optimization target function. The optimization thus amounts to a
search in a space of 2(M + 1)(2N + 1) dimensions.1 However, as has sometimes been
remarked (Lee et al. 1988; Hirshman & Breslau 1998), this representation is not unique but
contains ‘tangential degrees of freedom’ in the limit M → ∞, N → ∞. If a large but finite
number of terms are included in the Fourier series, several very different choices of the
coefficients {Rmn, Zmn} correspond to approximately the same surface shape. Unless this
problem is addressed, the search is therefore performed in a space of unnecessarily large
dimensionality. Hirshman and co-workers devised a method called ‘spectral condensation’
to deal with this problem, which is used internally in the VMEC and SPEC equilibrium
codes to minimize the number of coefficients in the Fourier representation of all magnetic
surfaces, including interior ones (Hirshman & Whitson 1983; Hirshman & Van Rij 1986;
Hudson et al. 2012). However, spectral condensation is rarely used for the plasma boundary
in optimization studies. The present article suggests another method for dealing with the
problem of non-uniqueness of the boundary representation. This method is simpler but
mathematically less sophisticated than spectral condensation. Unlike the latter, it does not
correspond to a representation that is optimally economical, but it is simpler to implement
numerically, requires less computation and appears to work quite well in practice.

The remainder of the present paper first describes the non-uniqueness of the
representation (1.1) and how it can be eliminated, followed by examples showing how this
technique simplifies the problem of optimization by eliminating a plethora of spurious and
approximate minima of the target function in configuration space.

2. Non-uniqueness of the usual representation

In the representation (1.1), the variable ϕ denotes the toroidal geometric angle, but the
choice of poloidal angle θ is arbitrary. Indeed, if we define

R̃(θ, ϕ) = R(θ + ε(θ, ϕ), ϕ),

Z̃(θ, ϕ) = Z(θ + ε(θ, ϕ), ϕ),

}
(2.1)

where ε is any continuous, doubly 2π-periodic function,2 then the surfaces

S = {(x, y, z) = (R(θ, ϕ) cos ϕ, R(θ, ϕ) sin ϕ, Z(θ, ϕ)) : 0 � θ < 2π, 0 � ϕ < 2π}
(2.2)

and

S̃ = {(x, y, z) = (R̃(θ, ϕ) cos ϕ, R̃(θ, ϕ) sin ϕ, Z̃(θ, ϕ)) : 0 � θ < 2π, 0 � ϕ < 2π}
(2.3)

coincide. Moreover, if |∂ε(θ, ϕ)/∂θ | < 1 for all θ and ϕ, then both surface
parametrizations are bijective if one of them has this property.

The fact that the addition of the function ε(θ, ϕ) to the poloidal angle θ does not change
S indicates great freedom in the parametrization of the surface. If M = N = ∞ in the sum
(1.1), then infinitely many choices of coefficients {Rmn, Zmn} generate the same surface.

1Usually, the number is in fact slightly smaller, because negative values of n and n = 0 are not included in the terms
with m = 0.

2For simplicity, we take ε to satisfy ε(−θ,−ϕ) = −ε(θ, ϕ) to preserve stellarator symmetry in the series (1.1).
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Stellarator boundary representation 3

Note that very different sets of coefficients can describe the same surface. However, if M
and N are finite in (1.1), so that the Fourier series of the functions R(θ, ϕ) and Z(θ, ϕ)

terminate after a finite number of terms, then the corresponding series for R̃(θ, ϕ) and
Z̃(θ, ϕ) will, in general, not terminate.

This observation has implications for the nature of the representation (1.1) when M and
N are fixed, finite numbers:

(i) If M and N are not too large, so that only a few terms are kept in the series (1.1),
then the surface it represents will usually correspond to a unique set of coefficients
{Rm,n, Zm,n} or a small number of such sets. Of course, with only a few harmonics,
not every surface can be represented by the series (1.1).

(ii) However, if many terms are included in the sum, M ∼ N � 1, so that almost any
stellarator-symmetric surface can be described by the series (1.1), then many widely
different choices of coefficients {Rm,n, Zm,n} can correspond to almost the same
surface. The more harmonics allowed in the sum will result in the representation
becoming less unique.

These observations are confirmed by practical experience. At the beginning of a
stellarator optimization run, it is usually futile to include many Fourier harmonics in the
representation of the plasma boundary; the optimization then ‘gets stuck’ and does not
proceed far from the initial state. Instead, it often proves useful to begin with only a few
harmonics and gradually add more terms as the optimization proceeds, to allow for greater
freedom in the shape of the plasma.

3. Spectral condensation

Spectral condensation exploits the non-uniqueness of the poloidal angle by minimizing
the ‘spectral width’, which measures the spectral extent of Rmn and Zmn, under the
constraint of not changing the geometry of the surface S. The spectral width is defined
by Hirshman & Meier (1985) and Hirshman & Breslau (1998) as

M ≡
∑

m,n m( p+q)(R2
m,n + Z2

m,n)∑
m,n mp(R2

m,n + Z2
m,n)

, (3.1)

where p � 0 and q > 0 are constants.3 To first order in the perturbation ε introduced
in the previous section, R̃(θ, ϕ) = R(θ, ϕ) + δR(θ, ϕ), Z̃(θ, ϕ) = Z(θ, ϕ) + δZ(θ, ϕ), and
the Fourier coefficients of δR and δZ are given by

δRm,n = 1
2π2

∫ ∫
εRθ cos(mθ − nϕ) dθ dϕ,

δZm,n = 1
2π2

∫ ∫
εZθ sin(mθ − nϕ) dθ dϕ,

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where subscripts indicate partial derivatives, Rθ = ∂R/∂θ . The first-order variation in the
spectral width thus becomes

δM = g−1
∫

I(θ, ϕ)ε dθ dϕ, (3.3)

3In the SPEC code (Hudson et al. 2012), it is defined without the normalization, i.e. M ≡ ∑
m,n m( p+q)(R2

m,n + Z2
m,n).
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where
g = π2

∑
m,n

mp(R2
mn + Z2

mn),

I(θ, ϕ) = X(θ, ϕ)Rθ + Y(θ, ϕ)Zθ ,

X(θ, ϕ) =
∑
m,n

mp(mq − M)Rm,n cos(mθ − nϕ),

Y(θ, ϕ) =
∑
m,n

mp(mq − M)Zm,n sin(mθ − nϕ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Note that the m = 0 terms do not contribute to the Fourier sums and that the spectral
width assumes its minimum when I(θ, ϕ) = 0. This constraint is imposed to the requisite
accuracy by Fourier expanding I(θ, ϕ) and requiring a number m∗ of the Fourier
coefficients Imn to vanish, thus effectively removing m∗ degrees of freedom from the
representation (Hirshman & Meier 1985).

4. An explicit boundary representation

The method of spectral condensation is optimal in the sense that it minimizes the
spectral width of the representation, but it adds conceptual and computational complexity.
The number of coefficients in the representation (1.1) remains high, although the
constraints Imn = 0 effectively restrict the search to a submanifold of lower dimensionality,
and the system of equations corresponding to these constraints must, in general, be solved
numerically. In this and the next section (§ 5), we explore a simpler and more explicit
construction as a possible alternative.

There are, of course, infinitely many ways of making the choice of poloidal angle
unique, some of which have been proposed before, see e.g. Hirshman & Weitzner (1985),
Hirshman & Breslau (1998) and Carlton-Jones, Paul & Dorland (2021). A particularly
simple choice could be to express the vertical coordinate as

Z(θ, ϕ) = a(ϕ) + b(ϕ) sin θ. (4.1)

If the functions a and b are Fourier decomposed,

a(ϕ) =
N∑

n=1

an sin nϕ,

b(ϕ) =
N∑

n=0

bn cos nϕ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

one finds that this representation is of the same form as (1.1) but with only two poloidal
harmonics,

Z(θ, ϕ) =
1∑

m=0

N∑
n=−N

Zm,n sin(mθ − nϕ), (4.3)

which are equal to

nZ0n = −an, Z1n = b|n|
2

. (4.4a,b)

In each poloidal cross-section of the plasma surface, the poloidal angle θ thus defined
is the polar angle of the horizontal projection on a circle with a diameter equal to the
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Stellarator boundary representation 5

FIGURE 1. Circle (green) with radius b = (zmax − zmin)/2, twice the total extent in the
Z-direction of the plasma boundary (blue). The poloidal angle is chosen to be equal to the polar
angle of the horizontal projection of each boundary point on this circle.

vertical extent of the surface, see figure 1. This choice of representation, which removes the
superfluous degrees of freedom, can produce all surface shapes without multiple minima
and maxima in the vertical coordinate Z in each poloidal cross-section. The vast majority
of all stellarators considered to date possess this property.

However, (4.3) suffers from another and more serious shortcoming: it cannot
economically represent a classical stellarator. Such devices have an elliptical poloidal
cross-section that rotates co- or counter-clockwise with increasing toroidal angle ϕ. This
can be seen by introducing a rotating coordinate system,

ρ = (R − R0) cos αϕ + Z sin αϕ,

ζ = −(R − R0) sin αϕ + Z cos αϕ,

}
(4.5)

where α is a constant determining the rate of rotation. For a classical stellarator, it is equal
to half the number of toroidal periods Np of the device, α = Np/2, so that the cross-section
rotates by 180 degrees in one period. In these coordinates, a surface with rotating elliptical
boundary is represented by

ρ(θ, ϕ) = A cos θ,

ζ(θ, ϕ) = B sin θ,

}
(4.6)

where A and B denote the semi-axes. In our original coordinates, we obtain

R(θ, ϕ) = R0 + A − B
2

cos(θ − αϕ) + A + B
2

cos(θ + αϕ),

Z(θ, ϕ) = B − A
2

sin(θ − αϕ) + A + B
2

sin(θ + αϕ).

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

Hence, it is clear that Z1,−1 �= Z1,1 in contradiction to (4.4a,b), which can only mean that
the poloidal coordinate θ used in (4.3) cannot coincide with the corresponding one in
(4.7). Although the former representation can describe any stellarator-symmetric surface,
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6 S.A. Henneberg, P. Helander and M. Drevlak

it needs many harmonics Rm,n for a surface with rotating elliptical cross-section. Close to
the magnetic axis, most stellarators have this property, making this shortcoming serious
indeed.

Fortunately, it is easily overcome by applying a representation similar to (4.1) in the
rotating coordinate system. This leads to the prescription

R(θ, ϕ) = R0(ϕ) + ρ(θ, ϕ) cos αϕ − ζ(θ, ϕ) sin αϕ,

Z(θ, ϕ) = Z0(ϕ) + ρ(θ, ϕ) sin αϕ + ζ(θ, ϕ) cos αϕ,

}
(4.8)

with

ρ(θ, ϕ) =
∑
m,n

ρm,n cos(mθ + nϕ − αϕ),

ζ(θ, ϕ) = b(ϕ) sin(θ − αϕ) =
N∑

n=0

bn cos nϕ sin(θ − αϕ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.9)

which is our final recipe for unambiguously and economically representing a
stellarator-symmetric toroidal surface, see figure 2. In terms of our original representation
(1.1), the coefficients become for m �= 0

Rm,n = 1
2

(
ρm,−n+2α + ρm,−n

) + δm1

4
(bn + b−n − bn−2α − b−n+2α) , (4.10)

Zm,n = 1
2

(
ρm,−n − ρm,−n+2α

) + δm1

4
(bn + b−n + bn−2α + b−n+2α) . (4.11)

Specifically, if α = 1/2, we have

Rm,n = 1
2

(
ρm,−n+1 + ρm,−n

) + δm1

4
(bn + b−n − bn−1 − b−n+1) , (4.12)

Zm,n = 1
2

(
ρm,−n − ρm,−n+1

) + δm1

4
(bn + b−n + bn−1 + b−n+1) . (4.13)

In our experience, and as we shall see in § 5, this simple prescription works very well in
practice.

5. Numerical examples

In this section, we explore a few examples of increasing complexity and realism,
comparing our recipe with the conventional approach.

5.1. Simple axisymmetric (two-dimensional (2-D)) case
Our first aim is to gain insight into the optimization space using the original arbitrary-angle
representation (1.1). Because only the poloidal angle θ is arbitrary, this issue can be
explored in a simpler, two-dimensional setting. We choose to target an axisymmetric
torus with a unit circle as the poloidal cross-section. A simple penalty function Q that
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FIGURE 2. Circle (green) with radius b = (ζmax − ζmin)/2 and the boundary (blue). The
poloidal angle θ is the polar angle of the projection in the ρ-direction onto the circle.

is minimized by this surface is

Q[R, Z] := A−1
∮ (

(R(θ) − R0)
2 + Z2(θ) − 1

)2
ds, (5.1)

where

ds = R
√

(R2
θ + Z2

θ ) dθ dϕ. (5.2)

Here the surface area is A := ∮
ds, and the major radius is arbitrarily chosen to be R0 =

1.5. We restrict R and Z to be axisymmetric: Rmn = Zmn = 0 for all n �= 0 and write

R = 1.5 +
∑
m=1

Rm cos(mθ), (5.3)

and
Z =

∑
m=1

Zm sin(mθ). (5.4)

If Q is not normalized to the area A, an artificial minimum exists when the area becomes
small. With the normalization, the penalty function Q approaches unity in the limit of
vanishing R − R0 and Z (and thus vanishing surface area). The penalty function attains its
sole minimum (Q = 0) if (R − R0)

2 + Z2 = 1. This equation is satisfied by many different
choices of Rm and Zm.4

If all but the m = 1 Fourier coefficients vanish, i.e. if Q = Q(R1, Z1, Ri = 0, Zi = 0) for
i > 0, the penalty function attains the global minimum for R1 = Z1 = 1, see figure 3, and
this is, in general, the case when only one pair of coefficients (Rm, Zm) is allowed to be
non-zero, see figure 4.

More interesting and complex behaviour is observed if Fourier harmonics with several
values of m are admitted, but one then faces the problem of graphically displaying the
function Q of more than two variables. For instance, it is not easy to visualize how the cost

4Although this is the only global minimum, Q becomes arbitrarily small for bounded surfaces having very large area,
e.g. for highly ‘wrinkled’ surfaces.
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8 S.A. Henneberg, P. Helander and M. Drevlak

FIGURE 3. The cost function Q(R1, Z1) with respect to R1 and Z1 with all other Fourier
harmonics equal to zero Ri = Zi = 0, i > 1.

FIGURE 4. The cost function Q(R1 = 0.0, R2, Z1 = 0.7, Z2) with respect to R2 and Z2.

function Q(R1, R2, Z1, Z2) depends on all four arguments. However, some insight can be
gained by plotting the minimum of Q with respect to two of the arguments as a function
of the two other ones, e.g. by considering the function

Q̃(R1, Z1) = min
R2,Z2

Q(R1, R2, Z1, Z2). (5.5)

Considering four Fourier harmonics in this way reveals the existence of three local
minima, see figure 5. Two of these correspond to the global minimum, R1 = Z1 = 1, R2 =
Z2 = 0 and R1 = Z1 = 0, R2 = Z2 = 1, and both correspond to the target surface, an
axisymmetric torus with a unit circle cross-section, parametrized in two different ways.
The third minimum is located at R1 = 0.0, R2 ≈ 1.05, Z1 = 1.15 and Z2 = 0.0 with Q ≈
0.133. It corresponds to a surface with zero volume but finite area, see figure 6.

Increasing the number of poloidal harmonics m to three makes it more difficult
to locate the local minima of the cost function. Without a global optimizer, one
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FIGURE 5. The minimized cost function minR2,Z2 Q(R1, R2, Z1, Z2) with respect to R1 and Z1.

(a)

(b)

FIGURE 6. The three minima of Q(R1, R2, Z1, Z2). Global minima (blue): axisymmetric torus
with unit circle cross-section described by R1 = Z1 = 1, R2 = Z2 = 0 and R1 = Z1 = 0, R2 =
Z2 = 1 (Ri = 0 for all i > 2). Local minimum (grey): R1 = 0.0, R2 ≈ 1.05, Z1 = 1.15 and Z2 =
0.0: (a) the poloidal cross-section; (b) three-dimensional (3-D) view.

encounters many local minima depending on the initial values chosen for the remaining
Fourier coefficients. Using differential evolution, a global optimization routine, to obtain
minR2,Z2,R3,Z3 Q(R1, R2, R3, Z1, Z2, Z3), one finds a landscape broadly similar to that found
for the four-Fourier-coefficient case, see figure 7. In the neighbourhood of a local
minimum, the global optimizer roughly finds similar values for (R2, Z2, R3, Z3). In between
the minima, depicted in figure 7, there is a transition region, where the global optimizer has
to decide between two (or even more) competing local minima which can be challenging.
When it jumps to a different local minimum, the landscape is typically not smooth. This
type of scan has to be considered with caution. Most global optimization routines do not,
in practice, guarantee a global minimum but sometimes end up in local ones. In local
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10 S.A. Henneberg, P. Helander and M. Drevlak

FIGURE 7. The minimized cost function minR2,Z2,R3,Z3 Q(R1, R2, R3, Z1, Z2, Z3) with respect
to R1 and Z1. Differential Evolution, a global optimization routine, is used to find the minima.

optimization routines, this problem is of course still more acute, because the outcome
generally depends on the initialization.

To visualize the difficulty of finding global minima, it is useful to fix two coefficients
in the following R1(=0.18) and Z1(=0.4), and study how the landscape depends on the
remaining ones. We note that the function minR3,Z3 Q(R1 = 0.18, R2, R3, Z1 = 0.4, Z2, Z3)

possesses five local minima with R2 and Z2 in the range 0.0–1.0, see figure 8, and
line discontinuity, as can be seen in figure 8. To understand the discontinuity of
minR3,Z3 Q(R1 = 0.18, R2, R3, Z1 = 0.4, Z2, Z3), we plot the function Q(R1 = 0.18, R2 =
x, R3, Z1 = 0.4, Z2 = y, Z3) with respect to R3 and Z3 for selected values for x and y,
figure 9. The number of local minima varies with x and y. For (x, y) = (0.24, 0.39),
there are four local minima in the figure; for (x, y) = (0.5, 0.5), there are two of them;
and for (x, y) = (1, 1), there is only one minimum. It is thus clear that a local optimizer
that seeks local minima of the function Q(R1 = 0.18, R2, R3, Z1 = 0.4, Z2, Z3) will find
different ones depending on the starting point for R2, R3, Z2 and Z3. Abrupt changes
(discontinuity) in minR3,Z3 Q(R1 = 0.18, R2, R3, Z1 = 0.4, Z2, Z3) appear when a local
minimum disappears and the optimizer finds a different one.

The representation proposed in § 4 leads to much more benign results when applied to
the model problem (5.1). Restricting the optimization space to axisymmetric designs leads
to

R = 1.5 +
∑
m=1

Rm cos(mθ),

Z = Z1 sin(θ).

⎫⎪⎬
⎪⎭ (5.6)

This time, we find that the landscape of the minimum penalty function min Q does not
change much when the number of Fourier harmonics of R is increased. In the case of
four Fourier harmonics, Q(R1, R2, R3, Z1), there is one global minimum at R1 = 1, R2 =
0, R3 = 0, Z1 = 1 and a second shallow local minimum near R1 = 0 and Z1 = 1.0, see
figure 10. This local minimum disappears when more Fourier harmonics are added.
Importantly, the outcome is similar whether a local and global optimization algorithm
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Stellarator boundary representation 11

FIGURE 8. The locally minimized cost function
minR3,Z3 Q(R1 = 0.18, R2, R3, Z1 = 0.4, Z2, Z3) as a function of R2 and Z2.

(a) (b) (c)

FIGURE 9. The cost function Q(R1 = 0.18, R2 = x, R3, Z1 = 0.4, Z2 = y, Z3) with respect to
R3 and Z3: (a) x = 0.24 and y = 0.39; (b) x = 0.5 and y = 0.5; (c) x = 1.0 and y = 1.0.

is employed, see figures 11(a) and 11(b), respectively, making it much easier to find the
minima numerically.

5.2. Fourier representation of stellarators
We now turn to examples of explicit choices of the coefficients Rm,n, Zm,n, ρm,n and bn,
corresponding to stellarator plasma boundaries that have been explored in this context in
the past. We begin with examples from Hirshman & Meier (1985), who analysed shapes
using spectral condensation, thus providing a convenient point of comparison with this
technique.

We start with a planar D-shaped boundary given by R = −0.23 + 0.989 cos θ +
0.137 cos 2θ and Z = 1.41 sin θ − 0.109 sin 2θ after spectral condensation (Hirshman &
Meier 1985). We use Fourier decomposition to obtain the coefficients in our unique
boundary representation that reproduce this boundary, restricting the number of modes
m to be such that all the coefficients exceed 0.01. The result is R00 = −0.306, b0 = 1.426
and ρ = 0.957 cos θ + 0.207 cos 2θ + 0.032 cos 3θ .

Hirshman and Meier also considered a bean-shaped surface given by R = −0.320 +
1.115 cos θ + 0.383 cos 2θ − 0.0912 cos 3θ + 0.0358 cos 4θ − 0.0164 cos 5θ and Z =
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12 S.A. Henneberg, P. Helander and M. Drevlak

FIGURE 10. The minimized cost function minR2,R3 Q(R1, R2, R3, Z1) with respect to R1 and
Z1.

(a) (b)

FIGURE 11. The minimized cost function minR2,R3,R4,R5 Q(R1, R2, R3, R4, R5, Z1 with respect
to R1 and Z1: (a) using a non-global optimization algorithm; (b) using Differential Evolution – a
global optimization routine.

1.408 sin θ + 0.154 sin 2θ − 0.0264 sin 3θ after spectral condensation. Applying our
representation to this case, we obtain R00 = −0.184, b0 = 1.419 and ρ = 1.184 cos θ +
0.208 cos 2θ − 0.143 cos 3θ + 0.064 cos 4θ − 0.032 cos 5θ + 0.011 cos 6θ . Our represen-
tation thus needs even fewer Fourier harmonics than this spectral condensation.5

Finally, we consider a representative example from Wendelstein 7-X, where the
magnetic field in the so-called standard configuration was calculated using an equilibrium
solver in free-boundary mode. As shown in figure 13, the resulting plasma boundary can
be faithfully reproduced with mode numbers m � 5 and |n| � 3.

Thus, the representation proposed in § 4 can accurately and economically reproduce
relevant plasma boundary shapes, including Wendelstein 7-X and other cases studied
earlier in the literature. It does not always need as few Fourier harmonics as spectral

5Hirsman and Meier also consider a third case, a so-called belt pinch boundary, which cannot be reproduced by our
boundary representation as it has multiple minima and maxima in the vertical coordinate.
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FIGURE 12. D shape and bean shape reproduced based on Hirshman & Meier (1985), where
the solution of our boundary representation overlaps with the original boundary: (a) D shape;
(b) Bean shape.
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FIGURE 13. The boundary at different toroidal angle of Wendelstein 7-X. The original
overlaps mostly with the replication.

condensation, but for ‘reasonable’ shapes, it appears comparable in efficiency and avoids
the need for computational optimization, which is an integral part of the spectral
condensation technique.

5.3. Application to 3-D stellarator optimization
Finally, we put our boundary representation to the test in a real stellarator optimization
problem, where the plasma boundary serves as the input for a fixed-boundary equilibrium
calculation and is adjusted iteratively until a target function reflecting plasma performance
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FIGURE 14. Flux surfaces at different toroidal cross-sections of rotating ellipse at toroidal
angle ϕ = 0◦ (green), 45◦ (dark blue) and 90◦ (cyan).

has been minimized. As described in the introduction, § 1, such optimization calculations
have, in the past, usually been performed with the ambiguous boundary representation
(1.1).

We start the optimization with a rotating elliptical boundary, figure 14, and use the
optimization code ROSE (Drevlak et al. 2019) with the equilibrium code VMEC and a
non-gradient, non-global optimization algorithm (Brent). The target rotational transform
is chosen to be 0.25 on axis and 0.35 at the plasma boundary, and in addition, we require
the magnetic well to exceed a certain threshold (0.1) and the toroidal projection of the
plasma boundary to be convex in every point.

As is usual in this type of optimization, the target function f is a weighted sum of
squares,

f =
∑

i

wi(Fi − F̃i)
2, (5.7)

where Fi is the value for criterion i, F̃i the corresponding target value and wi the i’th
weight, which can be adjusted to obtain various different optimal (Pareto) points.

Of course, the performance of the optimization depends on the exact choice of wi and
Fi as well as the initial condition, but we find that the results turn out much better, and
more quickly, with the novel representation than with the standard one used in VMEC.
With the same weights chosen for both cases, we typically obtain a penalty value f that is
two orders of magnitude smaller when the new boundary representation is employed. The
resulting configuration is thus significantly different, and much better, than that obtained
with the conventional method. An example of how the plasma boundaries differ is shown
in figure 15. In this example, all the aims of the optimization were attained when the
novel scheme was used, whereas the usual one did not succeed in achieving the prescribed
rotational transform and a non-concave plasma boundary. Similar results have also been
found with other, more complicated, optimization targets.
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FIGURE 15. The poloidal cross-sections of optimized plasma boundary and flux surfaces
with simple penalty function for the toroidal angles ϕ = 0◦ (green), 45◦ (dark blue) and
90◦ (cyan): (a) cross-sections of optimized plasma boundary using standard VMEC boundary
representation; (b) cross-sections of optimized plasma boundary using unique boundary
representation described in § 4.

6. Conclusions

In summary, the usual Fourier series representation of the plasma boundary used
in stellarator optimization contains much redundancy owing to the arbitrariness of the
poloidal angle. This redundancy grows exponentially with the number of terms in the
series and unnecessarily increases the dimensionality of the search. It causes a plethora
of local minima to appear in the optimization landscape, as can be illustrated with simple
2-D examples. The situation can be remedied by making the poloidal angle unique, but
some care must be taken to ensure that simple stellarator shapes can still be represented in
an economical way. When this is done, local minima are eliminated and the optimization
proceeds more rapidly than with the usual representation. The outcome also tends to be
better, especially if a non-global optimization algorithm is used.

Our specific boundary parametrization (4.10)–(4.11) is simple and intuitive, and requires
less computation than the spectral condensation method, but it cannot describe stellarator
boundaries with multiple maxima in the ζ -direction. Such boundaries are however highly
unusual, and the representation can easily be generalized to include such shapes.
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