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Abstract
We consider faithful actions of simple algebraic groups on self-dual irreducible modules and on the associated
varieties of totally singular subspaces, under the assumption that the dimension of the group is at least as large
as the dimension of the variety. We prove that in all but a finite list of cases, there is a dense open subset where
the stabilizer of any point is conjugate to a fixed subgroup, called the generic stabilizer. We use these results to
determine whether there exists a dense orbit. This in turn lets us complete the answer to the problem of determining
all pairs of maximal connected subgroups of a classical group with a dense double coset.
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1. Introduction and statement of results

Let G be a simple algebraic group over an algebraically closed field K of characteristic p, where we
take 𝑝 = ∞ if K has characteristic zero. Let V be a nontrivial irreducible 𝐾𝐺-module of dimension d.
For 1 ≤ 𝑘 ≤ 𝑑, the Grassmannian variety G𝑘 (𝑉) consists of all k-dimensional subspaces of V and is
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2 A. Rizzoli

isomorphic to the variety 𝑆𝐿(𝑉)/𝑃, where P is a maximal parabolic subgroup of 𝑆𝐿(𝑉) stabilising
a k-dimensional subspace. Assume that the module V is self-dual. Then the group G preserves a
nondegenerate bilinear form, which is either symmetric or alternating (unless 𝑝 = 2 when it is both).
If the form is symmetric and G preserves an associated quadratic form, we say that the module V is
orthogonal, and we say it is symplectic otherwise. For 1 ≤ 𝑘 ≤ 𝑑

2 , we denote by S𝑘 (𝑉) the variety of
totally singular k-dimensional subspaces of V. Any such variety is irreducible unless 𝑘 = 𝑑

2 and V is
orthogonal, in which case the two 𝑆𝑂 (𝑉)-orbits on S𝑘 (𝑉) are its irreducible components, which we
shall denote by S𝑘′ (𝑉) and S𝑘′′ (𝑉), or S ′

𝑘 (𝑉) and S ′′
𝑘 (𝑉). Note that there is no intrinsic way of choosing

which of the two orbits is labeled S𝑘′ (𝑉), and therefore, such choice is arbitrary and usually simply
dependent on the order of consideration. As V is orthogonal or symplectic, each such irreducible variety
is isomorphic to 𝑆𝑂 (𝑉)/𝑃 or 𝑆𝑝(𝑉)/𝑃, where P is a parabolic subgroup of 𝑆𝑂 (𝑉) or 𝑆𝑝(𝑉) (maximal
unless V is orthogonal and 𝑘 = 𝑑

2 − 1), and the elements of the variety are orthogonal Grassmannians
or symplectic Grassmannians.

If G acts faithfully on a variety X, we say that the action has generic stabilizer S if there exists a
nonempty open subset 𝑈 ⊆ 𝑋 such that the stabilizer 𝐺𝑢 is conjugate to S for all 𝑢 ∈ 𝑈.

We say that the action has semi-generic stabilizer S if there exists a nonempty open subset 𝑈 ⊆ 𝑋
such that 𝐺𝑢 is isomorphic to S for all 𝑢 ∈ 𝑈.

In general, we say that G acting on X (not necessarily faithfully) has a (semi-)generic stabilizer if
𝐺/𝐺𝑋 , where 𝐺𝑋 denotes the kernel of the action, has a (semi-)generic stabilizer for its faithful action
on X. Note that when 𝑋 = G𝑘 (𝑉) or 𝑋 = S𝑘 (𝑉), the kernel 𝐺𝑋 is precisely the center of G.

In characteristic zero, generic stabilizers exist under mild hypotheses. In this case, it follows from
[1] that the generic stabilizer is positive dimensional if and only if dim 𝐺 ≥ dim 𝑋 . However, even in
characteristic 0, there are examples of actions with no generic stabilizers (see [25]).

If 𝑝 < ∞, there are even more instances where generic stabilizers do not exist, as there is no analogue
of Richardson’s result. For example, in [21, Example 8.3], we find a construction for an 𝑆𝐿2 (𝐾)-action
on an affine variety in positive characteristic, with no generic stabilizer.

Again, let G be a simple algebraic group over an algebraically closed field K of characteristic p and
V be a nontrivial irreducible 𝐾𝐺-module. Recently, Guralnick and Lawther have solved the generic
stabilizer problem for the action on 𝑋 = G𝑘 (𝑉). In [10], they proved that if 𝑋 = 𝑉 or 𝑋 = G𝑘 (𝑉),
then the action of G on X has a generic stabilizer, unless 𝐺 = 𝐵3, 𝑝 = 2, V is the spin module for
G, and 𝑘 = 4, in which case the action has a semi-generic stabilizer but not a generic stabilizer. They
showed that for such actions, the generic stabilizer is in general trivial, and they otherwise determined
all nontrivial (semi-)generic stabilizers explicitly.

In this paper, we treat the action of G on the orthogonal and symplectic Grassmannians of self-dual
irreducible G-modules (i.e., 𝑋 = S𝑘 (𝑉)). We only deal with the case dim 𝐺 ≥ dim 𝑋 . The reason for
this is two-fold. We will be interested in applications to questions about the existence of dense orbits
and dense double cosets, for which we only need to be concerned with the cases where dim 𝐺 ≥

dim 𝑋 . Secondly, as shown in [10], the strategy for dealing with the situation dim 𝐺 < dim 𝑋 presents
entirely different challenges. The case dim 𝐺 < dim 𝑋 shall be the subject of future work. Note that
(semi-)generic stabilizers for the action on S𝑘 (𝑉) are generally going to be radically different from the
ones for the action on G𝑘 (𝑉). Indeed, it is often going to be the case that the generic stabilizer for the
action on G𝑘 (𝑉) is finite, while the generic stabilizer for the action on S𝑘 (𝑉) is positive-dimensional.
We shall now state our first result. The modules V are denoted by their highest weight, the groups G by
their Dynkin diagram.

Theorem 1. Let G be a simple algebraic group over an algebraically closed field of characteristic p,
and V a self-dual nontrivial irreducible G-module of dimension d and highest weight 𝜆. For 1 ≤ 𝑘 ≤ 𝑑

2
such that dim 𝐺 ≥ dimS𝑘 (𝑉), if the action of G on S𝑘 (𝑉) has no generic stabilizer, then 𝑝 = 2 and
(𝐺, 𝜆, 𝑘) is one of the following:

(i) (𝐸7, 𝜆7, 2);
(ii) (𝐷6, 𝜆6, 2);
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(iii) (𝐴5, 𝜆3, 2);
(iv) (𝐵4, 𝜆4, 8).

In the first three cases, the action of G on S𝑘 (𝑉) has no generic stabilizer but does have a semi-generic
one. In the last case, the action of G on S ′

𝑘 (𝑉) has a generic stabilizer, but the action of G on S ′′
𝑘 (𝑉)

only has a semi-generic one.

While Theorem 1 guarantees the existence, in Theorem 2, we shall explicitly determine the structure
of every (semi-)generic stabilizer. The proof of Theorem 1 involves a quick reduction to a finite list
of families of cases to be considered, followed by a case-by-case analysis using many of the methods
adopted in [10]. This case-by-case analysis is the subject of the majority of this paper.

Before stating our remaining results, we shall set up some more notation. If G is semisimple, let
T be a fixed maximal torus, and Φ the root system for G with respect to T, described by its Dynkin
diagram. The root system has positive roots Φ+ and a base Δ = {𝛼1, 𝛼2, . . . , 𝛼𝑛} of simple roots. For
the simple algebraic groups, the ordering of the simple roots is taken according to Bourbaki [4]. For a
𝐾𝐺-module V and a weight 𝜇 of G, we write 𝑉𝜇 for the 𝜇-weight space of V. If G acts on a set X, for
𝑥 ∈ 𝑋 , we denote by 𝐺𝑥 the stabilizer in G of x. We use P to denote a parabolic subgroup containing a
Borel subgroup 𝐵 ≥ 𝑇 and 𝑃𝑘 to denote the maximal parabolic subgroup obtained by deleting the k-th
node of the Dynkin diagram for G. Similarly, we use 𝑃𝑖, 𝑗 to denote the parabolic subgroup obtained
by deleting the i-th and j-th nodes of the Dynkin diagram for G. We use 𝑇𝑖 to denote an i-dimensional
torus, 𝑆𝑦𝑚(𝑛) and 𝐴𝑙𝑡 (𝑛) to denote the symmetric group and the alternating group on a set of size n,
and 𝐷𝑖ℎ(2𝑛) for a dihedral group of order 2𝑛. Throughout the paper, we work modulo field twists and
exceptional isogenies. So, for example, we only treat one of 𝐶𝑛 or 𝐵𝑛 in characteristic 2, and we always
assume that the highest weight 𝜆 is not a multiple of p.

We now set up further notation to better encapsulate the exact setup we will adopt. As in [10], we
define a quadruple to be a 4-tuple of the form (𝐺, 𝜆, 𝑝, 𝑘) with the following properties:

(i) G is a simple algebraic group over an algebraically closed field of characteristic p;
(ii) 𝑉 = 𝑉𝐺 (𝜆) is an irreducible G-module;

(iii) 1 ≤ 𝑘 ≤ dim𝑉
2 .

We say that a quadruple (𝐺, 𝜆, 𝑝, 𝑘) is small if

dim 𝐺 ≥ dimG𝑘 (𝑉).

We say that a quadruple (𝐺, 𝜆, 𝑝, 𝑘) is self-dual if 𝑉𝐺 (𝜆) is self-dual, in which case the quadruple is
ts-small if

dim 𝐺 ≥ dimS𝑘 (𝑉).

We say that the quadruple (𝐺, 𝜆, 𝑝, 𝑘) has a (semi-)generic stabilizer if the action of G on 𝑋 = G𝑘 (𝑉)
has a (semi-)generic stabilizer. For a self-dual quadruple (𝐺, 𝜆, 𝑝, 𝑘), we say it has a (semi-)generic
𝑡𝑠-stabilizer if the action of G on 𝑋 = S𝑘 (𝑉) has a (semi-)generic stabilizer. In this paper, we classify
(semi-)generic 𝑡𝑠-stabilizers of 𝑡𝑠-small quadruples.

Our main result will be given in a single table (Table 1). In the first column, we have the type of
our simple algebraic group G; in the second column, the highest weight of the irreducible G-module V;
in the third column, we list the rank ℓ of G; in the fourth column, we have conditions on p; and in the
fifth column, we have the particular k which specifies which variety S𝑘 (𝑉) we are acting on. We then
have a column listing the (semi-)generic stabilizer for the action, denoted by 𝐶S𝑘 (𝑉 ) in which we use an
asterisk to indicate whether the stabilizer is not generic but semi-generic. In the columns ‘Orth?’ and
‘Dense?’, we indicate whether the module V is orthogonal and whether there exists a dense orbit for the
action on S𝑘 (𝑉). In the last column, we give the number of the proposition within the paper where the
relevant information is obtained.
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4 A. Rizzoli

Table 1. Generic 𝑡𝑠-stabilizers for 𝑡𝑠-small quadruples..

G 𝜆 ℓ p k CSk (V) Orth? Dense? Ref

𝐴ℓ 𝜆1 1 any 1 𝑃1 no yes 3.1
𝜆1 + 𝑝𝑖𝜆1 1 < ∞ 1 𝑇1 yes yes 3.3
𝜆1 + 𝑝𝑖𝜆1 1 < ∞ 2 𝑈1𝑇1 yes yes 5.1

3𝜆1 1 > 3 1 𝑆𝑦𝑚(3) no yes 3.2
3𝜆1 1 > 3 2 𝐴𝑙𝑡 (4) no yes 5.1
4𝜆1 1 > 3 1 𝐴𝑙𝑡 (4) yes yes 5.1
4𝜆1 1 > 3 2 𝑆𝑦𝑚(3) yes yes 5.1

𝜆1 + 𝜆2 2 3 1 𝑈2𝑇1 yes yes 3.4
𝜆1 + 𝜆2 2 3 2 𝑈1 yes yes 5.1
𝜆1 + 𝜆2 2 3 3 𝑇2.Z3 yes yes 5.9
𝜆1 + 𝜆2 2 ≠ 3 1 𝑇2.Z3 yes yes 4.3
𝜆1 + 𝜆2 2 ≠ 3 4′, 4′′ 𝑇2.Z3 yes yes 5.10
𝜆1 + 𝜆3 3 2 1 𝑇3.𝐴𝑙𝑡 (4) yes yes 4.3
𝜆1 + 𝜆ℓ ≥ 3 ≠ 2 1 𝑇ℓ yes no 4.1
𝜆1 + 𝜆ℓ ≥ 4, � 1 mod 4 2 1 𝑇ℓ yes no 4.1
𝜆1 + 𝜆ℓ ≥ 4, ≡ 1 mod 4 2 1 𝑇ℓ no no 4.1

𝜆3 5 2 1 𝑈8𝐴2𝑇1 yes yes 3.5
𝜆3 5 ≠ 2 1 𝐴2

2.Z2 no yes 3.2
𝜆3 5 2 2 𝑇2.𝑈1.Z2 (∗) yes no 5.6
𝜆3 5 ≠ 2 2 𝑇2.Z2.Z2 no no 5.6

𝐵ℓ 𝜆1 ≥ 2 ≠ 2 any 𝑃𝑘 yes yes 3.1
2𝜆2 2 ≠ 2 1 𝑇2.Z4 yes yes 4.3
2𝜆2 2 ≠ 2, 5 5′, 5′′ Z5.Z4 yes yes 5.26
2𝜆2 2 5 5′ Z5.Z4 yes yes 5.26
2𝜆2 2 5 5′′ Z4 yes yes 5.19
𝜆2 ≥ 3 ≠ 2 1 𝑇ℓ .Z2 yes no 4.1
𝜆3 3 any 1 𝑈6𝐴2𝑇1 yes yes 3.6
𝜆3 3 any 4′, 4′′ 𝑈6𝐴2𝑇1 yes yes 5.11
𝜆3 3 any 2 𝑈5𝐴1𝐴1𝑇1 yes yes 3.7
𝜆3 3 any 3 𝑈3𝐴2𝑇1 yes yes 3.7
𝜆4 4 any 1 𝑈7𝐺2𝑇1 yes yes 3.8
𝜆4 4 2 2 𝑈5𝐴1𝐴1 yes yes 5.1
𝜆4 4 ≠ 2 2 𝐴1 (𝐴2.Z2) yes yes 5.1
𝜆4 4 any 3 𝐴1 yes yes 5.12
𝜆4 4 any 8′ 𝐴2.Z2 yes yes 5.15
𝜆4 4 ≠ 2 8′′ 𝐴3

1 yes no 5.17
𝜆4 4 2 8′′ 𝐴3

1 (∗) yes no 5.18
𝜆4 4 any 7 𝑇2.Z2 yes no 5.16
𝜆5 5 2 1 𝑈14𝐵2𝑇1 yes yes 3.8
𝜆5 5 ≠ 2 1 𝐴4.Z2 no yes 3.2
𝜆6 6 2 1 𝐴2

2.Z2 no no 5.1
𝜆6 6 2 1 (𝐴2.Z2)

2.Z2 yes yes 5.1
𝐶ℓ 𝜆1 ≥ 3 any any 𝑃𝑘 no yes 3.1

2𝜆1 ≥ 3 ≠ 2 1 𝑇ℓ .Z2 yes yes 4.1
𝜆2 3 3 1 𝑈6𝐴1𝑇1 yes yes 3.9
𝜆2 3 3 2 𝑈1𝑇1.Z2 yes yes 5.1
𝜆2 3 ≠ 3 1 𝐴3

1.Z3 yes yes 4.4
𝜆2 3 ≠ 3, 7 7′, 7′′ Z7.Z6 yes yes 5.31
𝜆2 3 7 7′ Z7.Z6 yes yes 5.31
𝜆2 3 7 7′′ Z6 yes yes 5.27
𝜆2 4 2 1 𝐴4

1.𝐴𝑙𝑡 (4) yes yes 4.4
𝜆2 ≥ 4 ≠ 2 1 𝐴ℓ

1 yes no 4.2
𝜆2 ≥ 5, � 2 mod 4 2 1 𝐴ℓ

1 yes no 4.2
𝜆2 ≥ 5, ≡ 2 mod 4 2 1 𝐴ℓ

1 no no 4.2
𝜆2 3 ≠ 3 2 𝑇1.𝑆𝑦𝑚(3) yes no 5.8
𝜆3 3 ≠ 2 1 𝐴2.Z2 no yes 3.2

𝐷ℓ 𝜆1 ≥ 4 any ≠ ℓ − 1 𝑃𝑘 yes yes 3.1
𝜆1 ≥ 4 any ℓ − 1 𝑃ℓ−1,ℓ yes yes 3.1
𝜆2 4 2 1 𝑇4.(Z

3
2.𝐴𝑙𝑡 (4)) yes yes 4.4

𝜆2 ≥ 4 ≠ 2 1 𝑇ℓ .Z(2,ℓ) yes no 4.1
𝜆2 ≥ 5, � 2 mod 4 2 1 𝑇ℓ .(Z2)

ℓ−1 yes no 4.1
𝜆2 ≥ 5, ≡ 2 mod 4 2 1 𝑇ℓ .(Z2)

ℓ−1 no no 4.1
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Table 1. Continued.

G 𝜆 ℓ p k CSk (V) Orth? Dense? Ref

𝜆6 6 2 1 𝑈14𝐵3𝑇1 yes yes 3.10
𝜆6 6 ≠ 2 1 𝐴5.Z2 no yes 3.2
𝜆6 6 2 2 𝐴3

1.𝑈1.Z2 (∗) yes no 5.6
𝜆6 6 ≠ 2 2 𝐴3

1.Z2.Z2 no no 5.6
𝐺2 𝜆1 2 ≠ 2 1 𝑈5𝐴1𝑇1 yes yes 3.11

𝜆1 2 2 1 𝑈5𝐴1𝑇1 no yes 3.2
𝜆1 2 2 2 𝑈3𝐴1𝑇1 no yes 3.12
𝜆1 2 ≠ 2 2 𝑈3𝐴1𝑇1 yes yes 3.12
𝜆1 2 2 3 𝐴2 no yes 3.13
𝜆1 2 ≠ 2 3 𝐴2 yes yes 5.3
𝜆2 2 ≠ 3 1 𝑇2.Z6 yes yes 4.3

𝐹4 𝜆4 4 3 1 𝑈14𝐺2𝑇1 yes yes 3.14
𝜆4 4 ≠ 3 1 𝐷4.Z3 yes yes 5.1
𝜆4 4 3 2 𝑈1𝐴2.Z2 yes yes 5.1
𝜆4 4 ≠ 3 2 𝐴2.𝑆𝑦𝑚(3) yes yes 5.8
𝜆1 4 ≠ 2 1 𝑇4.Z2 yes no 4.1

𝐸6 𝜆2 6 any 1 𝑇6 yes no 4.1
𝐸7 𝜆7 7 2 1 𝑈26𝐹4𝑇1 yes yes 3.15

𝜆1 7 ≠ 2 1 𝑇7.Z2 yes no 4.1
𝜆1 7 2 1 𝑇7.Z2 no no 4.1
𝜆7 7 2 2 𝐷4.𝑈1.Z2 (∗) yes no 5.6
𝜆7 7 ≠ 2 2 𝐷4.Z2.Z2 no no 5.6

𝐸8 𝜆8 8 any 1 𝑇8.Z2 yes no 4.1

Theorem 2. The (semi-)generic 𝑡𝑠-stabilizer for a 𝑡𝑠-small quadruple is given in Table 1. In addition,
the existence or nonexistence of a dense orbit is indicated.

We are quickly able to determine whether a dense orbit on X exists, as the set of points in X that have
stabilizers of minimal dimension is open in X (see, for example, [21, Lemma 2.1]). This means that the
dimension of a (semi-)generic stabilizer is actually the minimal dimension of any stabilizer, and if this
is larger than dim 𝐺 − dim 𝑋 , there is no dense orbit. There is extensive interest in the literature around
the existence of a dense orbit. In particular, if G is a reductive algebraic group and V is an irreducible
rational G-module such that G has a dense orbit on V, the pair (𝐺,𝑉) is called a prehomogeneous vector
space, often shortened to 𝑃𝑉-space. A classification of 𝑃𝑉-spaces was determined in characteristic
zero in [29] and extended to positive characteristic in [32][33]. The fact that this classification covers
all semisimple algebraic groups implies that the density question is already understood for the action on
G𝑘 (𝑉). Indeed, G has a dense orbit on G𝑘 (𝑉) if and only if 𝐺𝐿𝑘 ⊗𝐺 has a dense orbit on 𝑉1 ⊗𝑉 , where
𝑉1 is the natural module for 𝐺𝐿𝑘 . The next result summarises the answer to the dense-orbit question for
the action on orthogonal and symplectic Grassmannians.

Theorem 3. Let G be a simple algebraic group over an algebraically closed field of characteristic p,
and V a self-dual nontrivial irreducible G-module of dimension d and highest weight 𝜆. For 1 ≤ 𝑘 ≤ 𝑑

2 ,
the action of G on S𝑘 (𝑉) has a dense orbit if and only if dim 𝐺 ≥ dimS𝑘 (𝑉), the zero-weight space of
V has dimension at most 2, and (𝐺, 𝜆, 𝑝, 𝑘) is not one of the following:

(i) (𝐴5, 𝜆3, 𝑎𝑛𝑦, 2);
(ii) (𝐵4, 𝜆4, 𝑎𝑛𝑦, 7);

(iii) (𝐵4, 𝜆4, 𝑎𝑛𝑦, 8′′);
(iv) (𝐷6, 𝜆6, 𝑎𝑛𝑦, 2);
(v) (𝐸7, 𝜆7, 𝑎𝑛𝑦, 2).

Remark 1. The only 𝑡𝑠-small quadruples (𝐺, 𝜆, 𝑝, 𝑘) with a zero-weight space of dimension at least 3
have 𝑘 = 1, with either 𝑉𝐺 (𝜆) a composition factor of the adjoint module for G, or 𝐺 = 𝐶ℓ and 𝜆 = 𝜆2.
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Denote by 𝐶𝑙 (𝑉) a classical group with natural module V. Given that 𝑋 = G𝑘 (𝑉) and 𝑋 = S𝑘 (𝑉) are
varieties of cosets of the form 𝐶𝑙 (𝑉)/𝑃, where P is a parabolic subgroup of 𝐶𝑙 (𝑉), the action of G on X
has a dense orbit if and only if there is a dense (𝐺, 𝑃)-double coset in 𝐶𝑙 (𝑉). We now seek to complete
the answer to the question of existence of a dense double coset in the following sense. In Theorem 5, we
classify pairs (𝐺, 𝐻) of closed maximal connected subgroups of 𝐶𝑙 (𝑉) such that there exists a dense
(𝐺, 𝐻)-double coset in 𝐶𝑙 (𝑉). In order to do this, we first need to determine which semisimple groups
acting tensor-decomposably on an irreducible module V have a dense orbit on S𝑘 (𝑉). The possibilities
for such subgroups are given by Proposition 2.2. They are 𝑆𝑂𝑛 ⊗ 𝑆𝑂𝑚 ≤ 𝑆𝑂𝑚𝑛, 𝑆𝑝2𝑛 ⊗ 𝑆𝑂𝑚 ≤ 𝑆𝑝2𝑚𝑛,
𝑆𝑝2𝑛 ⊗ 𝑆𝑝2𝑚 ≤ 𝑆𝑂4𝑚𝑛, with 𝑝 ≠ 2 if one of the factors is an orthogonal group acting on an odd-
dimensional vector space. The strategy is similar to the one employed for the proof of Theorem 2,
although we only care about the connected component of (semi-)generic stabilizers. This is achieved in
the following theorem.

Theorem 4. Let 𝐺 = 𝐶𝑙 (𝑉1)⊗𝐶𝑙 (𝑉2) be a maximal subgroup of either 𝑆𝑂 (𝑉) or 𝑆𝑝(𝑉) with𝑉 = 𝑉1⊗𝑉2
and suppose 𝑘 ≤ 1

2 dim𝑉1 dim𝑉2. Then the action of G on S𝑘 (𝑉) has a dense orbit if and only if (𝐺, 𝑘)
is one of the following:

(i) (𝑆𝑝(𝑉1) ⊗ 𝑆𝑂 (𝑉2), 1) and (𝐾∗𝐺,𝑉) is a prehomogeneous vector space, as classified in [32][33];
(ii) (𝑆𝑝2 ⊗ 𝑆𝑝2𝑛, 1) with 𝑛 ≥ 1;

(iii) (𝑆𝑝2 ⊗ 𝑆𝑝2𝑛, 2) with 𝑛 ≥ 2;
(iv) (𝑆𝑝2 ⊗ 𝑆𝑝2𝑛, 3) with 𝑛 ≥ 3;
(v) (𝑆𝑝2 ⊗ 𝑆𝑝2𝑛, 𝑘) with 𝑘 = (2𝑛)′ or 𝑘 = (2𝑛)′′ and 1 ≤ 𝑛 ≤ 3;

(vi) (𝑆𝑝2 ⊗ 𝑆𝑝2𝑛, 2𝑛 − 1) with 1 ≤ 𝑛 ≤ 3;
(vii) (𝑆𝑝4 ⊗ 𝑆𝑝2𝑛, 1) with 𝑛 ≥ 2.

We are now ready to classify pairs (𝐺, 𝐻) of closed maximal connected subgroups of 𝐶𝑙 (𝑉) such
that there exists a dense (𝐺, 𝐻)-double coset in 𝐶𝑙 (𝑉). One particular class of such pairs (see case
(𝑖𝑖𝑖) (𝑏) in the following theorem) arises from spherical subgroups. These are reductive subgroups G
such that there is a dense (𝐺, 𝐵)-double coset, where B is a Borel subgroup. Spherical subgroups have
been classified by Krämer in characteristic 0 and by Knop and Röhrle in [14] for arbitrary characteristic.

Theorem 5. Let Γ be a classical group 𝐶𝑙 (𝑉). Let 𝐺, 𝐻 be a pair of maximal connected subgroups
of Γ. Then there exists a dense (𝐺, 𝐻)-double coset in Γ if and only if one of the following holds:

(i) G and H are both reductive and Γ = 𝐺𝐻. Such factorizations were classified in [17].
(ii) G and H are both parabolic subgroups.

(iii) After possibly interchanging G and H, we have that H is parabolic, G is reductive and one of the
following holds:
(a) Γ = 𝑆𝐿(𝑉), 𝐻 = 𝑃𝑘 (or Γ = 𝑆𝑝(𝑉), 𝐻 = 𝑃𝑘 with 𝑘 = 1) and (𝐺𝐿𝑘 ⊗ 𝐺, 𝐾 𝑘 ⊗ 𝑉) is a

prehomogeneous vector space, as classified in [29][32][33];
(b) G is the stabilizer of a subspace X of V and either X is nondegenerate or 𝑝 = 2 and X is

nonsingular of dimension 1 with V orthogonal. In this case G is spherical, so H is arbitrary.
(c) 𝐺 = 𝐶𝑙 (𝑉1) ⊗ 𝐶𝑙 (𝑉2), 𝑉 = 𝑉1 ⊗ 𝑉2, and G has a dense orbit on the variety of totally singular

subspaces corresponding to Γ/𝐻, as detailed in Theorem 4.
(d) G is simple and irreducible on V and has a dense orbit on the variety of totally singular

subspaces corresponding to Γ/𝐻, as detailed in Theorem 3.

Remark 2. Dropping the maximality assumption presents considerable challenges. Even the case where
both G and H are reductive does not have a general solution, as the results in [6] require a technical
condition on G and H.

Remark 3. The double coset density question remains open when Γ is an exceptional group. In case
(𝑖𝑖𝑖) of Theorem 5, the only information available for Γ exceptional is when G is of maximal rank
(see [8]). The complete classification will be the subject of forthcoming work.
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Let us conclude with a related question. Given two maximal connected subgroups of 𝐶𝑙 (𝑉), are
there finitely many double cosets? Of course, the existence of finitely many double cosets implies the
existence of a dense double coset, while the opposite need not be true. For example, 𝐺 = 𝐴ℓ for ℓ ≥ 8
has a dense orbit on 𝑋 = G2 (𝑉) where 𝑉 = 𝑉𝐺 (𝜆2), but also has infinitely many orbits ([11]). Therefore,
there is a dense (𝐺, 𝑃2)-double coset in 𝑆𝐿(𝑉), as well as infinitely many double cosets.

However, it was shown in [11] that a simple group G having finitely many orbits on 𝑋 = G1 (𝑉), where
V is an irreducible G-module, is equivalent to G having a dense orbit on X. This result was replicated
for self-dual modules when 𝑋 = S1 (𝑉) and 𝑋 = S2 (𝑉) in [26][27].

Strikingly, we shall conjecture that there is only one exception to this equivalence when X is an
orthogonal or symplectic Grassmannian.

Conjecture 1. Let G be a simple connected irreducible subgroup of either 𝑆𝑂 (𝑉) or 𝑆𝑝(𝑉). Then
unless (𝐺, 𝜆, 𝑝, 𝑘) = (𝐶3, 𝜆2, 𝑝, 7) with 𝑝 ≠ 3, the action of G on S𝑘 (𝑉) has a dense orbit if and only if
G acts on S𝑘 (𝑉) with finitely many orbits.

The paper will be structured as follows. In Section 2, we shall consolidate the notation and background
material, develop the tools for our analysis and determine the complete list of 𝑡𝑠-small quadruples, which
we divide into three tables (see Proposition 2.17). We will devote a section to each table.

Given a 𝑡𝑠-small quadruple, we then proceed to determine its (semi-)generic 𝑡𝑠-stabilizer. In Section
3, we handle the cases where we already had finitely many orbits on all k-spaces. In Section 4, we deal
with the cases having a large zero-weight space, and in Section 5, we handle the remaining cases. This
completes the proof of Theorem 1 and Theorem 2.

We then shift our attention to the double coset density question. In Section 6, we prove Theorem 4.
Finally, in Section 7, we use all of the previous results to prove Theorem 5.

2. Preliminary results

In this section, we gather some useful results, develop notation and conclude with a complete list of
𝑡𝑠-small quadruples.

2.1. Bilinear forms

We start by fixing the notation for the action of an orthogonal group on its natural module 𝑉𝑛𝑎𝑡 . To do
this, we use the standard notation for its root system: we take an orthonormal basis 𝜖1, . . . , 𝜖ℓ of the
ℓ-dimensional Euclidean space and take simple roots 𝛼𝑖 = 𝜖𝑖 − 𝜖𝑖+1 for 𝑖 < ℓ and 𝛼ℓ = 𝜖ℓ or 𝜖ℓ−1 + 𝜖ℓ
according as 𝐺 = 𝐵ℓ or 𝐷ℓ .

If 𝐺 = 𝐷ℓ , then 𝑉𝑛𝑎𝑡 has (hyperbolic) basis 𝑒1, 𝑓1, . . . , 𝑒ℓ , 𝑓ℓ on which root elements act by

𝑥𝜖𝑖−𝜖 𝑗 (𝑡) : 𝑒 𝑗 ↦→ 𝑒 𝑗 + 𝑡𝑒𝑖 , 𝑓𝑖 ↦→ 𝑓𝑖 − 𝑡 𝑓 𝑗 ,

𝑥−𝜖𝑖+𝜖 𝑗 (𝑡) : 𝑒𝑖 ↦→ 𝑒𝑖 + 𝑡𝑒 𝑗 , 𝑓 𝑗 ↦→ 𝑓 𝑗 − 𝑡 𝑓𝑖 ,

𝑥𝜖𝑖+𝜖 𝑗 (𝑡) : 𝑓 𝑗 ↦→ 𝑓 𝑗 + 𝑡𝑒𝑖 , 𝑓𝑖 ↦→ 𝑓𝑖 − 𝑡𝑒 𝑗 ,

𝑥−𝜖𝑖−𝜖 𝑗 (𝑡) : 𝑒 𝑗 ↦→ 𝑒 𝑗 − 𝑡 𝑓𝑖 , 𝑒𝑖 ↦→ 𝑒𝑖 + 𝑡 𝑓 𝑗 ,

while fixing the basis vectors that are not listed.
If 𝐺 = 𝐵ℓ , then 𝑉𝑛𝑎𝑡 has (hyperbolic) basis 𝑣0, 𝑒1, 𝑓1, . . . , 𝑒ℓ , 𝑓ℓ on which root elements act by

𝑥𝜖𝑖−𝜖 𝑗 (𝑡) : 𝑒 𝑗 ↦→ 𝑒 𝑗 + 𝑡𝑒𝑖 , 𝑓𝑖 ↦→ 𝑓𝑖 − 𝑡 𝑓 𝑗 ,

𝑥−𝜖𝑖+𝜖 𝑗 (𝑡) : 𝑒𝑖 ↦→ 𝑒𝑖 + 𝑡𝑒 𝑗 , 𝑓 𝑗 ↦→ 𝑓 𝑗 − 𝑡 𝑓𝑖 ,

𝑥𝜖𝑖+𝜖 𝑗 (𝑡) : 𝑓 𝑗 ↦→ 𝑓 𝑗 + 𝑡𝑒𝑖 , 𝑓𝑖 ↦→ 𝑓𝑖 − 𝑡𝑒 𝑗 ,

𝑥−𝜖𝑖−𝜖 𝑗 (𝑡) : 𝑒 𝑗 ↦→ 𝑒 𝑗 − 𝑡 𝑓𝑖 , 𝑒𝑖 ↦→ 𝑒𝑖 + 𝑡 𝑓 𝑗 ,
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𝑥𝜖𝑖 (𝑡) : 𝑣0 ↦→ 𝑣0 + 2𝑡𝑒𝑖 , 𝑓𝑖 ↦→ 𝑓𝑖 − 𝑡𝑣0 − 𝑡2𝑒𝑖 ,

𝑥−𝜖𝑖 (𝑡) : 𝑣0 ↦→ 𝑣0 − 2𝑡 𝑓𝑖 , 𝑒𝑖 ↦→ 𝑒𝑖 + 𝑡𝑣0 − 𝑡2 𝑓𝑖 ,

while fixing the basis vectors that are not listed.
The following two results describe the structure of maximal connected subgroups of classical groups.

Recall that by 𝐶𝑙 (𝑉), we denote a classical group with natural module V.

Theorem 2.1 [18]. Let H be a closed connected subgroup of 𝐺 = 𝐶𝑙 (𝑉). Then one of the following
holds:

(i) 𝐻 ≤ 𝑆𝑡𝑎𝑏𝐺 (𝑋) with 𝑋 ≤ 𝑉 a proper nonzero subspace which is either totally singular or
nondegenerate, or 𝑝 = 2, 𝐺 = 𝑆𝑂 (𝑉) and X is nonsingular of dimension 1;

(ii) 𝑉 = 𝑉1 ⊗𝑉2 and H lies in a subgroup of the form 𝐶𝑙 (𝑉1) ⊗𝐶𝑙 (𝑉2) acting naturally on 𝑉1 ⊗𝑉2 with
dim𝑉𝑖 ≥ 2 for 𝑖 = 1, 2;

(iii) H is a simple algebraic group acting irreducibly on V and 𝑉 |𝐻 is tensor indecomposable.

The possibilities for the second case of Theorem 2.1 are given by the following proposition.

Proposition 2.2 [18, Prop 2.2]. Suppose 𝑉 = 𝑉1 ⊗ 𝑉2 and 𝑓𝑖 is a nondegenerate bilinear form on 𝑉𝑖 .

(i) There is a unique nondegenerate bilinear form 𝑓 = 𝑓1 ⊗ 𝑓2 on V such that 𝑓 (𝑢1 ⊗ 𝑢2, 𝑣1 ⊗ 𝑣2) =
𝑓1(𝑢1, 𝑣1) 𝑓2(𝑢2, 𝑣2) for all 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖 .

(ii) f is symmetric if 𝑓1, 𝑓2 are both alternating or both symmetric, and f is alternating otherwise.
(iii) f is preserved by 𝐼 (𝑉1) ◦ 𝐼 (𝑉2) acting naturally on the tensor product, where 𝐼 (𝑉𝑖) is the stabilizer

in 𝐺𝐿(𝑉𝑖) of 𝑓𝑖 .
(iv) If 𝑝 = 2, then there is a unique quadratic form Q on V, with associated bilinear form f, such that

𝑄(𝑣1 ⊗ 𝑣2) = 0 for all 𝑣𝑖 ∈ 𝑉𝑖 and Q is preserved by 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2).

The following lemma gives the dimension of the symplectic and orthogonal Grassmannians we are
acting on.

Lemma 2.3. Let V be either a symplectic or orthogonal geometry of dimension d over an algebraically
closed field. Then

dimS𝑘 (𝑉) = 𝑘𝑑 −
3𝑘2 + 𝜖𝑉 𝑘

2
,

where 𝜖𝑉 is 1 or −1 according as V is orthogonal or symplectic.

Proof. If V is orthogonal with 𝑑 = 2ℓ and 𝑘 = ℓ − 1, we have dimS𝑘 (𝑉) = dim 𝐷ℓ − dim 𝑃ℓ−1,ℓ . In
all other cases, the dimension is simply given by dim𝐶𝑙 (𝑉)/𝑃𝑘 = dim𝐶𝑙 (𝑉) − dim 𝑃𝑘 for 𝐶𝑙 (𝑉) =
𝐵 𝑑−1

2
, 𝐶 𝑑

2
, or 𝐷 𝑑

2
as appropriate. �

Recall that a 𝑡𝑠-small quadruple is a 4-tuple of the form (𝐺, 𝜆, 𝑝, 𝑘), with 𝑉 = 𝑉𝐺 (𝜆) a self-dual
irreducible G-module, and dim 𝐺 ≥ dimS𝑘 (𝑉). Lemma 2.3 gives the following dimension bound.

Lemma 2.4. Let (𝐺, 𝜆, 𝑝, 𝑘) be a 𝑡𝑠-small quadruple. Suppose that 𝑉 = 𝑉𝐺 (𝜆) has dimension d. Then

dim 𝐺 ≥ 𝑘𝑑 −
3𝑘2 + 𝜖𝑉 𝑘

2
,

where 𝜖𝑉 is 1 or −1 according as V is orthogonal or symplectic.

Proof. This follows directly from Lemma 2.3. �

A self-dual module is either orthogonal or symplectic. The following lemma provides a useful
criterion in odd characteristic.
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Lemma 2.5 [30, Lemma 78-79]. Let G be a simple simply connected algebraic group and 𝑉 = 𝑉𝐺 (𝜆)
a self-dual G-module in characteristic 𝑝 ≠ 2. Then if 𝑍 (𝐺) has no element of order 2, the module V is
orthogonal.

Otherwise, let z be the only element of order 2 in 𝑍 (𝐺), except for the case 𝐺 = 𝐷ℓ with even ℓ, where
z is the element of 𝑍 (𝐺) such that 𝐺/〈𝑧〉 � 𝑆𝑂2ℓ (𝑘). Then the module V is orthogonal if 𝜆(𝑧) = 1, and
symplectic otherwise.

Note that the value 𝜆(𝑧) can be computed by [20, Appendix A.2]. If 𝑝 = 2, for certain modules, we
can determine whether V is symplectic or orthogonal thanks to [15]. More explicit descriptions of some
of these forms can be found in [9] and [3].

When dealing with maximal totally singular subspaces of an orthogonal module V of dimension 2ℓ,
we need to be able to distinguish between the two 𝐷ℓ-orbits on Sℓ (𝑉). The following lemma provides
an easy way to do so.

Lemma 2.6. Let V be an orthogonal module of even dimension and U, W two maximal totally singular
subspaces of V. Then U and W are in the same 𝑆𝑂 (𝑉)-orbit if and only if dim𝑈 − dim𝑈 ∩𝑊 is even.

Proof. This follows quickly from [2, 22.14(2)]. �

We conclude this section with a lemma concerning orthogonality of weight spaces in a self-dual
irreducible module.

Lemma 2.7. Let𝑉 = 𝑉𝐺 (𝜆) be a self-dual irreducible 𝐾𝐺-module. Let (·, ·) be an irreducible symmetric
or alternating bilinear form on V preserved by G. Then the following hold:

(a) For any two weights 𝜇, 𝜈 such that 𝜇 ≠ −𝜈, the weight spaces 𝑉𝜇 and 𝑉𝜈 are orthogonal to each
other;

(b) 𝑉𝜇 is totally singular for all nonzero weights 𝜇;
(c) 𝑉0 is nondegenerate.

Proof. Let 𝑣, 𝑢 be two weight vectors in non-opposite weight spaces. Then there exists 𝑡 ∈ 𝑇 such
that 𝑡.𝑣 = 𝜅1𝑣 and 𝑡.𝑢 = 𝜅2𝑢 with 𝜅1 ≠ 𝜅−1

2 . Therefore, (𝑢, 𝑣) = 𝜅1𝜅2 (𝑢, 𝑣), which implies (𝑢, 𝑣) = 0,
proving (𝑎).

By part (𝑎) with 𝜇 = 𝜈, we have that 𝑉𝜇 is totally-isotropic. Similarly to the previous paragraph, if
V is an orthogonal module, there exists 𝜅 ≠ ±1 such that 𝑄(𝑣) = 𝜅2𝑄(𝑣), implying 𝑄(𝑣) = 0 for all
𝑣 ∈ 𝑉𝜇. This proves (𝑏).

By (𝑎), the zero weight space 𝑉0 is orthogonal to all nonzero weight spaces. Therefore, any singular
vector v in the radical of 𝑉0 is a singular vector in the radical of V, which implies 𝑣 = 0 since the form
is nondegenerate. This proves that 𝑉0 is itself nondegenerate. �

2.2. Clifford theory

Let 𝐺 ≤ 𝐺𝐿(𝑉) be a subgroup acting completely reducibly and homogeneously on V. The following
lemma shows that G must preserve a tensor product structure on V.

Lemma 2.8 [13, Lemma 4.4.3]. Let V be an irreducible 𝐾𝐺-module and suppose that 𝑆 ≤ 𝐺 acts
completely reducibly and homogeneously on V, with 𝑠 ≥ 2 irreducible summands of dimension r. Then
the following hold:

(i) there is a tensor decomposition 𝑉 = 𝑉1 ⊗ 𝑉2 (where dim𝑉1 = 𝑟, dim𝑉2 = 𝑠), such that 𝑆 ≤

𝐺𝐿(𝑉1) ⊗ 1 and 𝐶𝐺𝐿 (𝑉 ) (𝑆) = 1 ⊗ 𝐺𝐿(𝑉2);
(ii) 𝐶𝐺𝐿 (𝑉 ) (𝐶𝐺𝐿 (𝑉 ) (𝑆)) = 𝐺𝐿(𝑉1) ⊗ 1;

(iii) 𝑁𝐺𝐿 (𝑉 ) (𝑆) = 𝑁𝐺𝐿 (𝑉1) (𝑆) ⊗ 𝐺𝐿(𝑉2);
(iv) the irreducible 𝐾𝑆-submodules of V are precisely the subspaces 𝑉1 ⊗ 𝑣, where 0 ≠ 𝑣 ∈ 𝑉2.

The following lemma shows that no cyclic extension of G can act irreducibly on V.
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Lemma 2.9. Let V be an irreducible 𝐾𝐺-module and suppose that 𝑆 ≤ 𝐺 acts completely reducibly
and homogeneously on V, with 𝑠 ≥ 2 irreducible summands of dimension r. Let 𝑆〈𝜏〉 ≤ 𝐺 be a cyclic
extension of S. Then 𝑆〈𝜏〉 does not act irreducibly on V.

Proof. We apply Lemma 2.8 to get 𝑉 = 𝑉1 ⊗ 𝑉2 with dim𝑉1 = 𝑟 , 𝑆 ≤ 𝐺𝐿(𝑉1) ⊗ 1 and 𝜏 = 𝜏1 ⊗ 𝜏2 ∈

𝐺𝐿(𝑉1) ⊗𝐺𝐿(𝑉2). Since 𝜏2 stabilises at least one 1-space of 𝑉2, by part (𝑖𝑣) of Lemma 2.8, the element
𝜏 stabilises one irreducible 𝐾𝑆-submodule of V. �

Lemma 2.10. Let V be an irreducible 𝐾𝐺-module and suppose that 𝑆 ≤ 𝐺 acts homogeneously on V
as the sum of 2 irreducible summands. Let 𝑆〈𝜏〉 ≤ 𝐺 be a cyclic extension of S. Then 𝑆〈𝜏〉 fixes 1, 2, or
all 𝐾𝑆-submodules of V.

Proof. From the proof of Lemma 2.9, we have 𝑉 = 𝑉1 ⊗ 𝑉2, with dim𝑉2 = 2, 𝑆 ≤ 𝐺𝐿(𝑉1) ⊗ 1 and
𝜏 = 𝜏1 ⊗ 𝜏2 ∈ 𝐺𝐿(𝑉1) ⊗ 𝐺𝐿(𝑉2). Then 𝜏2 stabilises either 1, 2 or all 1-spaces of 𝑉2, concluding. �

2.3. Generic stabilizers

In this section, we gather some of the essential lemmas that will allow us to determine (semi-)generic
stabilizers. As mentioned in the introduction, a (semi-)generic stabilizer realises the minimum dimension
of any stabilizer. This follows from the next two results.

Lemma 2.11 [22, Lemma 3.7]. Let an algebraic group G act on a quasi-projective variety X. For any
𝑡 ∈ N ∪ {0}, the set {𝑥 ∈ 𝑋 |dim 𝐺𝑥 ≥ 𝑡} is closed.

Corollary 2.12. Let an algebraic group G act on an irreducible quasi-projective variety X with
(semi-)generic stabilizer S. Then for all 𝑥 ∈ 𝑋 , we have dim 𝐺𝑥 ≥ dim 𝑆.

Proof. By assumption, there exists an open set Y such that all elements of Y have stabilizer isomorphic
to S. By Lemma 2.11, we then find that dim 𝐺𝑥 ≥ dim 𝑆 for all 𝑥 ∈ 𝑋 . �

Let us consider some of the methods used in [10]. In particular, we are interested in the localization
to a subvariety approach [10, §4.1]. Let X be a variety on which a simple algebraic group G acts. Let Y
be a subvariety of X and 𝑥 ∈ 𝑋 . The transporter in G of x into Y is

Tran𝐺 (𝑥,𝑌 ) = {𝑔 ∈ 𝐺 : 𝑔.𝑥 ∈ 𝑌 }.

Let 𝜙 : 𝐺 × 𝑋 → 𝑋 be the orbit map.

Lemma 2.13 [10, Lemma 4.1]. For 𝑦 ∈ 𝑌 , the following hold:

(i) dim TranG(𝑦,𝑌 ) = dim 𝜙−1(𝑦);
(ii) codim TranG(𝑦,𝑌 ) = dim(𝐺.𝑦) − dim(𝐺.𝑦 ∩ 𝑌 ).

If Y is a subvariety of X, a point 𝑦 ∈ 𝑌 is called Y-exact if

codim TranG (𝑦,𝑌 ) = codim𝑌 .

Lemma 2.14 [10, Lemma 4.3]. Let 𝑌 be a dense open subset of Y. Suppose that all points in 𝑌 are
Y-exact. Then 𝜙(𝐺 × 𝑌 ) contains a dense open subset of X.

Such a set 𝑌 is sufficiently representative of the G-action on X, which leads to the following lemma.

Lemma 2.15 [10, Lemma 4.4]. Let 𝑌 be a dense open subset of Y. Let C be a subgroup of G containing
𝐺𝑋 . Suppose that for each 𝑦 ∈ 𝑌 , the following is true:

(i) y is Y-exact;
(ii) 𝐺𝑦 is conjugate to C.

Then 𝐶/𝐺𝑋 is the generic stabilizer in the action of G on X.
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We similarly derive a criterion for proving that there does not exist a generic stabilizer.

Lemma 2.16. Assume that Y is not finite, and let 𝑌 be a dense open subset of Y. Suppose that for each
𝑦 ∈ 𝑌 , the following is true:

(i) y is Y-exact;
(ii) for all 𝑦′ ∈ 𝑌 \ {𝑦}, we have that 𝐺𝑦 is not conjugate to 𝐺𝑦′ .

Then there is no generic stabilizer in the action of G on X.

Proof. By Lemma 2.14, there is a dense open subset𝑈1 of X, contained in 𝜙(𝐺×𝑌 ) which by assumption
is the union of G-orbits with pairwise non-conjugate stabilizers. Given any such orbit 𝐺.𝑦 for some
𝑦 ∈ 𝑌 , we have

dim(𝐺.𝑦) = dim(𝐺.𝑦) − dim(𝐺.𝑦 ∩ 𝑌 ) = codim𝑌 < dim 𝑋,

since y is Y-exact combined with dim𝑌 ≥ 1 and Lemma 2.13.
Assume that there is a generic stabilizer in the action of G on X. Then there is a dense open subset

𝑈2 of X such that 𝐺𝑥1 and 𝐺𝑥2 are conjugate for all 𝑥1, 𝑥2 ∈ 𝑈2. Taking the intersection of 𝑈1 and 𝑈2,
we get an open dense subset U of X with the same property. Therefore, given any two 𝑥1, 𝑥2 ∈ 𝑈, we
must have 𝐺.𝑥1 = 𝐺.𝑥2 (i.e., U consists of a single G-orbit). This implies that there is a dense orbit,
contradicting dim(𝐺.𝑦) < dim 𝑋 . �

2.4. Spin modules

We set up spin modules following [23]. Let {𝑒1, . . . , 𝑒𝑛, 𝑒𝑛+1, . . . , 𝑒2𝑛} = {𝑒1, . . . , 𝑒𝑛, 𝑓1, . . . , 𝑓𝑛} be
a standard basis for the 2𝑛-dimensional K-vector space 𝑉 = 𝑉2𝑛 with quadratic form Q and bilinear
form (·, ·), such that {𝑒𝑖 , 𝑒𝑛+𝑖} = {𝑒𝑖 , 𝑓𝑖} are hyperbolic pairs for 𝑖 ≤ 𝑛. Let 𝐿, 𝑀 be the totally singular
subspaces 〈𝑒1, . . . , 𝑒𝑛〉 and 〈 𝑓1, . . . , 𝑓𝑛〉, respectively.

We denote by C the Clifford algebra of (𝑉,𝑄). This is an associative algebra over K generated by V,
in which 𝑣2 = 𝑄(𝑣) for every 𝑣 ∈ 𝑉 . It has the structure of a graded module over K. Let 𝜙′ : 𝐶 → 𝐶,
sending 𝑥 ↦→ 𝑥 ′, be the involution of C fixing every element of V (i.e., the anti-automorphism sending a
product

∏𝑘
𝑖=1 𝑣𝑖 ∈ 𝐶 to

∏𝑘
𝑖=1 𝑣𝑛−𝑖+1). We denote by 𝐶+ and 𝐶− the sums of homogeneous submodules

of C of even and odd degrees, respectively. Then 𝐶 = 𝐶+ ⊕ 𝐶−. In particular, 𝐶+ is a subalgebra of C
invariant under 𝜙′.

The Clifford group is 𝐺∗ = {𝑠 ∈ 𝐶 |𝑠 is invertible in C and 𝑠𝑉𝑠−1 = 𝑉}. The even Clifford group is
(𝐺∗)+ = 𝐺∗ ∩ 𝐶+. The spin group 𝑆𝑝𝑖𝑛2𝑛 is {𝑠 ∈ (𝐺∗)+ |𝑠𝑠′ = 1}.

The vector representation of the Clifford group 𝐺∗ is given by Θ : 𝐺∗ → 𝐴𝑢𝑡 (𝑉,𝑄), such that
Θ(𝑠) · 𝑣 = 𝑠𝑣𝑠−1. The restriction of Θ to 𝑆𝑝𝑖𝑛2𝑛 is the natural representation of 𝑆𝑝𝑖𝑛2𝑛. The root
subgroups of 𝑆𝑝𝑖𝑛2𝑛 are parametrised by pairs (𝑖, 𝑗) with 𝑖 + 𝑗 ≠ 2𝑛+1; the root subgroup parametrised
by the pair (𝑖, 𝑗) consists of elements of the form 1 + 𝜆𝑒𝑖𝑒 𝑗 , where 1 + 𝜆𝑒𝑖𝑒 𝑗 acts on a vector 𝑣 ∈ 𝑉 by
𝑣 ↦→ 𝑣 + 𝜆(𝑒 𝑗 , 𝑣)𝑒𝑖 − 𝜆(𝑒𝑖 , 𝑣)𝑒 𝑗 .

Put 𝑒𝐿 = 𝑒1𝑒2 . . . 𝑒𝑛 and 𝑒𝑀 = 𝑒𝑛+1𝑒𝑛+2 . . . 𝑒2𝑛. We denote by 𝐶𝑊 the subalgebra of C generated by
the elements of a subspace 𝑊 ⊂ 𝑉2𝑛. Then 𝑐𝑒 : 𝑀 is a minimal left ideal in C, and the correspondence
𝑥 ↦→ 𝑥𝑒𝑀 generates an isomorphism 𝐶𝐿 → 𝑐𝑒 : 𝑀 of vector spaces. So for any 𝑠 ∈ 𝐶, 𝑥 ∈ 𝐶𝐿 , there
exists a unique element 𝑦 ∈ 𝐶𝐿 for which 𝑠𝑥𝑒𝑀 = 𝑦𝑒𝑀 . Setting 𝜌(𝑠) · 𝑥 = 𝑠 · 𝑥 = 𝑦 gives us the spinor
representation 𝜌 of the algebra C in 𝐶𝐿 . Let 𝑋 = 𝐶𝐿 ∩ 𝐶+. Then restricting 𝜌 to 𝑆𝑝𝑖𝑛2𝑛, we get the
half-spin representation of 𝑆𝑝𝑖𝑛2𝑛 in X.

An element of X is called a spinor. The restriction to 𝐵𝑛−1 is the spin representation for 𝐵𝑛−1.

2.5. List of ts-small quadruples

The following result lists all 𝑡𝑠-small quadruples. We will then be able to prove Theorem 1 and
Theorem 2 by proceeding case-by-case.
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Table 2. 𝑡𝑠-small quadruples with finitely many orbits on G𝒌 (𝑽 ) ..

G 𝜆 dim V p k Orthogonal?

𝐴1 𝜆1 2 any 1 no
𝐴1 3𝜆1 4 > 3 1 no
𝐴1 𝜆1 + 𝑝𝑖𝜆1 4 < ∞ 1 yes
𝐴2 𝜆1 + 𝜆2 7 3 1 yes
𝐴5 𝜆3 20 2 1 yes
𝐴5 𝜆3 21 ≠ 2 1 no

𝐵ℓ , ℓ ≥ 2 𝜆1 2ℓ + 1 ≠ 2 any yes
𝐵3 𝜆3 8 any 1, 2, 3 yes
𝐵4 𝜆4 16 any 1 yes
𝐵5 𝜆5 32 2 1 yes
𝐵5 𝜆5 32 ≠ 2 1 no

𝐶ℓ , ℓ ≥ 3 𝜆1 2ℓ any any no
𝐶3 𝜆2 13 3 1 yes
𝐶3 𝜆3 14 ≠ 2 1 no

𝐷ℓ , ℓ ≥ 4 𝜆1 2ℓ any any yes
𝐷6 𝜆6 32 2 1 yes
𝐷6 𝜆6 32 ≠ 2 1 no
𝐺2 𝜆1 7 ≠ 2 1, 2 yes
𝐺2 𝜆1 6 2 1, 2, 3 no
𝐹4 𝜆4 25 3 1 yes
𝐸7 𝜆7 56 2 1 yes
𝐸7 𝜆7 56 ≠ 2 1 no

Table 3. Infinite families of 𝑡𝑠-small quadruples..

G 𝜆 dim V p k Orthogonal?

𝐴ℓ , ℓ ≥ 4 𝜆1 + 𝜆ℓ ℓ2 + 2ℓ − 1 | ℓ + 1, ≠ 2 1 yes
𝐴ℓ , ℓ ≥ 2 𝜆1 + 𝜆ℓ ℓ2 + 2ℓ � ℓ + 1 1 yes

𝐴ℓ , ℓ ≡ 3 mod 4 𝜆1 + 𝜆ℓ ℓ2 + 2ℓ − 1 2 1 yes
𝐴ℓ , ℓ ≡ 1 mod 4 𝜆1 + 𝜆ℓ ℓ2 + 2ℓ − 1 2 1 no

𝐵ℓ 𝜆2 2ℓ2 + ℓ ≠ 2 1 yes
𝐶ℓ 2𝜆1 2ℓ2 + ℓ ≠ 2 1 yes
𝐶ℓ 𝜆2 2ℓ2 − ℓ − 1 � ℓ, ≠ 2 1 yes

𝐶ℓ , ℓ ≥ 5 𝜆2 2ℓ2 − ℓ − 2 | ℓ, ≠ 2 1 yes
𝐶ℓ , ℓ � 2 (mod 4) 𝜆2 2ℓ2 − ℓ − 1 − gcd(ℓ, 2) 2 1 yes
𝐶ℓ , ℓ ≡ 2 (mod 4) 𝜆2 2ℓ2 − ℓ − 2 2 1 no

𝐷ℓ , ℓ ≥ 4 𝜆2 2ℓ2 − ℓ ≠ 2 1 yes
𝐷ℓ , ℓ odd, ℓ ≥ 4 𝜆2 2ℓ2 − ℓ − 1 2 1 yes
𝐷ℓ , ℓ ≡ 0 mod 4 𝜆2 2ℓ2 − ℓ − 2 2 1 yes

𝐷ℓ , ℓ ≡ 2 mod 4, ℓ ≥ 4 𝜆2 2ℓ2 − ℓ − 2 2 1 no
𝐺2 𝜆2 14 ≠ 3 1 yes
𝐹4 𝜆1 52 ≠ 2 1 yes
𝐸6 𝜆2 78 − 𝛿𝑝,3 any 1 yes
𝐸7 𝜆1 133 ≠ 2 1 yes
𝐸7 𝜆1 132 2 1 no
𝐸8 𝜆8 248 any 1 yes

Proposition 2.17. Let (𝐺, 𝜆, 𝑝, 𝑘) be a 𝑡𝑠-small quadruple and 𝑉 = 𝑉𝐺 (𝜆). Then, precisely one of the
following is true:

(i) G has finitely many orbits on G𝑘 (𝑉), and (𝐺, 𝜆, 𝑝, 𝑘) is in Table 2;
(ii) 𝑘 = 1, and either V is a composition factor of Lie(𝐺) or 𝐺 = 𝐶ℓ and 𝜆 = 𝜆2, as in Table 3;

(iii) (𝐺, 𝜆, 𝑝, 𝑘) is in Table 4.

Proof. In [11], we find a complete list of modules with finitely many orbits on k-spaces, of which
every self-dual one leads to a 𝑡𝑠-small quadruple. Now assume that (𝐺, 𝜆, 𝑝, 𝑘) is a 𝑡𝑠-small quadruple
where G does not have finitely many orbits on G𝑘 (𝑉). In [26, Thm 3.1], we have a complete list of
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Table 4. Remaining 𝑡𝑠-small quadruples..

G 𝜆 dim V p k Orthogonal?

𝐴1 𝜆1 + 𝑝𝑖𝜆1 4 any 2 yes
𝐴1 3𝜆1 4 ≠ 2, 3 2 no
𝐴1 4𝜆1 5 ≠ 2, 3 1, 2 yes
𝐴2 𝜆1 + 𝜆2 7 3 2, 3 yes
𝐴2 𝜆1 + 𝜆2 8 ≠ 3 4 yes
𝐴5 𝜆3 20 ≠ 2 2 no
𝐴5 𝜆3 20 2 2 yes
𝐵2 2𝜆2 10 any 5 yes
𝐵3 𝜆3 8 any 4 yes
𝐵4 𝜆4 16 any 2, 3, 7, 8 yes
𝐵6 𝜆6 64 2 1 yes
𝐵6 𝜆6 64 ≠ 2 1 no
𝐶3 𝜆2 13 3 2 yes
𝐶3 𝜆2 14 ≠ 3 2 yes
𝐶3 𝜆2 14 ≠ 3 7 yes
𝐷6 𝜆6 32 ≠ 2 2 no
𝐷6 𝜆6 32 2 2 yes
𝐺2 𝜆1 7 ≠ 2 3 yes
𝐹4 𝜆4 25 3 2 yes
𝐹4 𝜆4 26 ≠ 3 1, 2 yes
𝐸7 𝜆7 56 ≠ 2 2 no
𝐸7 𝜆7 56 2 2 yes

such quadruples with 𝑘 = 1 and V orthogonal, while in [27, Prop. 4.1], we have a complete list of such
quadruples for 𝑘 ≥ 2.

The proof follows from combining the three lists of 𝑡𝑠-small quadruples, with the addition of the
self-dual small quadruples where V is symplectic and 𝑘 = 1. �

3. Quadruples with finitely many orbits on G𝑘 (𝑉)

In this section, we handle the 𝑡𝑠-small quadruples where we already have finitely many orbits on all
k-spaces (i.e., the ones listed in Table 2). It follows directly that there is a dense orbit for the action
on totally singular k-spaces, and producing the generic stabilizer reduces to finding a stabilizer of
appropriate dimension.

Proposition 3.1. Let G be one of 𝐴1, 𝐵ℓ with 𝑝 ≠ 2, 𝐶ℓ or 𝐷ℓ . Let 𝜆 = 𝜆1. Then the 𝑡𝑠-small quadruple
(𝐺, 𝜆, 𝑝, 𝑘) has generic 𝑡𝑠-stabilizer 𝑃𝑘 , unless 𝑘 = ℓ − 1 and 𝐺 = 𝐷ℓ , in which case it has generic
𝑡𝑠-stabilizer 𝑃ℓ−1,ℓ .

Proof. Note that if 𝐺 = 𝐷ℓ , by our convention, the values of k are 1, . . . , ℓ − 1, ℓ′, ℓ′′. In all cases, in
the statement of the proposition, the group G is transitive on S𝑘 (𝑉). It is well known that the maximal
parabolic subgroups of a classical group are stabilizers of totally singular subspaces; therefore, these
must be the generic stabilizers. Unless we are in type D and 𝑘 = ℓ − 1, the stabilizer of 𝑦 ∈ S𝑘 (𝑉) is a
conjugate of 𝑃𝑘 . If 𝐺 = 𝐷ℓ and 𝑘 = ℓ − 1, the stabilizer of 𝑦 ∈ S𝑘 (𝑉) is a conjugate of 𝑃ℓ−1,ℓ . �

Proposition 3.2. The generic 𝑡𝑠-stabilizers for the 𝑡𝑠-small quadruples in Table 5 are as given.

Proof. In each of these cases, 𝑘 = 1 and the module V is symplectic. Therefore, S𝑘 (𝑉) = G𝑘 (𝑉), and the
result follows directly from [10]. In the last column of Table 5, we give a reference for each individual
case. �

Proposition 3.3. Let 𝐺 = 𝐴1 and 𝜆 = 𝜆1 + 𝑝𝑖𝜆1 with 𝑝 > 0 and 𝑖 > 0. Then the quadruple (𝐺, 𝜆, 𝑝, 1)
has generic 𝑡𝑠-stabilizer 𝑇1.
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Table 5. 𝑡𝑠-small quadruples with 𝑘 = 1 and V symplectic..

G 𝜆 p k CSk (V) Reference

𝐴1 3𝜆1 > 3 1 𝑆𝑦𝑚(3) [10, Prop. 5.6]
𝐴5 𝜆3 ≠ 2 1 𝐴2

2.Z2 [10, Prop. 5.15]
𝐶3 𝜆3 ≠ 2 1 𝐴2.Z2 [10, Prop. 5.15]
𝐵5 𝜆5 ≠ 2 1 𝐴4.Z2 [10, Prop. 5.15]
𝐷6 𝜆6 ≠ 2 1 𝐴5.Z2 [10, Prop. 5.15]
𝐺2 𝜆1 2 1 𝑈5𝐴1𝑇1 [10, Prop. 5.22]
𝐸7 𝜆7 ≠ 2 1 𝐸6.Z2 [10, Prop. 5.15]

Proof. Let 𝑞 = 𝑝𝑖 and let 𝜎 = 𝜎𝑞 be the standard Frobenius morphism acting on K as 𝑡 ↦→ 𝑡𝜎 = 𝑡𝑞

and on G as 𝑥±𝛼1 (𝑡) ↦→ 𝑥±𝛼1 (𝑡
𝑞). Let 𝐺 = 𝑆𝐿2 (𝐾). We can view V as the space 𝑀2×2 (𝐾) of 2 × 2

matrices on which G acts by 𝑔.𝑣 = 𝑔𝑣(𝑔𝜎)𝑇 for 𝑣 ∈ 𝑀2×2 (𝐾) and 𝑔 ∈ 𝐺. Since G preserves the
determinant of v for all 𝑣 ∈ 𝑀2×2 (𝐾), we can take the quadratic form 𝑄 : 𝑉 → 𝐾 as 𝑄(𝑣) = det 𝑣.
The singular 1-spaces of V are therefore the 1-spaces spanned by matrices with determinant 0. Let y

be the singular 1-space spanned by
(
0 1
0 0

)
. Then

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝑦 if and only if 𝑏 = 𝑐 = 0 and 𝑑 = 𝑎−1.

Since dim 𝐺 − dimS1 (𝑉) = 1 = dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on S1 (𝑉).
Therefore, 𝐶S1 (𝑉 ) = 𝑇1. �

Proposition 3.4. Let 𝐺 = 𝐴2 and 𝜆 = 𝜆1 + 𝜆2 with 𝑝 = 3. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic
𝑡𝑠-stabilizer 𝑈2𝑇1.

Proof. By [27, Lemma 5.5], there is 𝑦 ∈ S1 (𝑉) with 𝐺𝑦 = 𝑈2𝑇1. Since dim 𝐺 − dimS1 (𝑉) = 8 − 5 =
dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on S1 (𝑉). Therefore, 𝐶S1 (𝑉 ) = 𝑈2𝑇1. �

Proposition 3.5. Let 𝐺 = 𝐴5 and 𝜆 = 𝜆3 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic
𝑡𝑠-stabilizer 𝑈8𝐴2𝑇1.

Proof. By [24, 2.3.1(II)], there is 𝑦 ∈ S1 (𝑉) with 𝐺𝑦 = 𝑈8𝐴2𝑇1. Since dim 𝐺 − dimS1 (𝑉) = 35− 18 =
dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on S1 (𝑉). Therefore, 𝐶S1 (𝑉 ) = 𝑈8𝐴2𝑇1. �

Proposition 3.6. Let 𝐺 = 𝐵3, 𝜆 = 𝜆3. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-stabilizer 𝑈6𝐴2𝑇1.

Proof. By [17, Thm B], the group G is transitive on S1 (𝑉). The generic stabilizer is the 𝑃3-parabolic
(i.e. 𝐶S1 (𝑉 ) = 𝑈6𝐴2𝑇1). �

Proposition 3.7. Let 𝐺 = 𝐵3, 𝜆 = 𝜆3 with 𝑘 = 2 or 𝑘 = 3. Then the quadruple (𝐺, 𝜆, 𝑝, 𝑘) has generic
𝑡𝑠-stabilizer 𝑈5𝐴1𝐴1𝑇1 if 𝑘 = 2 and 𝑈3𝐴2𝑇1 if 𝑘 = 3.

Proof. By [17, Thm B], the group G is transitive on S ′
4(𝑉). Let 𝑊 ∈ S ′

4 (𝑉). The group G is the group
of fixed points of a triality automorphism of 𝐷4 = 𝐶𝑙 (𝑉). Therefore, 𝐺𝑊 is isomorphic to the generic
stabilizer for the action on S1(𝑉), i.e. 𝑈6𝐴2𝑇1. Then it is easy to see ([11, Lemma 3.5]) that 𝐺𝑊 acts on
G2 (𝑊) with two orbits, one with stabilizer 𝑈5𝐴1𝐴1𝑇1 and one with stabilizer 𝑈7𝐴1𝐴1𝑇1. Since every
totally singular 2-space is contained in an element of S ′

4 (𝑉), we conclude that there are at most two
G-orbits on S2 (𝑉). Since dim 𝐺 − dimS2(𝑉) = 12, there must be a 12-dimensional stabilizer for the
G-action on S2 (𝑉). The only possibility is therefore 𝐶S2 (𝑉 ) = 𝑈5𝐴1𝐴1𝑇1.

Similarly, 𝐺𝑊 acts on G3 (𝑊) with two orbits, one with stabilizer 𝑈3𝐴2𝑇1 and one with stabilizer
𝑈8𝐴1𝑇2. Since dim 𝐺 − dim𝑈3𝐴2𝑇1 = dimS3(𝑉), we conclude that 𝐶S3 (𝑉 ) = 𝑈3𝐴2𝑇1. �

Proposition 3.8. Let 𝐺 = 𝐵ℓ , 𝜆 = 𝜆ℓ with ℓ = 4 or ℓ = 5, with 𝑝 = 2 if ℓ = 5. Then the quadruple
(𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-stabilizer 𝑈7𝐺2𝑇1 if ℓ = 4 and 𝑈14𝐵2𝑇1 if ℓ = 5.

Proof. By [12, Prop. 5, Prop. 6] (when 𝑝 ≠ 2) and [11, Lemma 2.11] (when 𝑝 = 2), there is only one
orbit onG1 (𝑉) with a 22-dimensional stabilizer when ℓ = 4, with structure𝑈7𝐺2𝑇1, and only one orbit on
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G1 (𝑉) with 25-dimensional stabilizer when ℓ = 5, with structure𝑈14𝐵2𝑇1. Since dim 𝐺−dimS1(𝑉) = 22
when ℓ = 4 and 25 when ℓ = 4, we conclude that 𝐶S1 (𝑉 ) = 𝑈7𝐺2𝑇1 when ℓ = 4 and 𝑈14𝐵2𝑇1 when
ℓ = 5. �

Proposition 3.9. Let 𝐺 = 𝐶3, 𝜆 = 𝜆2 with 𝑝 = 3. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer 𝑈6𝐴1𝑇1.

Proof. By [27, Lemma 5.15], there is 𝑦 ∈ S1 (𝑉) with 𝐺𝑦 = 𝑈6𝐴1𝑇1. Since dim 𝐺 − dimS1(𝑉) =
21 − 11 = dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on S1 (𝑉). Therefore, 𝐶S1 (𝑉 ) =
𝑈6𝐴1𝑇1. �

Proposition 3.10. Let 𝐺 = 𝐷6, 𝜆 = 𝜆6 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer 𝑈14𝐵3𝑇1.

Proof. By the proof of [11, Lemma 2.11], there is only one orbit on G1 (𝑉) with a 36-dimensional
stabilizer, with structure 𝑈14𝐵3𝑇1. Since dim 𝐺 − dimS1 (𝑉) = 66 − 30 = dim 𝐺𝑦 , the element y is in a
dense orbit for the G-action on S1(𝑉). Therefore, 𝐶S1 (𝑉 ) = 𝑈14𝐵3𝑇1. �

Proposition 3.11. Let 𝐺 = 𝐺2, 𝜆 = 𝜆1 with 𝑝 ≠ 2. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer 𝑈5𝐴1𝑇1.

Proof. By [17, Thm. A], G is transitive on singular 1-spaces of V. Therefore, a representative can be
taken to be the 1-space spanned by the highest weight vector, with stabilizer 𝑃1 = 𝑈5𝐴1𝑇1. �

Proposition 3.12. Let 𝐺 = 𝐺2,𝜆 = 𝜆1. Then the quadruple (𝐺, 𝜆, 𝑝, 2) has generic 𝑡𝑠-stabilizer𝑈3𝐴1𝑇1.

Proof. Let 𝜇1, 𝜇2, 𝜇3 be the positive weights 2𝛼1 + 𝛼2, 𝛼1 + 𝛼2, 𝛼1, respectively. Given weight vectors
𝑣𝜇1 , 𝑣−𝜇2 , let 𝑦 := 〈𝑣𝜇1 , 𝑣−𝜇2〉, an element of S2 (𝑉). Since 𝑛2𝑛1𝑛2𝑛1𝑛2.〈𝑣𝜇1〉 = 〈𝑣−𝜇2〉, we can easily
determine that 𝐺 〈𝑣𝜇1 〉

∩ 𝐺 〈𝑣−𝜇2 〉
= 𝑃1 ∩ 𝑃𝑛2𝑛1𝑛2𝑛1𝑛2

1 = 𝑈3𝑇2, by checking which root subgroups are in
common between 𝑃1 and 𝑃𝑛2𝑛1𝑛2𝑛1𝑛2

1 . Therefore, 𝐺𝑦 ≤ 𝑈3𝐴1𝑇1. Since dimS2 (𝑉) = 7 (in both cases
𝑝 ≠ 2 and 𝑝 = 2), the minimum dimension of the stabilizer of any totally singular 2-space is 7. Therefore,
𝐺𝑦 = 𝑈3𝐴1𝑇1 = 𝐶S2 (𝑉 ) . �

Proposition 3.13. Let 𝐺 = 𝐺2, 𝜆 = 𝜆1 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 3) has generic 𝑡𝑠-
stabilizer 𝐴2.

Proof. By the proof of [11, Lemma 3.4], there is an 𝐴2-subgroup which is the stabilizer of 𝑦 ∈ S3 (𝑉).
Since dim 𝐺 − dimS3 (𝑉) = 14 − 6 = dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on
S3 (𝑉). Therefore, 𝐶S3 (𝑉 ) = 𝐴2. �

Proposition 3.14. Let 𝐺 = 𝐹4, 𝜆 = 𝜆4 with 𝑝 = 3. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer 𝑈14𝐺2𝑇1.

Proof. By [6, Lemma 4.13], there is 𝑦 ∈ S1 (𝑉) such that 𝐺𝑦 = 𝑈14𝐺2𝑇1. Since dim 𝐺 − dimS1 (𝑉) =
29 = dim 𝐺𝑦 , the element y is in a dense orbit for the G-action on S1(𝑉). Therefore, 𝐶S1 (𝑉 ) =
𝑈14𝐺2𝑇1. �

Proposition 3.15. Let 𝐺 = 𝐸7, 𝜆 = 𝜆7 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer 𝑈26𝐹4𝑇1.

Proof. By [16, Lemma 4.3], there is only one orbit on G1 (𝑉) with a 79-dimensional stabilizer, with
structure 𝑈26𝐹4𝑇1. Since dim 𝐺 − dimS1 (𝑉) = 133 − 54 = dim𝑈26𝐹4𝑇1, we must have 𝐶S1 (𝑉 ) =
𝑈26𝐹4𝑇1. �
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4. Infinite families of quadruples

In this section, we handle the cases that appear in Table 3. The following two propositions provide a
reduction to a finite list of cases.

Proposition 4.1. Let V be a composition factor of Lie(𝐺), with 𝑝 ≠ 2 if 𝐺 = 𝐵ℓ or 𝐺 = 𝐶ℓ , and assume
that the 0-weight space 𝑉0 is at least 3-dimensional. Then 𝐶S1 (𝑉 ) = 𝐶G1 (𝑉 ) .

Proof. The composition factors of Lie(𝐺) are listed in [19, Prop. 1.10]. By assumption on V, we have
𝑉 = Lie(𝐺)/𝑍 , where Z is the centre of Lie(𝐺). If 𝑝 = 2, and 𝐺 = 𝐴ℓ with ℓ ≡ 1 mod 4, or 𝐺 = 𝐷ℓ

with ℓ ≡ 2 mod 4, or 𝐺 = 𝐸7, then the module V is symplectic and S1(𝑉) = G1 (𝑉). In all other cases,
the module V is orthogonal. The proof closely mimics [10, Lemma 4.5(ii)], but in the interest of clarity,
it is fully reproduced with the appropriate changes. Note that our setup corresponds to the specific case
𝜃 = 1 in [10, Lemma 4.5(ii)], which in particular means 𝐺 = 𝐻 in the proof of [10, Lemma 4.5(ii)]. Let

𝑊‡ = {𝑤 ∈ 𝑊 : ∃𝜉 ∈ 𝐾∗,∀𝑣 ∈ 𝑉0, 𝑤.𝑣 = 𝜉𝑣},

and let 𝑁‡ be the pre-image of 𝑊‡ under the quotient map 𝑁 → 𝑊 . Let Y be S1 (𝑉0) and let 𝑌1 be the
subset of Y consisting of 1-spaces of 𝑉0 spanned by images of regular semisimple elements in Lie(𝑇).
Since Z does not contain regular semisimple elements, the set 𝑌1 is nonempty, and thus dense in Y.
Since dim𝑉0 ≥ 3, the span of Y is the full 𝑉0. Therefore, any element in N which fixes all 𝑦 ∈ 𝑌 must
be in 𝑁‡. Thus, given 𝑤 ∈ 𝑊 \𝑊‡, take 𝑛 ∈ 𝑁 with 𝑛𝑇 = 𝑤; the set of elements of Y fixed by n is a
proper closed subvariety of Y. Let 𝑌2 be the complement of the union of these subvarieties as w runs
over 𝑊 \𝑊‡. Set 𝑌 = 𝑌1 ∩ 𝑌2, a dense open subset of Y.

Let 𝑦 ∈ 𝑌 . By [11, Lemma 2.1], two elements of G1 (𝑉0) are in the same G-orbit if and only if they
are in the same W-orbit. Therefore, 𝐺.𝑦 ∩ 𝑌 is finite and dim(𝐺.𝑦 ∩ 𝑌 ) = 0. Also, since y is spanned
by a regular semisimple element, we have 𝐺0

𝑦 = 𝑇 , and therefore, dim(𝐺.𝑦) = dim 𝐺 − dim𝑇 . Finally,
note that since 𝑉 = Lie(G)/𝑍 , we have (𝐶𝐺 (𝑉0))

0 = 𝑇 , and therefore, dim𝑉 − dim𝑉0 = dim 𝐺 − dim𝑇
(see the proof of [11, Lemma 2.4]). Thus,

dimS1(𝑉) − dim(𝐺.𝑦) = dim𝑉 − 2 − dim(𝐺.𝑦) =

= dim 𝐺 − dim𝑇 + dim𝑉0 − 2 − dim(𝐺.𝑦) =

= dim𝑌 − dim(𝐺.𝑦 ∩ 𝑌 ) = dim𝑌 + codim Tran𝐺 (𝑦,𝑌 ) − dim(𝐺.𝑦),

where the last step uses Lemma 2.13. By definition, this proves that y is Y-exact. The conditions of
Lemma 2.15 hold and 𝐶S1 (𝑉 ) = 𝑇.𝑊‡ = 𝐶G1 (𝑉 ) . �

Proposition 4.2. Let 𝐺 = 𝐶ℓ , 𝜆 = 𝜆2. Furthermore, assume that the 0-weight space 𝑉0 is at least
3-dimensional. Then 𝐶S1 (𝑉) = 𝐶G1 (𝑉) = 𝐴ℓ

1 .

Proof. If 𝑝 = 2 and ℓ ≡ 2 mod 4, then the module V is symplectic and S1(𝑉) = G1(𝑉). Therefore,
assume that when 𝑝 = 2, we have ℓ � 2 mod 4, which implies that the module V is orthogonal.
We use the setup of [10, Prop. 5.13] combined with the approach of [10, Lemma 4.5(ii)], which
we saw in action in Proposition 4.1. Inside

∧2 𝑉𝑛𝑎𝑡 , we have submodules 𝑋1 = {
∑

𝑖< 𝑗 𝜌𝑖 𝑗𝑒𝑖 ∧ 𝑒 𝑗 +∑
𝑖< 𝑗 𝜎𝑖 𝑗 𝑓𝑖 ∧ 𝑓 𝑗 +

∑
𝑖, 𝑗 𝜏𝑖 𝑗𝑒𝑖 ∧ 𝑓 𝑗 :

∑
𝑖 𝜏𝑖𝑖 = 0} and 𝑋2 = 〈

∑
𝑖 𝑒𝑖 ∧ 𝑓𝑖〉. If 𝑝 � ℓ then 𝑉 = 𝑋1, otherwise

𝑋2 < 𝑋1 and 𝑉 = 𝑋1/𝑋2. In all cases, 𝑉 = 𝑋1/(𝑋1 ∩ 𝑋2). Let 𝑥𝑖 = 𝑒𝑖 ∧ 𝑓𝑖 . The 0-weight space is
𝑉0 = {

∑
𝑎𝑖𝑥𝑖 + (𝑋1 ∩ 𝑋2) :

∑
𝑎𝑖 = 0}. Then G fixes a nondegenerate quadratic form on V such that

𝑄(𝑎𝑖𝑥𝑖 + (𝑋1 ∩ 𝑋2)) =
∑

𝑎2
𝑖 +

∑
𝑖< 𝑗 𝑎𝑖𝑎 𝑗 (see [9, p. 8.1.2] when 𝑝 = 2). Let 𝑌 = S1(𝑉0) and let

𝑌1 =
{
〈𝑣〉 ∈ 𝑌, 𝑣 =

∑
𝑎𝑖𝑥𝑖 + (𝑋1 ∩ 𝑋2) : 𝑎𝑖 ≠ 𝑎 𝑗 if 𝑖 ≠ 𝑗

}
,

a dense subset of Y. Then 𝑦 ∈ 𝑌1 is fixed by 𝐶 = 𝐴ℓ
1 =

⋂
𝑖 𝐺 〈𝑒𝑖 , 𝑓𝑖 〉 . Any minimal connected overgroup of

C in G is isomorphic to 𝐶2𝐴
ℓ−2
1 , which does not fix 𝑦 ∈ 𝑌1 because of the condition on the coefficients.
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Therefore, for any 𝑦 ∈ 𝑌1, we have (𝐺𝑦)
0 = 𝐶. Let 𝑁 = 𝑁𝐺 (𝐶)/𝐶, a group isomorphic to 𝑆𝑦𝑚(ℓ). Let

𝑁‡ = {𝑛 ∈ 𝑁 : ∃𝜉 ∈ 𝐾∗,∀𝑣 ∈ 𝑉0, 𝑛.𝑣 = 𝜉𝑣}.

Now assume that 𝑛 ∈ 𝑁 fixes all 𝑦 ∈ 𝑌 . Since dim𝑉0 ≥ 3, the span of Y is the full 𝑉0. Therefore, any
element in N which fixes all 𝑦 ∈ 𝑌 must be in 𝑁‡. Thus, the set of elements fixed by 𝑛 ∈ 𝑁 \ 𝑁‡ is a
proper closed subvariety of Y. Let 𝑌2 be the complement of the union of these subvarieties as n runs
over 𝑁 \ 𝑁‡. Set 𝑌 = 𝑌1 ∩ 𝑌2, a dense open subset of Y. Finally, note that the proof of [10, Prop. 5.13]
shows that 𝑁‡ = 1. Let 𝑦 ∈ 𝑌 . Two elements of G1 (𝑉0) are in the same G-orbit if and only if they are
in the same N-orbit, and therefore, dim(𝐺.𝑦 ∩ 𝑌 ) = 0. Also, dim𝑉 − dim𝑉0 = dim 𝐺 − dim𝐶, by the
proof of [11, Lemma 2.4]. Therefore, as in Proposition 4.1, we get

dimS1(𝑉) − dim(𝐺.𝑦) = dim𝑉 − 2 − dim(𝐺.𝑦) =

= dim 𝐺 − dim𝐶 + dim𝑉0 − 2 − dim(𝐺.𝑦) =

= dim𝑌 − dim(𝐺.𝑦 ∩ 𝑌 ),

proving that y is Y-exact. The conditions of Lemma 2.15 hold and 𝐶S1 (𝑉 ) = 𝐶.𝑁‡ = 𝐶 = 𝐴ℓ
1. �

Proposition 4.3. Let 𝐺 = 𝐵2 and 𝜆 = 2𝜆2 with 𝑝 ≠ 2, or 𝐺 = 𝐴2 and 𝜆 = 𝜆1 + 𝜆2 with 𝑝 ≠ 3, or
𝐺 = 𝐴3 and 𝜆1 + 𝜆3 with 𝑝 = 2, or 𝐺 = 𝐺2 and 𝜆 = 𝜆2 with 𝑝 ≠ 3. Then 𝐶S1 (𝑉 ) is respectively 𝑇2.Z4,
𝑇2.Z3, 𝑇3.𝐴𝑙𝑡 (4), 𝑇2.Z6.
Proof. In all of these cases, the module V is a composition factor of Lie(𝐺) and the 0-weight space is
2-dimensional, and we will show that the generic stabilizer is the stabilizer of one of the two singular
1-spaces of 𝑉0.

Let 𝐺 = 𝐵2 and 𝜆 = 2𝜆2 with 𝑝 ≠ 2. Then 𝑉 = Lie(𝐺), and we can take 𝑉0 = {diag(𝑎, 𝑏, 0,−𝑏,−𝑎) :
𝑎, 𝑏 ∈ 𝐾}. Since 𝑝 ≠ 2, the group G fixes the nondegenerate quadratic form Q induced by the
Killing form. Let 𝑣 = diag(𝑎, 𝑏, 0,−𝑏,−𝑎) be a singular element of 𝑉0. Then since 𝑄(𝑣) = 0, we
know that 𝑎2 + 𝑏2 = 0. Since v is regular semisimple, we must have (𝐺 〈𝑣 〉)

0 = 𝑇2. We then find that
𝑊〈𝑣 〉 = 〈𝑤〉, where w is an element of order 4 sending diag(𝑎, 𝑏, 0,−𝑏,−𝑎) ↦→ diag(𝑏,−𝑎, 0, 𝑎,−𝑏).
Since dim 𝐺 − dimS1(𝑉) = 2 = dim 𝐺 〈𝑣 〉 , we conclude that 𝐶S1 (𝑉 ) = 𝑇2.Z4.

Let 𝐺 = 𝐴2 and 𝜆 = 𝜆1+𝜆2 with 𝑝 ≠ 3. Then𝑉 = Lie(𝐺), and we can take𝑉0 = {diag(𝑎, 𝑏,−𝑎−𝑏) :
𝑎, 𝑏 ∈ 𝐾}. If 𝑝 ≠ 2, a nondegenerate symmetric bilinear form preserved by G is given by the Killing
form. If 𝑝 = 2, we find an explicit description of a nondegenerate quadratic form preserved by G in [3,
§5.1]. Let 𝑣 = diag(𝑎, 𝑏,−𝑎 − 𝑏) be a singular element of 𝑉0, which implies that 𝑎2 + 𝑏2 + 𝑎𝑏 = 0. Since
v is regular semisimple, we must have (𝐺 〈𝑣 〉)

0 = 𝑇2. As 𝑎2 + 𝑏2 + 𝑎𝑏 = 0, we then find that 𝑊〈𝑣 〉 = 〈𝑤〉,
where w is a 3-cycle in W. Since dim 𝐺 − dimS1 (𝑉) = 2 = dim 𝐺 〈𝑣 〉 , we conclude that 𝐶S1 (𝑉 ) = 𝑇2.Z3.

Let 𝐺 = 𝐴3 and 𝜆 = 𝜆1 + 𝜆3 with 𝑝 = 2. Then 𝑉 = 𝔰𝔩4/〈𝐼〉, where I is the identity 4 × 4 matrix, and
we can take 𝑉0 = {diag(𝑎, 𝑏, 𝑎 + 𝑏, 0) + 〈𝐼〉 : 𝑎, 𝑏 ∈ 𝐾}. Let 𝑣 = diag(𝑎, 𝑏, 𝑎 + 𝑏, 0) + 〈𝐼〉 be a singular
element of𝑉0, which implies that 𝑎2+𝑏2+𝑎𝑏 = 0 (again see [3, §5.1]). Since diag(𝑎, 𝑏, 𝑎+𝑏, 0) is regular
semisimple, we must have (𝐺 〈𝑣 〉)

0 = 𝑇3. As 𝑎2 + 𝑏2 + 𝑎𝑏 = 0, we then find that 𝑊〈𝑣 〉 = 〈𝜏1, 𝜏2, 𝑤〉,
where w is a 3-cycle in W sending diag(𝑎, 𝑏, 𝑎 + 𝑏, 0) ↦→ diag(𝑎 + 𝑏, 𝑎, 𝑏, 0), 𝜏1 is an element of
order 2 sending diag(𝑎, 𝑏, 𝑎 + 𝑏, 0) ↦→ diag(0, 𝑎 + 𝑏, 𝑏, 𝑎) and 𝜏2 is an element of order 2 sending
diag(𝑎, 𝑏, 𝑎 + 𝑏, 0) ↦→ diag(𝑎 + 𝑏, 0, 𝑎, 𝑏). Since dim 𝐺 − dimS1 (𝑉) = 3 = dim 𝐺 〈𝑣 〉 , we conclude that
𝐶S1 (𝑉 ) = 𝑇3.𝐴𝑙𝑡 (4).

Let 𝐺 = 𝐺2 and 𝜆 = 𝜆2 with 𝑝 ≠ 3. Then 𝑉 = Lie(𝐺). We view G as a subgroup of 𝐵3, so that we can
take𝑉0 = {diag(𝑎, 𝑏,−𝑎−𝑏, 0,−𝑎,−𝑏, 𝑎+𝑏) : 𝑎, 𝑏 ∈ 𝐾}. Let 𝑣 = diag(𝑎, 𝑏,−𝑎−𝑏, 0,−𝑎,−𝑏, 𝑎+𝑏) be
a singular element of𝑉0, which implies that 𝑎2+𝑏2+𝑎𝑏 = 0 (see [3, §5.1]). Since v is regular semisimple,
we must have (𝐺 〈𝑣 〉)

0 = 𝑇2. As 𝑎2 + 𝑏2 + 𝑎𝑏 = 0, we then find that 𝑊〈𝑣 〉 = 〈𝜏, 𝑤〉, where 𝜏 is an element
of order 2 sending 𝑣 ↦→ −𝑣 and w is an element of order 3 sending diag(𝑎, 𝑏,−𝑎−𝑏, 0, 𝑎+𝑏,−𝑏,−𝑎) ↦→
diag(−𝑎 − 𝑏, 𝑎, 𝑏, 0,−𝑏,−𝑎, 𝑎 + 𝑏). Since dim 𝐺 − dimS1 (𝑉) = 2 = dim 𝐺 〈𝑣 〉 , we conclude that
𝐶S1 (𝑉 ) = 𝑇2.Z6. �
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Proposition 4.4. Let 𝐺 = 𝐶3 and 𝜆 = 𝜆2 with 𝑝 ≠ 3, or 𝐺 = 𝐶4 and 𝜆 = 𝜆2 with 𝑝 = 2, or 𝐺 = 𝐷4 and
𝜆 = 𝜆2 with 𝑝 = 2. Then 𝐶S1 (𝑉 ) is respectively 𝐴3

1.Z3, 𝐴4
1.𝐴𝑙𝑡 (4), 𝑇4.(23.𝐴𝑙𝑡 (4)).

Proof. In all of these cases, the module V is a composition factor of
∧2 𝑉𝑛𝑎𝑡 , the 0-weight space is

2-dimensional, and the generic stabilizer is the stabilizer of one of the two singular 1-spaces of 𝑉0. Let
𝑋1, 𝑋2 be as in the proof of Proposition 4.2, so that 𝑉 = 𝑋1/𝑋2.

Let 𝐺 = 𝐶3 and 𝜆 = 𝜆2 with 𝑝 ≠ 3. Then 𝑋2 = 0, and we can take

𝑉0 = {𝑎𝑒1 ∧ 𝑓1 + 𝑏𝑒2 ∧ 𝑓2 − (𝑎 + 𝑏)𝑒3 ∧ 𝑓3 : 𝑎, 𝑏, ∈ 𝐾}.

Let 𝑣 = 𝑎𝑒1 ∧ 𝑓1 + 𝑏𝑒2 ∧ 𝑓2 − (𝑎 + 𝑏)𝑒3 ∧ 𝑓3 be a singular element of 𝑉0. Then since 𝑄(𝑣) = 0, we know
that 𝑎2 + 𝑏2 + 𝑎𝑏 = 0. Since 𝑎 ≠ 𝑏, we must have (𝐺 〈𝑣 〉)

0 = 𝐴3
1 as in the proof of Proposition 4.2. We

then find that 𝑊〈𝑣 〉 = 〈𝑤〉, where w is a 3-cycle in W. Since dim 𝐺 − dimS1 (𝑉) = 9 = dim 𝐺 〈𝑣 〉 , we
conclude that 𝐶S1 (𝑉 ) = 𝐴3

1.Z3.
The remaining two cases are entirely similar, with the result for 𝐷4 being derived from 𝐶4, since

𝑉𝐷4 (𝜆2) = 𝑉𝐶4 (𝜆2) ↓ 𝐷4 when 𝑝 = 2. �

5. Remaining quadruples

This section is where we deal with the remaining cases (i.e., all the possibilities listed in Table 4).

Proposition 5.1. The generic 𝑡𝑠-stabilizers for the 𝑡𝑠-small quadruples in Table 6 are as given.

Proof. In each of these cases, except for (𝐵6, 𝜆6, 𝑝, 1) with 𝑝 ≠ 2, it was proven in [26] or [27] that
G has a dense orbit on S𝑘 (𝑉). The structure of the generic stabilizer is as given in [26][27], with the
appropriate reference listed in Table 6. Note that for the case (𝐵6, 𝜆6, 2, 1), Proposition 5.2 clarifies the
lackluster explanation found in [26].

Finally, in the case (𝐵6, 𝜆6, 𝑝, 1) with 𝑝 ≠ 2, the module V is symplectic, and we haveS𝑘 (𝑉) = G𝑘 (𝑉),
with the result following from [10]. �

Proposition 5.2. Let 𝐺 = 𝐵6, 𝜆 = 𝜆6 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 1) has generic 𝑡𝑠-
stabilizer (𝑈5𝐴1)

2.Z2.

Proof. This result is already listed in [26, Thm. 1], albeit without a full explanation. The quadruple
(𝐷5, 𝜆5, 2, 1) has generic stabilizer (𝐺2𝐺2).Z2 by [10]. By [26, Lemma 5.17], we deduce that 𝐶S1 (𝑉 )

is isomorphic to the generic stabilizer of the action of (𝐺2𝐺2).Z2 on 𝑉𝐺2 (𝜆1) ⊕ 𝑉𝐺2 (𝜆1). Since 𝐺2
is transitive on nonzero vectors of 𝑉𝐺2 (𝜆1), the generic stabilizer for this action is easily seen to be
(𝑈5𝐴1)

2.Z2. �

Table 6. Remaining 𝑡𝑠-small quadruples with known generic 𝑡𝑠-stabilizer..

G 𝜆 p k CSk (V) Reference

𝐴1 𝜆1 + 𝑝𝑖𝜆1 < ∞ 2 𝑈1𝑇1 [27, Prop. 5.1]
𝐴1 3𝜆1 > 3 2 𝐴𝑙𝑡 (4) [27, Prop. 5.2]
𝐴1 4𝜆1 > 3 1 𝐴𝑙𝑡 (4) [26, Prop. 4.1]
𝐴1 4𝜆1 > 3 2 𝑆𝑦𝑚(3) [27, Prop. 5.2]
𝐴2 𝜆1 + 𝜆2 3 2 𝑈1 [27, Prop. 5.3]
𝐵4 𝜆4 2 2 𝑈5𝐴1𝐴1 [27, Prop. 5.55]
𝐵4 𝜆4 ≠ 2 2 𝐴1 (𝐴2.Z2) [27, Prop. 5.55]
𝐵6 𝜆6 ≠ 2 1 𝐴2

2.Z2 [10, Prop. 5.17]
𝐵6 𝜆6 2 1 (𝑈5𝐴1)

2.Z2 Proposition 5.2
𝐶3 𝜆2 3 2 𝑈1 (𝑇1.Z2) [27, Prop. 5.14]
𝐹4 𝜆4 3 2 𝑈1 (𝐴2.Z2) [27, Prop. 5.29]
𝐹4 𝜆4 ≠ 3 1 𝐷4.Z3 [26, Prop. 6.6]
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Proposition 5.3. Let 𝐺 = 𝐺2, 𝜆 = 𝜆1 with 𝑝 ≠ 2. Then the quadruple (𝐺, 𝜆, 𝑝, 3) has generic 𝑡𝑠-
stabilizer 𝐴2.

Proof. As in Proposition 3.13, we know that there is 𝑦 ∈ S3 (𝑉) with 𝐺𝑦 = 𝐴2. Since dim 𝐺 − dim 𝐴2 =
6 = dimS3 (𝑉), we conclude that 𝐶S3 (𝑉 ) = 𝐴2. �

We now relax slightly the condition that the group acting should be simple: we allow a product of
isomorphic simple groups, possibly extended by a graph automorphism. If the connected group is of
the form 𝐺1𝐺2𝐺3, we write 𝜆 = 𝜇1 ⊗ 𝜇2 ⊗ 𝜇3 to mean 𝑉𝐺 (𝜆) = 𝑉𝐺1 (𝜇1) ⊗ 𝑉𝐺2 (𝜇2) ⊗ 𝑉𝐺3 (𝜇3), where
each 𝜇𝑖 is a dominant weight for 𝐺𝑖 .

Lemma 5.4. Let 𝐺 = 𝐴3
1, 𝜆 = 𝜆1 ⊗ 𝜆1 ⊗ 𝜆1 with 𝑝 = 2. Then there is an open dense subset 𝑌 of S2(𝑉)

such that for all 𝑦1 ≠ 𝑦2 ∈ 𝑌 , we have 𝐺𝑦1 � 𝐺𝑦2 = 𝑈1.Z2, and 𝐺𝑦1 is not conjugate to 𝐺𝑦2 .

Proof. This is proved in [27, Lemma 5.69]. �

Lemma 5.5. Let 𝐺 = 𝐴3
1, 𝜆 = 𝜆1 ⊗ 𝜆1 ⊗ 𝜆1 with 𝑝 ≠ 2. The quadruple (𝐺, 𝜆, 𝑝, 2) has generic 𝑡𝑠-

stabilizer Z2 × Z2.

Proof. We can recover this result by a slight change of the proof of [10, Prop. 6.7]. Let 𝐺 = 𝑆𝐿2 (𝐾)3

with basis 𝑒, 𝑓 for 𝑉𝑛𝑎𝑡 , so that 𝑉 = 𝑉𝑛𝑎𝑡 ⊗𝑉𝑛𝑎𝑡 ⊗𝑉𝑛𝑎𝑡 . Then, like in the proof of [10, Prop. 6.7], given
a = (𝑎1, 𝑎2, 𝑎3, 𝑎4), let

𝑣 (1) = 𝑎1𝑒 ⊗ 𝑒 ⊗ 𝑒 + 𝑎2𝑒 ⊗ 𝑓 ⊗ 𝑓 + 𝑎3 𝑓 ⊗ 𝑒 ⊗ 𝑓 + 𝑎4 𝑓 ⊗ 𝑓 ⊗ 𝑒,

𝑣 (2) = 𝑎1 𝑓 ⊗ 𝑓 ⊗ 𝑓 + 𝑎2 𝑓 ⊗ 𝑒 ⊗ 𝑒 + 𝑎3𝑒 ⊗ 𝑓 ⊗ 𝑒 + 𝑎4𝑒 ⊗ 𝑒 ⊗ 𝑓 .

Then 𝑦a := 〈𝑣 (1) , 𝑣 (2) 〉 is totally singular if and only if 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 = 0. In the proof of [10, Prop.
6.7], they then proceed to define 𝑌 as a dense subset of 𝑌 := {𝑦a : a ≠ (0, 0, 0, 0)} by requiring certain
polynomials on the coefficients to be nonzero. One of these conditions is that 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4 ≠ 0.

However, this is later only used for the case 𝑝 = 2. Therefore, we can modify the definition of 𝑌 in the
proof of [10, Prop. 6.7] and still end up with an open dense subset of G2 (𝑉) where all stabilizers are
conjugate to Z2.Z2. The difference is that now this set will also contain totally singular 2-spaces, and
therefore, 𝐶S2 (𝑉 ) = 𝐶G2 (𝑉 ) = Z2.Z2. �

Proposition 5.6. Let 𝐺 = 𝐸7 and 𝜆 = 𝜆7, or 𝐺 = 𝐷6 and 𝜆 = 𝜆6, or 𝐺 = 𝐴5 and 𝜆 = 𝜆3. Then the
quadruple (𝐺, 𝜆, 𝑝, 2) has no generic 𝑡𝑠-stabilizer if 𝑝 = 2 but has a semi-generic 𝑡𝑠-stabilizer. If 𝑝 ≠ 2,
we have 𝐶S2 (𝑉 ) = 𝐶G2 (𝑉 ) .

Proof. We shall describe how to use the proof of [10, Proposition 6.28] to reach the conclusion. In [10,
Proposition 6.28], the authors determine the generic stabilizer for the G-action on all 2-spaces. They
do so in the following manner. They define a certain 8-space 𝑉[0] spanned by pairs of opposite weight
vectors. This 8-space is the fixed point space of a subgroup A of G, where 𝐴 = 𝐷4, 𝐴

3
1, 𝑇2 according to

whether 𝐺 = 𝐸7, 𝐷6, 𝐴5, respectively. They define a dense subset 𝑌1 of 𝑌 := G2 (𝑉[0] ) with the property
that for any 𝑦 ∈ 𝑌 , we have Tran𝐺 (𝑦,𝑌 ) = 𝐴𝐴3

1.𝑆𝑦𝑚(3), where 𝐴3
1 acts on 𝑉[0] as 𝜆1 ⊗ 𝜆1 ⊗ 𝜆1. The set

𝑌1 is defined by requiring certain expressions in terms of the coefficients of the given 𝑉[0] basis to be
nonzero. Here, the key observation is that these conditions do not exclude all totally singular 2-spaces
of 𝑉[0] , and therefore, 𝑌S

1 := 𝑌1 ∩ S2 (𝑉[0] ) is a dense subset of 𝑌S := S2(𝑉[0] ). Given 𝑦 ∈ 𝑌S
1 , since

Tran𝐺 (𝑦,𝑌 ) = 𝐴𝐴3
1.𝑆𝑦𝑚(3), we also have Tran𝐺 (𝑦,𝑌S ) = 𝐴𝐴3

1.𝑆𝑦𝑚(3). Furthermore, they show that
𝐺𝑦 = 𝐴(𝐴3

1)𝑦 for all 𝑦 ∈ 𝑌1.
Assume 𝑝 ≠ 2. Then by Lemma 5.5, there exists a dense open subset 𝑌S

2 of 𝑌S such that every
stabilizer is 𝐴3

1-conjugate to Z2.Z2. Taking the intersection with 𝑌S
1 , we get an open dense subset 𝑌S

of 𝑌S . For all 𝑦 ∈ 𝑌S , we know that 𝐺𝑦 is conjugate to 𝐴.Z2.Z2. In each case, the codimension of the
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transporter of 𝑦 ∈ 𝑌S into𝑌S is equal to the codimension of𝑌S in S2 (𝑉). Therefore, every 𝑦 ∈ 𝑌S is𝑌S -
exact. By Lemma 2.15, we conclude that 𝐶S2 (𝑉 ) is 𝐷4.Z2.Z2, 𝐴

3
1.Z2.Z2, 𝑇2.Z2.Z2 according to whether

𝐺 = 𝐸7, 𝐷6, 𝐴5, respectively. These generic stabilizers are the same as for the action on all 2-spaces.
Now assume that 𝑝 = 2. By Lemma 5.4, there exists a dense open subset 𝑌S

2 of 𝑌S such that every
stabilizer has a 1-dimensional connected component and stabilizers are pairwise non-conjugate. Taking
the intersection with𝑌S

1 , we get a dense open subset𝑌S
3 of𝑌S . Let 𝑦1, 𝑦2 ∈ 𝑌S

3 and assume that 𝑥.𝑦1 = 𝑦2.
Then 𝑥 ∈ 𝑁𝐺 (𝐴), and since 𝑉0 is the fixed space of A, we must have 𝑥 ∈ Tran𝐺 (𝑦1, 𝑌

S ) = 𝐴𝐴3
1.𝑆𝑦𝑚(3).

Therefore, 𝑦1 and 𝑦2 must be in the same 𝐴3
1.𝑆𝑦𝑚(3)-orbit. However by construction, 𝑦1 and 𝑦2 are

not in the same 𝐴3
1-orbit, and therefore, there exists a dense open subset 𝑌S of 𝑌S , contained in 𝑌S

3 ,
such that any two distinct elements have non-conjugate stabilizers. In each case, the codimension of the
transporter of 𝑦 ∈ 𝑌S into 𝑌S is equal to the codimension of 𝑌S in S2 (𝑉). Therefore, every 𝑦 ∈ 𝑌S is
𝑌S -exact. By Lemma 2.16, there is no generic stabilizer in the action of G on S2 (𝑉). In fact, Lemma
2.14 shows that we have semi-generic stabilizers 𝐷4.𝑈1.Z2, 𝐴

3
1.𝑈1.Z2, 𝑇2.𝑈1.Z2 according to whether

𝐺 = 𝐸7, 𝐷6, 𝐴5, respectively. �

Lemma 5.7. Let 𝐺 = 𝐴2, 𝜆 = 𝜆1 + 𝜆2 with 𝑝 ≠ 3. Let 𝜏 be a graph automorphism of G. Then the
quadruple (𝐺〈𝜏〉, 𝜆, 𝑝, 2) has generic 𝑡𝑠-stabilizer 𝑆𝑦𝑚(3).

Proof. Take 𝐺 = 𝑆𝐿3 (𝐾) acting on 𝑉 = 𝔰𝔩3(𝐾) by conjugation. Here, 𝑍 (𝐺) = 〈diag(𝜔, 𝜔, 𝜔)〉, where
𝜔 is a nontrivial third-root of unity. Note that 𝑍 (𝐺) acts trivially on V. Let 𝜏 be the graph automorphism
acting on G as 𝑔 ↦→ 𝑔−𝑇 and on V as 𝑣 ↦→ −𝑣𝑇 . We have that G fixes a nondegenerate quadratic form
on V given by

𝑄
(
(𝑚𝑖 𝑗 )𝑖 𝑗

)
= 𝑚2

11 + 𝑚2
22 + 𝑚11𝑚22 +

∑
𝑖< 𝑗

𝑚𝑖 𝑗𝑚 𝑗𝑖 .

For 1 ≤ 𝑖, 𝑗 ≤ 3, let 𝑒𝑖 𝑗 denote a 3 × 3 matrix with a 1 in position (𝑖, 𝑗) and zeroes everywhere else.
There are three G-orbits on S1(𝑉), which we label as Δ1, Δ2 and Δ3, respectively with representatives
〈𝑒13〉, 〈𝑒12 + 𝑒23〉, 〈𝑒11 + 𝜔𝑒22 + 𝜔2𝑒33〉. This follows directly from considering the Jordan Canonical
Form of elements in V. The stabilizers are respectively 𝐵 = 𝑈3𝑇2, 𝑍 (𝐺).𝑈2𝑇1 and 𝑇2.Z3.

Let

𝑢𝑏𝑐 =
��

1
𝑏

𝑐

���, 𝑣𝑎𝑑 =
��

1
𝑎

𝑑

���;
𝑌 = {〈𝑢𝑏𝑐 , 𝑣𝑎𝑑〉 : 𝑎 + 𝑐 + 𝑏𝑑 = 0}.

The set Y is a 3-dimensional subvariety of S2(𝑉). Let

𝑌 =

{
〈𝑢𝑏𝑐 , 𝑣𝑎𝑑〉 ∈ 𝑌 : 𝑎𝑏𝑐𝑑 ≠ 0,

(𝑏𝑑 − 𝑐)2

𝑏𝑐𝑑
≠ 0,−

3
2
,−3

}
,

where we disregard the expression (𝑏𝑑−𝑐)2

𝑏𝑐𝑑 ≠ − 3
2 if 𝑝 = 2. Then 𝑌 is a dense subset of Y. Let

𝑦 = 〈𝑢𝑏𝑐 , 𝑣𝑎𝑑〉 ∈ 𝑌 . Then 〈𝑢𝑏𝑐〉 and 〈𝑣𝑎𝑑〉 are in Δ3 since they are spanned by rank-3 matrices. Now
consider 𝑣 = 𝑢𝑏𝑐 + 𝜆𝑣𝑎𝑑 . We have det 𝑣 = 𝑏𝑐 + 𝑎𝑑𝜆3, which implies that there are precisely three
1-spaces of y not belonging to Δ3. It is clear that none of these have rank 1, and therefore, all three
of these 1-spaces belong to Δ2. Let 𝜆1, 𝜆2, 𝜆3 be the three distinct roots of 𝑞(𝑥) = 𝑏𝑐 + 𝑎𝑑𝑥3, so that
〈𝑢𝑏𝑐 + 𝜆𝑖𝑣𝑎𝑑〉 ∈ Δ2. Then

𝐺𝑦 ≤ (𝐺 〈𝑢𝑏𝑐+𝜆1𝑣𝑎𝑑 〉 ∩ 𝐺 〈𝑢𝑏𝑐+𝜆2𝑣𝑎𝑑 〉).𝑆𝑦𝑚(3).

https://doi.org/10.1017/fms.2024.154 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.154


Forum of Mathematics, Sigma 21

Let 𝑔∗ = diag(1, 𝜔, 𝜔2) ∈ 𝐺. Then 𝑔∗.𝑢𝑏𝑐 = 𝜔2𝑢𝑏𝑐 and 𝑔∗.𝑣𝑎𝑑 = 𝜔𝑣𝑎𝑑 , implying 𝑔∗ ∈ 𝐺𝑦 and
𝑍 (𝐺)〈𝑔∗〉 � 𝑍 (𝐺).Z3 ≤ 𝐺𝑦 . Take 𝜇, 𝜈 ∈ 𝐾 with 𝜇3 = 1

𝑎𝑐 and 𝜈3 = 𝑎𝑏
𝑑 , and let

𝑔‡ = diag(𝜇, 𝜈, (𝜇𝜈)−1)𝜏,

an element of 𝑁𝐺 〈𝜏 〉 (〈𝑔
∗〉) fixing y. All elements of the form ℎ𝜏 with ℎ ∈ 𝑇 are conjugate under T.

Therefore, for any 𝑦1, 𝑦2 ∈ 𝑌 , we know that (𝐺〈𝜏〉)𝑦1 and (𝐺〈𝜏〉)𝑦2 contain a subgroup conjugate to
𝑍 (𝐺).〈𝑔∗〉〈𝑔‡〉 � 𝑍 (𝐺).𝑆𝑦𝑚(3).

We now proceed in the following way. We show that the stabilizer in 𝐺 〈𝑢𝑏𝑐+𝜆1𝑣𝑎𝑑 〉 of y is 𝑍 (𝐺). This
in turn implies that 𝐺𝑦 = 𝑍 (𝐺).Z3. Since 〈𝑢𝑏𝑐 + 𝜆1𝑣𝑎𝑑〉 ∈ Δ2, we are able to find an element of G
sending 𝑢𝑏𝑐 + 𝜆1𝑣𝑎𝑑 ↦→ 𝑒12 + 𝑒23. This is achieved by a scalar multiple of

𝑅 =
��

0 0 1
𝑐 𝜆1𝑑 0

− 𝑏𝑐
𝜆1

𝑐 −𝜆1𝑎

���.
We now have

𝑅.𝑦 =

〈��
𝑎1 0 1
𝑎2 𝑎1 0
𝑎3 −𝑎2 −2𝑎1

���, 𝑒12 + 𝑒23

〉
,

where 𝑎1 = 𝜆1𝑎, 𝑎2 = 𝑎
𝑑 (𝑏𝑑 − 𝑐) = 𝑐2

𝑑 − 𝑏2𝑑, and 𝑎3 = 3𝑎𝑏𝑐
𝜆1𝑑

= −3𝑎2
1. By assumption, 𝑎1𝑎2𝑎3 ≠ 0.

Now let 𝑔 ∈ 𝐺 〈𝑒12+𝑒23 〉 . Multiplying by an element of 𝑍 (𝐺), we can assume that 𝑔 = 𝑛𝑠, where

𝑠 = diag( 1
𝑡 , 1, 𝑡) and 𝑛 =

��
1 𝑛1 𝑛2
0 1 𝑛1
0 0 1

���. Then

(𝑚𝑖 𝑗 )𝑖 𝑗 := 𝑔.
��

𝑎1 0 1
𝑎2 𝑎1 0

−3𝑎2
1 −𝑎2 −2𝑎1

��� =
=
��
𝑎1 + 𝑎2𝑡𝑛1 − 3𝑎2

1𝑡
2𝑛2 𝑚12 𝑚13

𝑡 (𝑎2 − 3𝑎2
1𝑡𝑛1) 𝑎1 − 2𝑎2𝑡𝑛1 + 3𝑎2

1𝑡
2𝑛2

1 𝑚23
−3𝑎2

1𝑡
2 −𝑡 (𝑎2 − 3𝑎2

1𝑡𝑛1) −2𝑎1 + 𝑎2𝑡𝑛1 − 3𝑎2
1𝑡

2(𝑛2
1 − 𝑛2)

���,
where

𝑚12 = 𝑡 (𝑎2 (−𝑛2
1 − 𝑛2) + 3𝑎2

1𝑡𝑛1𝑛2),

𝑚13 =
1
𝑡2 + 𝑎2𝑡𝑛

3
1 − 3𝑎1𝑛2 − 3𝑎2

1𝑡
2𝑛2 (𝑛

2
1 − 𝑛2),

𝑚23 = −3𝑎1𝑛1 − 3𝑎2
1𝑡

2(𝑛2
1 − 𝑛2) + 𝑎2𝑡 (𝑛

2
1 − 𝑛2).

Assume that g fixes 𝑅.𝑦. Since 𝑚31 = −3𝑎2
1𝑡

2, we must have (𝑚𝑖 𝑗 )𝑖 𝑗 = 𝑡2𝑅.𝑦 + 𝛼(𝑒12 + 𝑒23) for some
𝛼 ∈ 𝐾 . Therefore, 𝑚21 = 𝑡2𝑎2 which implies 𝑛1 = 𝑎2 (1−𝑡)

3𝑎2
1 𝑡

. Similarly, we must have 𝑚11 = 𝑚22 which

implies 𝑛2 = 𝑎2𝑛1
𝑎2

1 𝑡
− 𝑛2

1. Then 𝑚11 = 𝑡2𝑎1 implies that either 𝑡 = ±1 or 𝑎2
2 = 3𝑎3

1. Assume that 𝑎2
2 = 3𝑎3

1.

Since 𝑎2 = 𝑎
𝑑 (𝑏𝑑 − 𝑐) and 𝑎1 = 𝜆1𝑎, the equation 𝑎2

2 = 3𝑎3
1 implies (𝑏𝑑 − 𝑐)2 = −3𝑏𝑐𝑑, contrary to

the definition of 𝑌 . Therefore, 𝑡 = ±1. If 𝑡 = 1, we immediately get 𝑛1 = 𝑛2 = 0, concluding. Assume
therefore that 𝑡 = −1 and 𝑝 ≠ 2. Then 𝑚12 = 𝑚23 forces 2𝑎2

2 = 3𝑎3
1, which implies 2(𝑏𝑑 − 𝑐)2 = −3𝑏𝑐𝑑,

which is impossible by assumption on 𝑌 .
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This concludes the proof that 𝐺〈𝜏〉𝑦 = 𝑍 (𝐺)〈𝑔∗〉〈𝑔‡〉. Now for any 𝑦 ∈ 𝑌 , since 𝐺𝑦 = 𝑍 (𝐺)〈𝑔∗〉,
any element in Tran𝐺 (𝑦,𝑌 ) must be in 𝑁 (〈𝑔∗〉). We know that 𝑁 (〈𝑔∗〉) = 𝑇2.Z3, and it is easy to check
that 𝑇2 ∈ Tran𝐺 (𝑦,𝑌 ). Therefore, dim Tran𝐺 (𝑦,𝑌 ) = 2, and then since dimS2 (𝑉) − dim 𝐺 = 1, the set
𝑌 is Y-exact. By Lemma 2.15, we conclude that the quadruple (𝐺〈𝜏〉, 𝜆, 𝑝, 2) has generic 𝑡𝑠-stabilizer
𝑆𝑦𝑚(3). �

Proposition 5.8. Let 𝐺 = 𝐹4 and 𝜆 = 𝜆4, or 𝐺 = 𝐶3 and 𝜆 = 𝜆2, with 𝑝 ≠ 3. Then the quadruple
(𝐺, 𝜆, 𝑝, 2) has generic 𝑡𝑠-stabilizer 𝐴2.𝑆𝑦𝑚(3) or 𝑇1.𝑆𝑦𝑚(3), respectively.

Proof. This is entirely similar to the proof of Proposition 5.6 and relies on the construction used in
[10, Prop. 6.26]. All we have to observe is that the set 𝑌1 defined in the proof of [10, Prop. 6.26]
does indeed contain totally singular 2-spaces. This follows from the observation in the proof of [10,
Prop. 6.25], where the authors need to show that the set 𝑌1 is nonempty. They do so by saying that
𝑣 (1) = 𝑎33𝑒𝛾33 + 𝑎12𝑒𝛾12 + 𝑎21𝑒𝛾21 , 𝑣 (2) = 𝑏11𝑒𝛾11 + 𝑏23𝑒𝛾23 + 𝑏32𝑒𝛾32 , and 𝑣 (3) = 𝑒𝛾22 + 𝑒𝛾31 + 𝑒𝛾13 span
a 3-space in 𝑌1 if (𝑎12𝑏23 − 𝑎33𝑏11) (𝑎21𝑏32 − 𝑎12𝑏23) (𝑎33𝑏11 − 𝑎21𝑏32) ≠ 0. Clearly, there are totally
singular 2-spaces 〈𝑣 (1) , 𝑣 (2) 〉 with coefficients satisfying this condition, and therefore, the set 𝑌1 defined
in the proof of [10, Prop. 6.26] does contain totally singular 2-spaces.

Once we understand this, the generic stabilizer is, respectively, 𝐴2.𝑋 , 𝑇1.𝑋 , where X is the generic
stabilizer for the action of 𝐴2.Z2 on S2 (𝜆1 + 𝜆2). By Lemma 5.7, we conclude. �

Proposition 5.9. Let 𝐺 = 𝐴2 and 𝜆 = 𝜆1 + 𝜆2 with 𝑝 = 3. Then 𝐶S3 (𝑉) = 𝑇2.Z3.

Proof. Let 𝛼1, 𝛼2 be the fundamental roots for 𝐴2 and let 𝛼3 = 𝛼1 + 𝛼2. The adjoint module Lie(𝐺)

has the Chevalley basis 𝑒𝛼3 , 𝑒𝛼2 , 𝑒𝛼1 , ℎ𝛼1 , ℎ𝛼2 , 𝑒−𝛼1 , 𝑒−𝛼2 , 𝑒−𝛼3 . We write 𝑣1𝑣2 for the Lie product of
vectors 𝑣1, 𝑣2 ∈ Lie(𝐺). We assume that the structure constants are as described by the matrix

��������

0 0 0 −1 1 0
0 0 −1 0 0 1
0 1 0 0 0 −1
1 0 0 0 −1 0
−1 0 0 1 0 0
0 −1 1 0 0 0

���������
,

where the rows and columns are in the order 𝛼3, 𝛼2, 𝛼1,−𝛼1 − 𝛼2,−𝛼3. By [27, Lemma 5.4], we can
explicitly construct our highest weight irreducible module as

𝑉𝐺 (𝜆1 + 𝜆2) = Lie(𝐺)/〈ℎ𝛼1 − ℎ𝛼2〉.

In a slight abuse of notation, we omit writing the quotient, so that v actually stands for 𝑣 + 〈ℎ𝛼1 −

ℎ𝛼2〉. We order the basis for 𝑉𝐺 (𝜆1 + 𝜆2) as 𝑒𝛼3 , 𝑒𝛼2 , 𝑒𝛼1 , ℎ𝛼1 , 𝑒−𝛼1 , 𝑒−𝛼2 , 𝑒−𝛼3 . With respect to this
ordering, using standard formulas found in [7, §4.4], we find the matrices denoting the transformations
𝑥±𝛼1 (𝑡), 𝑥±𝛼2 (𝑡), 𝑥±𝛼3 (𝑡), as well as ℎ𝛼1 (𝜅) and ℎ𝛼2 (𝜅). These are straightforward calculations, and we
therefore only state the results.

𝑥𝛼1 (𝑡) =

����������

1 𝑡 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 𝑡 −𝑡2 0 0
0 0 0 1 𝑡 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 −𝑡
0 0 0 0 0 0 1

�����������
, 𝑥−𝛼1 (𝑡) =

����������

1 0 0 0 0 0 0
𝑡 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −𝑡 1 0 0 0
0 0 −𝑡2 −𝑡 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 −𝑡 1

�����������
,
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𝑥𝛼2 (𝑡) =

����������

1 0 −𝑡 0 0 0 0
0 1 0 𝑡 0 −𝑡2 0
0 0 1 0 0 0 0
0 0 0 1 0 𝑡 0
0 0 0 0 1 0 𝑡
0 0 0 0 0 1 0
0 0 0 0 0 0 1

�����������
, 𝑥−𝛼2 (𝑡) =

����������

1 0 0 0 0 0 0
0 1 0 0 0 0 0
−𝑡 0 1 0 0 0 0
0 −𝑡 0 1 0 0 0
0 0 0 0 1 0 0
0 −𝑡2 0 −𝑡 0 1 0
0 0 0 0 𝑡 0 1

�����������
,

𝑥𝛼3 (𝑡) =

����������

1 0 0 −𝑡 0 0 −𝑡2

0 1 0 0 −𝑡 0 0
0 0 1 0 0 𝑡 0
0 0 0 1 0 0 −𝑡
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

�����������
, 𝑥−𝛼3 (𝑡) =

����������

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
𝑡 0 0 1 0 0 0
0 −𝑡 0 0 1 0 0
0 0 𝑡 0 0 1 0
−𝑡2 0 0 𝑡 0 0 1

�����������
,

ℎ𝛼1 (𝜅) = diag(𝜅, 𝜅−1, 𝜅2, 1, 𝜅−2, 𝜅, 𝜅−1) and ℎ𝛼2 (𝜅) = diag(𝜅, 𝜅2, 𝜅−1, 1, 𝜅, 𝜅−2, 𝜅−1).
Let (·, ·) : 𝑉 × 𝑉 → 𝐾 be the nondegenerate symmetric bilinear form given by (𝑒𝛼𝑖 , 𝑒−𝛼𝑗 ) = 𝛿𝑖 𝑗 ,

(𝑒𝛼𝑖 , 𝑒𝛼𝑗 ) = (𝑒−𝛼𝑖 , 𝑒−𝛼𝑗 ) = 0, (ℎ𝛼1 , 𝑒±𝛼𝑖 ) = 0 and (ℎ𝛼1 , ℎ𝛼1 ) = −1, where 1 ≤ 𝑖, 𝑗 ≤ 3. Then G fixes
this form, as can be seen by just checking the action of the generators.

We need some information about the action of G on singular 1-spaces. Let 𝑇 = 〈ℎ𝛼1 (𝜅), ℎ𝛼2 (𝜅) :
𝜅 ∈ 𝐾∗〉 be the standard maximal torus and 𝐵 = 〈𝑇, 𝑥𝛼1 (𝑡), 𝑥𝛼2 (𝑡) : 𝑡 ∈ 𝐾〉 a Borel subgroup. Then by
[27, Lemma 5.5], the group G has 2 orbits on singular vectors in V, with representatives 𝑥 = 𝑒𝛼3 and
𝑦 = 𝑒𝛼1 + 𝑒𝛼2 . Furthermore, 𝐺𝑥 = 𝑈3𝑇1, 𝐺𝑦 = 𝑈2, 𝐺 〈𝑥 〉 = 𝑈3𝑇2 = 𝐵 and 𝐺 〈𝑦〉 = 𝑈2𝑇1 ≤ 𝐵.

We now define a totally singular 3-space that we will show has a 2-dimensional stabilizer, therefore
belonging to a dense orbit. Let

𝑊3 = 〈𝑒𝛼1 , 𝑒𝛼2 , 𝑒−𝛼3〉.

Let Δ be the G-orbit with representative 〈𝑥〉, where 𝑥 = 𝑒𝛼3 . We start by observing that

G1 (𝑊3) ∩ Δ = {〈𝑒𝛼1〉, 〈𝑒𝛼2〉, 〈𝑒−𝛼3〉}.

It suffices to show that every other 1-space of 𝑊3 is in the same orbit as 〈𝑦〉, where 𝑦 = 𝑒𝛼1 + 𝑒𝛼2 .
This is clear for 〈𝑒𝛼1 +𝜆𝑒𝛼2〉 when 𝜆 ≠ 0. The element 𝑥−𝛼1 (𝑡)𝑥−𝛼2 (−𝑡)𝑥−𝛼3 (𝑡

2) sends 𝑦 ↦→ 𝑦 + 𝑡3𝑒−𝛼3 ;
therefore, 〈𝑒𝛼1 +𝜆𝑒𝛼2 +𝛾𝑒−𝛼3〉 is in the orbit of 〈𝑦〉 for 𝜆, 𝛾 ≠ 0. Finally, 𝑛𝛼2 (1)𝑛𝛼1 (1).〈𝑦〉 = 〈𝑒𝛼1 +𝑒−𝛼3〉

and 𝑛𝛼1 (−1)𝑛𝛼2 (−1).〈𝑦〉 = 〈𝑒𝛼2 + 𝑒−𝛼3〉, concluding.
Since dimS3 (𝑉) = 6, it suffices to prove that 𝐺𝑊3 = 𝑇.Z3. Since y only contains three 1-spaces that

are in the orbit Δ , the connected component of 𝐺𝑊3 is simply

𝐺 〈𝑒𝛼1 〉
∩ 𝐺 〈𝑒𝛼2 〉

∩ 𝐺 〈𝑒−𝛼3 〉
,

which is easily seen to be the maximal torus T. Finally, one checks that the elements of order 2 of
𝑊 = 𝑁𝐺 (𝑇)/𝑇 do not fix 𝑊3, while the elements of order 3 do. Therefore, 𝐺𝑊3 � 𝑇2.Z3, and indeed,
𝐶S3 (𝑉) = 𝑇2.Z3. �

Proposition 5.10. Let 𝐺 = 𝐴2 and 𝜆 = 𝜆1 + 𝜆2 with 𝑝 ≠ 3. Then 𝐶S′
4 (𝑉 ) = 𝐶S′′

4 (𝑉 ) = 𝑇2.Z3.

Proof. The group G is stable under a triality automorphism of 𝐷4; therefore, the (𝐺, 𝑃3)-double cosets
in 𝐷4 are in bijection with the (𝐺, 𝑃1)-double cosets in 𝐷4, as are the (𝐺, 𝑃4)-double cosets. By
Proposition 4.3, the group G acts on S1 (𝑉) with generic stabilizer 𝑇2.Z3, concluding. �

Proposition 5.11. Let 𝐺 = 𝐵3 and 𝜆 = 𝜆3. Then 𝐶S′
4 (𝑉 ) = 𝐶S′′

4 (𝑉 ) = 𝐶S1 (𝑉 ) = 𝑈6𝐴2𝑇1.
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Proof. Similarly to Proposition 5.10, the (𝐺, 𝑃3)-double cosets in 𝐷4 are in bijection with the (𝐺, 𝑃1)-
double cosets in 𝐷4, as are the (𝐺, 𝑃4)-double cosets. Therefore, 𝐶S′

4 (𝑉 ) = 𝐶S′′
4 (𝑉 ) = 𝐶S1 (𝑉 ) = 𝑃3 (𝐺),

as claimed. �

Proposition 5.12. Let 𝐺 = 𝐵4 and 𝜆 = 𝜆4. Then 𝐶S3 (𝑉 ) = 𝐴1.

Proof. By [10, Prop. 6.21], we already know that 𝐷5 has a dense orbit on all 3-spaces of 𝑉𝐷5 (𝜆5). We
construct the module 𝑉𝐷5 (𝜆5) in the same way as in [10, Prop. 6.21] and then consider the restriction
to G. Let 𝛽1, . . . , 𝛽6 be the simple roots of a group of type 𝐸6 and let 𝐷5 < 𝐸6 have simple roots
𝛼1 = 𝛽1, 𝛼2 = 𝛽3, 𝛼3 = 𝛽4, 𝛼4 = 𝛽5, 𝛼5 = 𝛽2. Then we may take

𝑉𝐷5 (𝜆5) =
〈
𝑒𝛼 : 𝛼 =

∑
𝑚𝑖𝛽𝑖 , 𝑚6 = 1

〉
< Lie(𝐸6).

With this notation, [10, Prop. 6.21] shows that if we write

𝛾2 = 101111, 𝛾3 = 011111, 𝛾4 = 111111, 𝛾5 = 011211, 𝛾6 = 111211, 𝛾7 = 011221,

then

𝑊3 := 〈𝑒𝛾2 + 𝑒𝛾3 , 𝑒𝛾4 + 𝑒𝛾5 , 𝑒𝛾6 + 𝑒𝛾7〉

has stabilizer 𝐴1𝐴1 in 𝐷5/𝑍 (𝐷5). The generators for the first 𝐴1 are simply 𝑋±𝜌, where 𝜌 is the longest
root of 𝐷5, while the second 𝐴1 is generated by

𝑥(𝑡) = 𝑥𝛽1 (−𝑡)𝑥𝛽4 (2𝑡)𝑥𝛽5 (𝑡)𝑥𝛽2 (3𝑡)𝑥𝛽4+𝛽5 (−𝑡2)𝑥𝛽2+𝛽4 (3𝑡
2)𝑥𝛽2+𝛽4+𝛽5 (4𝑡

3) for 𝑡 ∈ 𝐾;
𝑇1 = {ℎ𝛽1 (𝜅)ℎ𝛽2 (𝜅

3)ℎ𝛽4 (𝜅
4)ℎ𝛽5 (𝜅

3) : 𝜅 ∈ 𝐾∗};
𝑛 = 𝑛𝛽1𝑛𝛽4𝑛

−1
𝛽2𝛽4𝛽5

.

Let {𝑒1, . . . , 𝑒5, 𝑓5, . . . , 𝑓1} be the standard basis for the natural 𝐷5-module, and let 𝐺 = (𝐷5)〈𝑒2+ 𝑓2 〉 .
We will show that 𝑊3 is totally singular and has stabilizer 𝐴1 in 𝐺/𝑍 (𝐺). Let 𝑇 = 〈ℎ𝛽𝑖 (𝜅𝑖) : 1 ≤ 𝑖 ≤
5, 𝜅𝑖 ∈ 𝐾∗〉 be the standard maximal torus of 𝐷5. Then 𝑇𝐺 := 𝑇 ∩ 𝐺 = 〈ℎ𝛽𝑖 (𝜅𝑖) : 1 ≤ 𝑖 ≤ 5, 𝜅𝑖 ∈

𝐾∗, 𝜅1 = 𝜅3〉, since 𝛼1 = 𝛽1 and 𝛼2 = 𝛽3. Then the 𝑇𝐺-weights on 〈𝑒𝛾𝑖 〉2≤𝑖≤7 are respectively given by
𝜅1
𝜅2

, 𝜅2
𝜅4
, 𝜅1𝜅2

𝜅4
, 𝜅4
𝜅1𝜅5

, 𝜅4
𝜅5

, 𝜅5
𝜅1

. No two such weights form a pair of opposite weights, and therefore by Lemma
2.7, the subspace 𝑊3 is totally singular.

Finally, we find that the diagonal subgroup of 𝐴1𝐴1 with positive root subgroup 𝑥(𝑡)𝑥𝜌 (𝑡) fixes
〈𝑒2 + 𝑓2〉. By maximality of this diagonal 𝐴1 in 𝐴1𝐴1, this means that (𝐴1𝐴1) ∩ 𝐺 = 𝐴1. Therefore,
dim 𝐺 − dimS3 (𝑉) = 3 = dim 𝐺𝑊3 , which implies that 𝐶S3 (𝑉 ) = 𝐴1. �

In what follows, we refer the reader back to Section 2.4 for the relevant notation on spin modules.
For the following propositions, let 𝐺 = 𝐵4 = (𝐷5)𝑒5− 𝑓5 , 𝜆 = 𝜆4 and order the basis of V as

𝑣1 = 1, 𝑣5 = 𝑒1𝑒5, 𝑣9 = 𝑒1𝑒2𝑒3𝑒5, 𝑣13 = 𝑒1𝑒4,

𝑣2 = 𝑒1𝑒2, 𝑣6 = 𝑒2𝑒5, 𝑣10 = 𝑒1𝑒2𝑒4𝑒5, 𝑣14 = 𝑒2𝑒4,

𝑣3 = 𝑒1𝑒3, 𝑣7 = 𝑒3𝑒5, 𝑣11 = 𝑒1𝑒3𝑒4𝑒5, 𝑣15 = 𝑒3𝑒4,

𝑣4 = 𝑒2𝑒3, 𝑣8 = 𝑒4𝑒5, 𝑣12 = 𝑒2𝑒3𝑒4𝑒5, 𝑣16 = 𝑒1𝑒2𝑒3𝑒4.

Lemma 5.13. The quadratic form given by the matrix
antidiag(1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0) defines a nondegenerate quadratic form on
𝑉𝐵4 (𝜆4) fixed by the 𝐵4-action.

Proof. The pairs 𝑣𝑖 , 𝑣17−𝑖 are pairs of opposite weight vectors. We can assume that 𝑄(𝑣1 + 𝑣16) = 1
and use the 𝐵4-action to determine whether 𝑄(𝑣𝑖 + 𝑣17−𝑖) is 1 or −1. Let 𝑔 = 1 + 𝑒1𝑒2 ∈ 𝐵4. Then
𝑔.𝑣1 = 1 + 𝑒1𝑒2 = 𝑣1 + 𝑣2 and 𝑔.𝑣15 = 𝑒3𝑒4 + 𝑒1𝑒2𝑒3𝑒4 = 𝑣15 + 𝑣16. Therefore, 0 = 𝑄(𝑣1 + 𝑣15) =
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𝑄(𝑣1 + 𝑣2 + 𝑣15 + 𝑣16) = 1 + 𝑄(𝑣2 + 𝑣15), as claimed. The same approach shows that 𝑄(𝑣3 + 𝑣14) = 1
and 𝑄(𝑣4 + 𝑣13) = −1. To conclude, let 𝑔 = (1 + 𝑒1 𝑓5) (1+ 𝑒1𝑒5) which is an element of 𝐵4 since it fixes
𝑒5 − 𝑓5. Then 0 = 𝑄(𝑣1 + 𝑣12) = 𝑄(𝑣1 + 𝑣5 + 𝑣12 − 𝑣16) = −1 +𝑄(𝑣5 + 𝑣12). The remaining cases follow
similarly. �

Lemma 5.14. For 𝛼 ∈ Φ(𝐵4), the root elements 𝑥𝛼 (𝑡) are written in terms of spinors as follows:

𝑥𝜖𝑖−𝜖 𝑗 (𝑡) = 1 + 𝑡𝑒𝑖 𝑓 𝑗 ,

𝑥−𝜖𝑖+𝜖 𝑗 (𝑡) = 1 + 𝑡𝑒 𝑗 𝑓𝑖 ,

𝑥𝜖𝑖+𝜖 𝑗 (𝑡) = 1 + 𝑡𝑒𝑖𝑒 𝑗 ,

𝑥−𝜖𝑖−𝜖 𝑗 (𝑡) = 1 − 𝑡 𝑓𝑖 𝑓 𝑗 ,

𝑥𝜖𝑖 (𝑡) = (1 + 𝑡𝑒𝑖𝑒5) (1 + 𝑡𝑒𝑖 𝑓5),

𝑥−𝜖𝑖 (𝑡) = (1 − 𝑡 𝑓𝑖𝑒5) (1 − 𝑡 𝑓𝑖 𝑓5).

Proof. The action on 𝑉𝑛𝑎𝑡 of the elements on the left-hand sides of each equation is as described at the
beginning of Section 2.1. The action on 𝑉𝑛𝑎𝑡 of the elements on the right-hand sides of each equation
is described in Section 2.4. The result follows by comparing the two actions. �

Proposition 5.15. Let 𝐺 = 𝐵4, 𝜆 = 𝜆4. Then 𝐶S′
8 (𝑉 ) = 𝐴2.Z2.

Proof. Suppose that 𝑝 ≠ 3. Let 𝛽1 = 𝛼1, 𝛽2 = 𝛼2, 𝛽3 = 𝛼3, 𝛽4 = −𝛼0, where 𝛼0 is the longest root in
Φ+(𝐵4). Then {𝛽𝑖}𝑖 is the base of a root system of type 𝐷4. Let D be the corresponding 𝐷4-subgroup of
𝐵4. Then 𝑉 ↓ 𝐷 = 𝜆3 + 𝜆4 = 𝑉8 +𝑉 ′

8. Let 𝜔 be a nontrivial third-root of unity. Let 𝜏 be the composition
of ℎ𝛽2 (𝜔) with the triality automorphism of D sending 𝑥𝛽𝑖 (𝑡) ↦→ 𝑥𝛽𝜎.𝑖 (𝑡) for 𝑖 = 1, 3, 4 and 𝜎 = (134).
Then the fixed points in D under the triality automorphism 𝜏 form an irreducible 𝐴2-subgroup of D.
Using the structure constants inherited from 𝐵4, let A be the irreducible 𝐴2-subgroup of D given by

𝐴 = 〈𝑥𝛽1 (𝑡)𝑥𝛽3 (𝜔
2𝑡)𝑥𝛽4 (𝜔𝑡),

𝑥−𝛽1 (𝑡)𝑥−𝛽3 (𝜔𝑡)𝑥−𝛽4 (𝜔
2𝑡),

𝑥𝛽1+𝛽2 (𝑡)𝑥𝛽2+𝛽3 (−𝜔𝑡)𝑥𝛽2+𝛽4 (𝜔
2𝑡),

𝑥−𝛽1−𝛽2 (𝑡)𝑥−𝛽2−𝛽3 (−𝜔2𝑡)𝑥−𝛽2−𝛽4 (𝜔𝑡) : 𝑡 ∈ 𝐾〉.

By Lemma 5.14, this is the same as

𝐴 = 〈(1 + 𝑡𝑒1 𝑓2) (1 + 𝜔2𝑡𝑒3 𝑓4) (1 − 𝜔𝑡 𝑓1 𝑓2),

(1 + 𝑡𝑒2 𝑓1) (1 + 𝜔𝑡𝑒4 𝑓3) (1 + 𝜔2𝑡𝑒1𝑒2),

(1 + 𝑡𝑒1 𝑓3) (1 − 𝜔𝑡𝑒2 𝑓4) (1 − 𝜔2𝑡 𝑓1 𝑓3),

(1 + 𝑡𝑒3 𝑓1) (1 − 𝜔2𝑡𝑒4 𝑓2) (1 + 𝜔𝑡𝑒1𝑒3) : 𝑡 ∈ 𝐾〉.

With this setup, we have 𝑉8 ↓ 𝐴 � 𝑉 ′
8 ↓ 𝐴 � 𝑉𝐴2 (𝜆1 + 𝜆2). Then A fixes all 8-spaces of the form

{𝑣 + 𝜆𝜙(𝑣) : 𝑣 ∈ 𝑉8} where 𝜙 is an A-module isomorphism between 𝑉8 and 𝑉 ′
8. Given our explicit

generators for A, it is easy to verify that we can take 𝜙 acting as

𝑒1𝑒2𝑒3𝑒4 ↦→ 𝑒2𝑒3𝑒4𝑒5, 𝑒2𝑒3 ↦→ 𝑒4𝑒5, 𝑒3𝑒4 ↦→ 𝜔2𝑒1𝑒3𝑒4𝑒5,

𝑒1𝑒2 ↦→ 𝜔𝑒2𝑒5, 𝑒1𝑒4 ↦→ 𝑒1𝑒2𝑒3𝑒5, 1 ↦→ 𝑒1𝑒5,

𝑒1𝑒3 ↦→ 𝜔2𝑒3𝑒5, 𝑒2𝑒4 ↦→ 𝜔𝑒1𝑒2𝑒4𝑒5.

When 𝜆 ≠ 0, the group A must be the connected component of the stabilizer of {𝑣 + 𝜆𝜙(𝑣) : 𝑣 ∈ 𝑉8},
since the only minimal connected overgroup of A in G is D, which only fixes the 8-spaces 𝑉8 and 𝑉 ′

8.
Also, 𝑁𝐺 (𝐴) = 𝑁𝐷.Z2 (𝐴) = 𝑍 (𝐺).𝐴.Z2 = 𝑍 (𝐺).𝐴〈𝜏2〉, where 𝜏2 acts as a graph automorphism on
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𝐷4 and 𝐴2, swapping 𝑉8 and 𝑉 ′
8. Explicit calculations show that we can take 𝜏2 = ℎ𝛼1 (−1)𝑛, where

𝑛 = 𝑛1𝑛2𝑛1𝑛3𝑛4𝑛3𝑛2𝑛1, for 𝑛𝑖 = 𝑛𝛼𝑖 . One then checks that 𝜏2 fixes {𝑣 + 𝜆𝜙(𝑣) : 𝑣 ∈ 𝑉8} when 𝜆2 = −1
(i.e., when {𝑣 +𝜆𝜙(𝑣) : 𝑣 ∈ 𝑉8} is totally singular). Since dim 𝐺 −dimS ′

8 (𝑉) = 8 = dim 𝐴, we conclude
that 𝐶S′

8 (𝑉 ) = 𝐴2.Z2.
Now assume that 𝑝 = 3. This time let A be the 𝐴2-subgroup of G obtained via 𝑉𝐴2 (𝜆1) ⊗ 𝑉𝐴2 (𝜆2).

The subgroup A acts indecomposably on the natural module for G, as 1/7/1. More concretely, we can
realise A as the subgroup generated by

𝑥𝛾1 (𝑡) := 𝑥𝛼2 (𝑡)𝑥𝛼4 (−𝑡) = (1 + 𝑡𝑒2 𝑓3) (1 − 𝑡𝑒4𝑒5) (1 − 𝑡𝑒4 𝑓5),

𝑥−𝛾1 (𝑡) := 𝑥−𝛼2 (𝑡)𝑥−𝛼4 (−𝑡) = (1 + 𝑡𝑒3 𝑓2) (1 + 𝑡 𝑓4𝑒5) (1 + 𝑡 𝑓4 𝑓5),

𝑥𝛾2 (𝑡) := 𝑥𝛼2+𝛼3 (𝑡)𝑥𝛼3+𝛼4 (𝑡)𝑥𝛼0−𝛼2 (𝑡) = (1 + 𝑡𝑒2 𝑓4) (1 + 𝑡𝑒3𝑒5) (1 + 𝑡𝑒3 𝑓5) (1 + 𝑡𝑒1𝑒3),

𝑥−𝛾2 (𝑡) := 𝑥−𝛼2−𝛼3 (𝑡)𝑥−𝛼3−𝛼4 (𝑡)𝑥𝛼1+𝛼2 (−𝑡) = (1 + 𝑡𝑒4 𝑓2) (1 − 𝑡 𝑓3𝑒5) (1 − 𝑡 𝑓3 𝑓5) (1 − 𝑡𝑒1 𝑓3),

as t varies over K. Now let W be the 8-space spanned by vectors

𝑒3𝑒5, 𝑒2𝑒5 − 𝑒3𝑒4, 𝑒2𝑒4,
1 − 𝑒1𝑒5, 𝑒1𝑒2𝑒3𝑒4 + 𝑒2𝑒3𝑒4𝑒5, 𝑒2𝑒3 + 𝑒1𝑒2𝑒3𝑒5,
𝑒1𝑒2 + 𝑒1𝑒3𝑒4𝑒5, 𝑒1𝑒4 − 𝑒4𝑒5.

By Lemma 5.13, the subspace W is totally singular. Simple calculations show that 𝐴 ≤ 𝐺𝑊 .
Furthermore, let i be a square root of −1 and

𝜏 = ℎ𝛼1 (−1)ℎ𝛼2 (−1)ℎ𝛼3 (−1)ℎ𝛼4 (𝑖)𝑛0122.

One checks that 𝜏 ∈ 𝑁𝐺 (𝐴2) and 𝜏 ∈ 𝐺𝑊 . Now let M be a minimal connected overgroup of A that fixes
W. Since there are no irreducible subgroups of G containing A, we must have 𝐴 ≤ 𝑀 ≤ 𝑃1 = 𝐺 〈𝑒1 〉 =
𝑈7𝐵3𝑇1. Since the projection of A on 𝐵3 is an irreducible 𝐴2 < 𝐵3, the projection of M on 𝐵3 is either
𝐴2 or 𝐺2. As there is only one conjugacy class of 𝐺2’s in 𝑃1, corresponding to the 𝐺2 ≤ 𝐵3, the last
case is not possible. Therefore, 𝑀 ≤ 𝑈7𝐴2𝑇1, and as the 𝐴2 is acting irreducibly on the 𝑈7, we must
have 𝑀 = 𝑈7𝐴2. It is, however, straightforward to check that 𝑈7 � 𝐺𝑊 . This proves that 𝐴 = (𝐺𝑊 )0.
The final step is to show that 𝐶𝐺 (𝐴) = 𝑍 (𝐺). One way to do this is to consider the centralizer 𝐶1 of
𝑇∩𝐴 = 〈ℎ𝛼2 (𝜅)ℎ𝛼4 (𝜅), ℎ𝛼3 (𝜅)〉𝜅 ∈𝐾 ∗ , a maximal torus of A. We find that𝐶1 = 〈𝑇, 𝑋±1111, 𝑛0〉 � 𝐴1𝑇3.Z2,
where 𝑛0 is an element of 𝑁𝐺 (𝑇) sending each root to its negative. The centralizer of A must be contained
in 𝑃1, as 〈𝑒1〉 is the only 1-space stabilised by A. We have 𝐶1 ∩ 𝑃1 = 〈𝑇, 𝑋1111〉, and at this point, it
is easy to see that 𝐶𝐺 (𝐴) = 𝐶𝐶1∩𝑃1 (𝐴) = 𝑍 (𝐺). Therefore, 𝐺𝑊 = 𝑍 (𝐺).𝐴.Z2, and by dimensional
considerations, 𝐴2.Z2 ≤ 𝐺/𝑍 (𝐺) is the generic stabilizer for the G-action on S ′

8(𝑉). �

Proposition 5.16. Let 𝐺 = 𝐵4, 𝜆 = 𝜆4. Then 𝐶S7 (𝑉 ) = 𝑇2.Z2.

Proof. By Proposition 5.15, there is a dense G-orbit on S ′
8 (𝑉), with stabilizer 𝐴2.Z2. Fix an 8-space y in

this orbit. Then 𝐺𝑦 = 𝐴2.Z2 = 𝐴2〈𝜏〉 acts on y as on Lie(𝐴2), with 𝜏 acting on Lie(𝐴2) by transposition.
When 𝑝 ≠ 3, the quadruple (𝐴2.Z2, 𝜆1 +𝜆2, 𝑝, 1) has generic stabilizer 𝑇2.Z2, as the open set for the 𝐴2-
action is constructed like in Lemma 4.1 starting from elements in Lie(𝑇) which are fixed by 𝜏. The same
is actually true also when 𝑝 = 3. In this case, the 𝐴2〈𝜏〉 module y is not irreducible, but we can still build
an open dense subset ofG1 (𝑦) consisting of orbits of regular semisimple elements, such that all stabilizers
are conjugate to 𝑇2.Z2. Since the action on G1 (𝑦) is isomorphic to the action on G7(𝑦), there is an open
dense subset �̂� of 𝑋 := G7 (𝑦) such that for all 𝑥 ∈ �̂� , the stabilizer (𝐴2.Z2)𝑥 is 𝐴2.Z2-conjugate to𝑇2.Z2.
Note that 𝑋 ⊂ S7 (𝑉), and since every element of S7(𝑉) is a subspace of precisely one element of S ′

8 (𝑉),
we must have Tran𝐺 (𝑥, 𝑋) = 𝐺𝑦 for all 𝑥 ∈ 𝑋 . As dim 𝐺−dim Tran𝐺 (𝑥, 𝑋) = 28 = dimS7(𝑉) −dim 𝑋 ,
the set �̂� is X-exact. By Lemma 2.15, we conclude that 𝐶S7 (𝑉 ) = 𝑇2.Z2. �

Proposition 5.17. Let 𝐺 = 𝐵4, 𝜆 = 𝜆4 with 𝑝 ≠ 2. Then 𝐶S′′
8 (𝑉 ) = 𝐴3

1.
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Proof. Let 𝑉𝑛𝑎𝑡 be the natural module for G and let 𝑉1 ⊕ 𝑉2 ⊕ 𝑉3 be an orthogonal decomposition
of 𝑉𝑛𝑎𝑡 such that dim𝑉𝑖 = 3. Let 𝑆 = 𝐴3

1 be the the connected component of the stabilizer of this
orthogonal decomposition. Then 𝑁𝐺 (𝑆) is a maximal subgroup of G isomorphic to (Z2

2 × 𝑆).𝑆𝑦𝑚(3).
The group S acts homogeneously on V as the sum of two copies of the 8-dimensional irreducible
S-module 𝜆1 ⊗ 𝜆1 ⊗ 𝜆1. Let Y be the 1-dimensional variety of nontrivial proper S-submodules of V (i.e.
the set of all 8-dimensional S-submodules of V). Since 𝑝 ≠ 2, any such 8-space must be totally singular.
We will now show that no element of 𝑁𝐺 (𝑆)/𝑆 acts trivially on Y. Let 𝜏 be a pre-image under the the
canonical projection 𝑁𝐺 (𝑆) → 𝑆 of one of the 3 nontrivial reflections in (Z2

2 × 𝑆)/𝑆. Then 𝜏 lies in
𝑁𝐺 (𝐴1𝐷3), acting as a graph automorphism on 𝐷3. Now, 𝐴1𝐷3 acts on V as (𝜆1 ⊗ 𝜆2) ⊕ (𝜆1 ⊗ 𝜆3),
and therefore, 𝜏 swaps these two 8-spaces. Similarly, a 2-cycle 𝜏 ∈ (𝑆.𝑆𝑦𝑚(3))/𝑆 corresponds to an
element in the 𝐷3 component of 𝐴1𝐷3 acting as a graph automorphism of 𝐴2

1 ≤ 𝐷3. Here, 𝜏 does fix
(𝜆1 ⊗ 𝜆2) and (𝜆1 ⊗ 𝜆3), although they are not isomorphic 𝑆〈𝜏〉-modules. A 3-cycle 𝜏 ∈ (𝑆.𝑆𝑦𝑚(3))/𝑆
also acts nontrivially on Y since it is a product of two 2-cycles that do not have the same fixed points.
Finally, no product of a reflection with a transposition can act trivially, again because they do not
fix the same points. Now by Lemma 2.10, there is a dense subset 𝑌 of Y on which no element of
𝑁𝐺 (𝑆)/𝑆 has fixed points. Furthermore, there are only three proper connected subgroups of G that
properly contain S, all isomorphic to 𝐴1𝐷3 acting on V as (𝜆1 ⊗ 𝜆2) ⊕ (𝜆1 ⊗ 𝜆3). Any such 𝐴1𝐷3
only fixes two 8-spaces, which are not contained in Y since they are the fixed points of the 2-cycles in
𝑆𝑦𝑚(3). Let 𝑦 ∈ 𝑌 . We have shown that 𝐺𝑦 = 𝑆, and therefore, Tran𝐺 (𝑦,𝑌 ) = 𝑁𝐺 (𝑆). We then get
dim 𝐺 − dim Tran𝐺 (𝑦,𝑌 ) = 27 = dimS ′′

8 (𝑉) − dim𝑌 . Thus, the set 𝑌 is Y-exact, and by Lemma 2.15,
we conclude that 𝐶S′′

8 (𝑉 ) = 𝐴3
1. �

Proposition 5.18. Let 𝐺 = 𝐵4, 𝜆 = 𝜆4 with 𝑝 = 2. Then the quadruple (𝐺, 𝜆, 𝑝, 8′′) has no generic
𝑡𝑠-stabilizer, but has a semi-generic 𝑡𝑠-stabilizer 𝐴3

1.

Proof. Given the standard parabolic 𝑃1 = 𝑈7𝐵3𝑇1 = 𝑈7𝐿, let 𝑋 ≤ 𝐿 ′ be a subgroup isomorphic to an
𝐴3

1 acting as 2 ⊥ 2 ⊥ 2 on 𝑉𝐵3 (𝜆1). Here, L acts on the abelian unipotent radical 𝑈7 by fixing the longest
short-root subgroup 𝑋1111 and as 𝑉𝐵3 (𝜆1) on 𝑈7/𝑋1111. Then X has a 3-dimensional 1-cohomology on
𝑈7, corresponding to the conjugacy classes of 𝐴3

1-subgroups of 𝑈7𝑋 . We can parametrise this by pairing
the root subgroups generating X with the highest and lowest weight vectors for the action on 𝑈7/𝑋1111.
More precisely, take

𝑋 = 〈𝑋±0111, 𝑋±0011, 𝑋±0001〉

and define

𝐴(1)
1 (𝜆) := 〈𝑥0111 (𝑡)𝑥1222(𝜆𝑡), 𝑥−0111 (𝑡)𝑥1000(𝜆𝑡)〉𝑡 ∈𝐾 ,

𝐴(2)
1 (𝜆) := 〈𝑥0011 (𝑡)𝑥1122(𝜆𝑡), 𝑥−0011 (𝑡)𝑥1100(𝜆𝑡)〉𝑡 ∈𝐾 ,

𝐴(3)
1 (𝜆) := 〈𝑥0001 (𝑡)𝑥1112(𝜆𝑡), 𝑥−0001 (𝑡)𝑥1110(𝜆𝑡)〉𝑡 ∈𝐾 ,

𝑋𝑎𝑏𝑐 := 〈𝐴(1)
1 (𝑎), 𝐴(2)

1 (𝑏), 𝐴(3)
1 (𝑐)〉.

Each 𝐴(𝑖)
1 (𝜆) is a connected subgroup of 𝑃1 of type 𝐴1. Furthermore, 𝐴(𝑖)

1 (𝜆) and 𝐴
( 𝑗)
1 (𝜇) commute if

𝑖 ≠ 𝑗 , which means that 𝑋𝑎𝑏𝑐 is isomorphic to 𝐴3
1. We can write the given generators for 𝐴(𝑖)

1 (𝜆) in a
nice compact form in the Clifford algebra – namely,

𝐴(𝑖−1)
1 (𝜆) = 〈(1 + 𝑡𝑒𝑖𝑒5) (1 + 𝑡𝑒𝑖 𝑓5) (1 + 𝜆𝑡𝑒𝑖𝑒1), (1 + 𝑡 𝑓𝑖𝑒5) (1 + 𝑡 𝑓𝑖 𝑓5) (1 + 𝜆𝑡 𝑓𝑖𝑒1)〉𝑡 ∈𝐾 ,

where 𝑖 ∈ {2, 3, 4}. Then C := {𝑋𝑎𝑏𝑐}𝑎,𝑏,𝑐∈𝐾 is a set of representatives for the conjugacy classes of
𝐴3

1-subgroups of 𝑈7𝑋 .
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Now consider an arbitrary 𝑋𝑎𝑏𝑐 . We proceed to show that 𝑋𝑎𝑏𝑐 acts homogeneously on V as a sum
of two irreducible 8-spaces. Since 𝑃1 fixes the (totally singular) 8-space

𝑉1 :=

〈 𝑒1𝑒2, 𝑒1𝑒3, 𝑒1𝑒4,
𝑒1𝑒5, 𝑒1𝑒2𝑒3𝑒5, 𝑒1𝑒2𝑒4𝑒5,
𝑒1𝑒3𝑒4𝑒5, 𝑒1𝑒2𝑒3𝑒4

〉
,

so does 𝑋𝑎𝑏𝑐 . Secondly, let

𝑊𝑎𝑏𝑐 :=

〈 𝑒1𝑒3𝑒4𝑒5 + 𝑒3𝑒4, (𝑎 + 1)𝑒1𝑒2𝑒3𝑒4 + 𝑒2𝑒3𝑒4𝑒5, 𝑒2𝑒3 + (𝑎 + 𝑏 + 1)𝑒1𝑒2𝑒3𝑒5,
𝑒3𝑒5 + (1 + 𝑏)𝑒1𝑒3, (1 + 𝑎 + 𝑐)𝑒1𝑒2𝑒4𝑒5 + 𝑒2𝑒4, (𝑐 + 1)𝑒1𝑒4 + 𝑒4𝑒5,
1 + (𝑏 + 𝑐 + 1)𝑒1𝑒5, 𝑒2𝑒5 + (1 + 𝑎 + 𝑏 + 𝑐)𝑒1𝑒2

〉
.

A simple check using the generators of 𝑋𝑎𝑏𝑐 shows that 𝑊𝑎𝑏𝑐 is fixed by 𝑋𝑎𝑏𝑐 and it is isomorphic to
𝜆1 ⊗ 𝜆1 ⊗ 𝜆1 as an 𝐴3

1-module. Since 𝑝 = 2, it is not guaranteed that 𝑊𝑎𝑏𝑐 is totally singular. Indeed,
𝑊𝑎𝑏𝑐 is totally singular if and only if 𝑎 + 𝑏 + 𝑐 = 0, by a direct check using Lemma 5.13. We now
consider the subset C∗ of C given by triples (𝑎, 𝑏, 𝑐) with 𝑎 + 𝑏 + 𝑐 = 0 such that 𝑎, 𝑏, 𝑐 are all distinct.
Under these conditions on (𝑎, 𝑏, 𝑐), we know that an element of C∗ acts homogeneously on V as a sum
of two totally singular 8-spaces and acts indecomposably on 𝑉𝐵4 (𝜆1) as 1/(2 ⊥ 2 ⊥ 2)/1.

We will now show that 𝑋𝑎𝑏𝑐 ∈ C∗ is the connected component of the stabilizer in G of 𝑊𝑎𝑏𝑐 . Since
X acts indecomposably as (2 ⊥ 2 ⊥ 2)/1 on 𝑈7, so does 𝑋𝑎𝑏𝑐 . In particular, recall that 𝑋1111 is fixed by
𝑋𝑎𝑏𝑐 . Therefore, if u is a nontrivial element in 𝑈7, we must have 𝑋1111 ∩ 〈𝑢, 𝑋𝑎𝑏𝑐〉 ≠ 1. A direct check
shows that no nontrivial element of 𝑋1111 stabilises 𝑊𝑎𝑏𝑐 , implying (𝑈7)𝑊𝑎𝑏𝑐 = 1. Let M be a minimal
connected overgroup of 𝑋𝑎𝑏𝑐 , such that 𝑀 ≤ 𝐺𝑊𝑎𝑏𝑐 . If M has a larger projection 𝑀 onto 𝐿 ′ than 𝑋𝑎𝑏𝑐 ,
it means that either 𝑀 = 𝐴1𝐵2 or 𝑀 = 𝐿 ′. In the latter case, 𝑀 = 𝑈7𝐿

′, which is absurd; therefore,
assume that 𝑀 = 𝐴1𝐵2. Without loss of generality, take 𝑀 = 〈𝑋±0111, 𝑋±0010, 𝑋±0001〉. Let 𝑢 ∈ 𝑈7 and
𝜅 ∈ 𝐾∗ such that 𝑢𝑥0010 (1)ℎ𝛼1 (𝜅) ∈ 𝑀 . Since 𝑀 ∩𝑈7 = 1, we must have [𝑢, 𝑋0010] = [𝑢, ℎ𝛼1 (𝜅)] = 1.
We cannot have 𝑢 ∈ 𝑋1222 since a direct check shows that 𝑢𝑥0010 (1)ℎ𝛼1 (𝜅) does not fix 𝑊𝑎𝑏𝑐; so we
must have 𝜅 = 1 and 𝑢 ∈ 〈𝑋1000, 𝑋1110, 𝑋1111, 𝑋1122, 𝑋1222〉. Similarly, since

[𝑋0010, 𝐴
(3)
1 (𝑐)] = [𝑋0010, 𝐴

(1)
1 (𝑎)] = 1,

we also get [𝑢, 𝑋±0011] = [𝑢, 𝑋±0111] = 1. Thus, 𝑢 ∈ 〈𝑋1110, 𝑋1111〉. Now assume that 𝑥 :=
𝑥1110 (𝑡1)𝑥1111(𝑡2)𝑥0010(1) fixes 𝑊𝑎𝑏𝑐 . Since 𝑥.(𝑒1𝑒3𝑒4𝑒5 + 𝑒3𝑒4) ∈ 𝑊𝑎𝑏𝑐 , we find that 𝑡1 = 𝑡2 = 0.
Therefore, 𝑥 = 𝑥0010 (1). Since 𝑥.(𝑒4𝑒5 + (𝑐 + 1)𝑒1𝑒4) ∈ 𝑊𝑎𝑏𝑐 , we find that 𝑏 = 𝑐, which is absurd by
our choice of (𝑎, 𝑏, 𝑐). This completes the proof that (𝐺𝑊𝑎𝑏𝑐 )

0 = 𝑋𝑎𝑏𝑐 when 𝑎, 𝑏, 𝑐 are all distinct.
The radical of the Levi 𝐵3𝑇1 acts by scalar multiplication on (𝑎, 𝑏, 𝑐). Therefore, the subset C∗∗ of

C∗ defined by the further condition 𝑎 = 1 contains 𝐴3
1-subgroups which are pairwise non-conjugate in

𝑈7𝑋𝑇1. Let 𝑌 = {𝑊𝑎𝑏𝑐 : 𝑋𝑎𝑏𝑐 ∈ C∗∗}, a 1-dimensional variety of totally singular 8-spaces. By [31,
Prop. 3.5.2 (D)], G-fusion of elements of C∗∗ is controlled by 𝑁𝐿′ (𝑋)/𝑋 � 𝑆𝑦𝑚(3). We can be even
more precise, and like in [31, Lemma 4.1.3] deduce that if 𝑋

𝑔
𝑎𝑏𝑐 = 𝑋𝑎′𝑏′𝑐′ , then 𝑔 ∈ 𝑈7𝑁𝐵3𝑇1 (𝑋).

Therefore, 𝑋𝑎𝑏𝑐 is G-conjugate to 𝑋𝑎′𝑏′𝑐′ if and only if (𝑎′, 𝑏′, 𝑐′) = 𝑡 (𝜋(𝑎), 𝜋(𝑏), 𝜋(𝑐)) for some 𝑡 ∈ 𝐾
and 𝜋 ∈ 𝑆𝑦𝑚({𝑎, 𝑏, 𝑐}). Also, if 𝑎, 𝑏, 𝑐 are pairwise distinct and are not of the form 𝑎, 𝜇𝑎, 𝜇2𝑎 where
𝜇 is a root of 𝑥2 + 𝑥 + 1, we must have 𝑁𝐺 (𝑋𝑎𝑏𝑐) = 𝑈1𝑋𝑎𝑏𝑐 .

Therefore, there is a dense subset 𝑌 of Y such that any two distinct elements in 𝑌 have non-conjugate
stabilizers in G, isomorphic to 𝐴3

1. Let 𝑦 ∈ 𝑌 . Then by construction, 𝐴3
1 ≤ TranG(𝑦,𝑌 ) ≤ 𝐴3

1.𝑆𝑦𝑚(3),
and by dimensional considerations, 𝑌 is Y-exact. By Lemma 2.16, we conclude that there is no generic
stabilizer, and by Lemma 2.14, we conclude that there is a semi-generic stabilizer isomorphic to 𝐴3

1. �

There are now two cases left in order to complete the proof of Theorem 2. These are given by
the 𝑡𝑠-small quadruples (𝐶2, 2𝜆1, 𝑝, 5) (𝑝 ≠ 2) and (𝐶3, 𝜆2, 𝑝, 7) (𝑝 ≠ 3). These two cases present
considerable challenges and similarities to each other. They are the subject of the next two sections.
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5.1. The case (𝐶2, 2𝜆1, 𝑝, 5)

In this section, we handle the case of 𝐶2 acting on maximal totally singular subspaces of its adjoint
module. We shall prove that this action has a dense orbit with finite generic stabilizer. We resort to
making extensive use of computational methods in Magma, with the relevant code being listed in
Appendix A as well as being made available on the author’s GitHub [28].

Suppose that 𝑝 ≠ 2. Let 𝐺 = 𝑆𝑝4 (𝐾), with fundamental roots 𝛼1, 𝛼2, where 𝛼1 is short. Let
𝛼3 = 𝛼1 + 𝛼2 and 𝛼4 = 2𝛼1 + 𝛼2. Order the standard basis of the natural module 𝑉𝑛𝑎𝑡 as (𝑒1, 𝑒2, 𝑓2, 𝑓1)
and let 𝑉 = Lie(𝐺) ≤ 𝔰𝔩4(𝐾), on which G is acting by conjugation. Let 𝑒±𝛼1 , 𝑒±𝛼2 , 𝑒±𝛼3 , 𝑒±𝛼4 , ℎ𝛼1 , ℎ𝛼2

be the corresponding Chevalley basis, where 𝑒𝛼1 , 𝑒𝛼2 , 𝑒𝛼3 , 𝑒𝛼4 are respectively the matrices

����
1

0
−1

�����,
����

0
1

0

�����,
����

1
1�����,

����
1�����,

the elements 𝑒−𝛼1 , 𝑒−𝛼2 , 𝑒−𝛼3 , 𝑒−𝛼4 are respectively their transposes, and

ℎ𝛼1 = diag(1,−1, 1,−1) , ℎ𝛼2 = diag(0, 1,−1, 0), ℎ𝛼3 = diag(1, 1,−1,−1), ℎ𝛼4 = diag(1, 0, 0,−1).

Let T be the standard maximal torus of G. The module V is orthogonal, with quadratic form given by

𝑄(𝑣) = Trace(𝑣2).

For i a square root of −1, and 𝜁 a square root of −2, let 𝑊(𝑖,𝜁 ) be the totally singular 5-space of V
spanned by

𝑣 (0) = ℎ𝛼4 + 𝑖ℎ𝛼2 ,

𝑣 (1) = 𝑒𝛼1 + 𝜁𝑒𝛼2 ,

𝑣 (2) = 𝑒𝛼3 + 𝜁𝑒−𝛼4 ,

𝑣 (3) = 𝑒−𝛼3 + 𝜁𝑒𝛼4 ,

𝑣 (4) = 𝑒−𝛼1 + 𝜁𝑒−𝛼2 .

Let 𝑊5 be the 5-space of V spanned by

𝑢 (0) = ℎ𝛼4 + 2ℎ𝛼2 ,

𝑢 (1) = 𝑒𝛼1 + 3𝑒𝛼2 ,

𝑢 (2) = 𝑒𝛼2 + 3𝑒−𝛼4 ,

𝑢 (3) = 𝑒−𝛼3 ,

𝑢 (4) = 𝑒−𝛼1 + 𝑒−𝛼2 + 3𝑒𝛼4 ,

a totally singular subspace if 𝑝 = 5.
Let

𝜏 =
����
0 1 0 0
0 0 0 −1
1 0 0 0
0 0 1 0

�����, and 𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag(𝜔−1, 𝜔−2, 𝜔2, 𝜔) with 𝜔5 = 1, 𝜔 ≠ 1, if 𝑝 ≠ 5;�����
1 2 1 1

1 1 4
1 3

1

������
, if 𝑝 = 5.
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Table 7. Maximal subgroups 𝑀𝑞 of 𝑆𝑝4 (𝑞) (q odd)..

Class Mq Notes # conjugacy classes

𝒞1 𝑞1+2.( (𝑞 − 1) × 𝑆𝑝2 (𝑞)) 1
𝒞1 𝑞3.𝐺𝐿2 (𝑞) 1
𝒞2 𝑆𝑝2 (𝑞)

2.Z2 1
𝒞2 𝐺𝐿2 (𝑞) .Z2 𝑞 ≥ 5 1
𝒞3 𝑆𝑝2 (𝑞

2) .Z2 1
𝒞3 𝐺𝑈2 (𝑞) .Z2 𝑞 ≥ 5 1
𝒞5 𝑆𝑝4 (𝑞0) .(2, 𝑟 ) 𝑞 = 𝑞𝑟

0 , r prime (2, 𝑟 )
𝒞6 Z2.Z

4
2.𝑆𝑦𝑚(5) 𝑞 = 𝑝 ≡ ±1 mod 8 2

𝒞6 Z2.Z
4
2.𝐴𝑙𝑡 (5) 𝑞 = 𝑝 ≡ ±3 mod 8 1

𝒮 Z2.𝐴𝑙𝑡 (6) 𝑞 = 𝑝 ≡ ±5 mod 12, 𝑞 ≠ 7 1
𝒮 Z2.𝑆𝑦𝑚(6) 𝑞 = 𝑝 ≡ ±1 mod 12 2
𝒮 Z2.𝐴𝑙𝑡 (7) 𝑞 = 7 1
𝒮 𝑆𝐿2 (𝑞) 𝑝 ≥ 5, 𝑞 ≥ 7 1

Furthermore, let

𝜏∗ =

{
𝜏, if 𝑝 ≠ 5;
diag(𝛼, 2𝛼, 4𝛼, 3𝛼), where 𝛼2 = 2, if 𝑝 = 5.

Finally, let

𝑆∗ = 〈𝑥, 𝜏∗〉, and 𝑊∗ =

{
𝑊(𝑖,𝜁 ) , if 𝑝 ≠ 5;
𝑊5, if 𝑝 = 5.

With this setup, it is easy to check that 𝑆∗ ≤ 𝐺𝑊 ∗ .
Proposition 5.19. Let 𝐺 = 𝐶2, 𝜆 = 2𝜆1 with 𝑝 = 5. Then 𝐶S′

5 (𝑉 ) = Z4.

Proof. We use the setup of [10, Lemma 4.8(i)] and its proof. Let ℎ0 = diag(−1,−2, 2, 1), a regular
semisimple element of Lie(𝑇), and set𝔊 = 〈ℎ0〉. For a subspace U of Lie(𝐺), write AnnLie(𝐺) (𝑈) for the
subspace {𝑣 ∈ Lie(𝐺) : [𝑣,𝑈] ≤ 𝑈}. A straightforward calculation shows that AnnLie(𝐺) (𝑊(3,𝜁 ) ) = 𝔊.
Let 𝑆 = 𝐺𝑊(3,𝜁 ) and take 𝑔 ∈ 𝑆. We have 𝔊 = AnnLie(𝐺) (𝑔.𝑊(3,𝜁 ) ) = 𝑔.𝔊. Therefore, 𝑔.𝔊 = 𝔊, which
is easily seen to imply 𝑔 ∈ 𝑇.〈𝜏〉. A direct calculation shows that 𝑇 ∩ 𝑆 = ±1, which implies that
𝑆 = 〈𝜏〉 = 𝑍 (𝐺).Z4. Since dim 𝐺 − dim 𝑆 = dim 𝐺 = dimS ′

5 (𝑉), we conclude that 𝐶S′
5 (𝑉 ) = Z4. �

Remark 5.20. Note that the subspace 𝑊2,𝜁 does not belong to the same 𝐷5-orbit as 𝑊3,𝜁 by Lemma 2.6;
however, it also does not have a finite stabilizer. Indeed, it is not difficult to see that it has a stabilizer
isomorphic to 𝑈3𝑇2.

The following lemma describes the subgroup structure of 𝑆𝑝4 (𝑞).
Lemma 5.21. [5, §8.2]. Assume that 𝑝 < ∞ and let 𝑞 = 𝑝𝑒 for some 𝑒 ∈ Z≥1. Then the maximal
subgroups of 𝑆𝑝4 (𝑞) (q odd) are as in Table 7, and the maximal subgroups of 𝑆𝐿2 (𝑞) are as in Table
8. In both cases, see [5] for more details, including the precise notation.

Lemma 5.22. Assume 𝑝 = 5. Let 𝐻 = 𝐺 〈𝑢 (1) 〉 . Then 𝐻𝑊 ∗ = 𝑆∗ � 𝑍 (𝐺).Z5.Z4.

Proof. The element 𝑢 (1) is a regular nilpotent element, and a simple calculation shows that 𝐻 = 𝑈2𝑇1,
where

𝑈2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
����
1 −𝑏 −𝑏2 𝑎

1 2𝑏 𝑏2

1 𝑏
1

����� : 𝑎, 𝑏 ∈ 𝐾

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, 𝑇1 = {diag(𝜅3, 𝜅, 𝜅−1, 𝜅−3) : 𝜅 ∈ 𝐾∗}.
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Table 8. Maximal subgroups 𝑀𝑞 of 𝑆𝐿2 (𝑞) ..

Class Mq Notes # conjugacy classes

𝒞1 𝑞.(𝑞 − 1) 1
𝒞2 𝑄2(𝑞−1) 𝑞 ≠ 5; q odd 1
𝒞2 𝐷2(𝑞−1) q even 1
𝒞3 𝑄2(𝑞+1) q odd 1
𝒞3 𝐷2(𝑞+1) q even 1
𝒞5 𝑆𝐿2 (𝑞0) .(2, 𝑟 ) 𝑞 = 𝑞𝑟

0 , r prime, q odd (2, 𝑟 )
𝒞5 𝑃𝑆𝐿2 (𝑞0) 𝑞 = 𝑞𝑟

0 , r prime, 𝑞0 ≠ 2, q even 1
𝒞6 Z2.Z

2
2.𝑆𝑦𝑚(3) 𝑞 = 𝑝 ≡ ±1 mod 8 2

𝒞6 Z2.Z
2
2.Z3 𝑞 = 𝑝 ≡ ±3, 5, ±11, ±13, ±19 mod 40 1

𝒮 𝑆𝐿2 (5) 𝑞 = 𝑝 ≡ ±1 mod 10 2
𝒮 𝑆𝐿2 (5) 𝑞 = 𝑝2 , 𝑝 ≡ ±3 mod 10 2

Let 𝑔 =

(
1 −𝑏 −𝑏2 𝑎

1 2𝑏 𝑏2
1 𝑏

1

) (
𝜅3

𝜅
𝜅−1

𝜅−3

)
∈ 𝐻𝑊 ∗ . We have 𝑔𝑢 (0)𝑔−1 = 𝑢 (0) −𝑏𝑢 (1) + (𝑏3+3𝑎)𝑒𝛼4 . This forces

𝑎 = 3𝑏3. Also, 𝑔𝑢 (3)𝑔−1 = 1
𝜅4 (𝑢

(3) − 𝑏2𝑢 (0) + 2𝑏3𝑢 (1) + 2𝑏𝑢 (4) + (𝑏5 − 𝑏)𝑒𝛼4), forcing 𝑏 = 𝑏5. Finally,
𝑔𝑢 (2)𝑔−1 = 1

𝜅6 (−𝑏3𝑢 (0) + 𝑏(1− 𝜅8)𝑒𝛼3 +𝑢 (2) +3𝑏𝑢 (3) +3𝑏2𝑢 (4) − 𝑏4𝑢 (1) + (𝜅8 −1)𝑒𝛼2 + 𝑏2 (𝜅8 −1)𝑒𝛼4),
implying 𝜅8 = 1. This allows us to conclude that 𝐻𝑊 ∗ = 〈𝑥, 𝜏∗〉 = 𝑆∗, as claimed. �

Lemma 5.23. Let 𝐻 = 𝑁𝐺 (〈𝑥〉). Then 𝐻𝑊 ∗ = 𝑆∗ � 𝑍 (𝐺).Z5.Z4.

Proof. Assume 𝑝 ≠ 5. Since x is a regular semisimple element, it is easy to see that 𝐻 = 𝑇.〈𝜏〉, and
one quickly finds that 𝑇𝑊 ∗ = ±〈𝑥〉. Since 𝜏 ∈ 𝐺𝑊 ∗ , we conclude that 𝐻𝑊 ∗ = 〈𝑥, 𝜏〉 = 𝑍 (𝐺).〈𝑥〉.Z4. If
𝑝 = 5, we have 𝐻 ≤ 〈𝐶𝐺 (𝑥), 𝑇〉. It is easy to see that 𝐶𝐺 (𝑥) is the unipotent radical of 𝐺 〈𝑢 (1) 〉 and that

𝑁𝑇 (〈𝑥〉) = 〈𝜏∗〉 ≤ {diag(𝜅3, 𝜅, 𝜅−1, 𝜅−3) : 𝜅 ∈ 𝐾∗}.

Therefore, 𝐻 ≤ 𝐺 〈𝑢 (1) 〉 , and we can conclude by Lemma 5.22. �

Lemma 5.24. Suppose that 𝐻 ≤ 𝐺 is a reducible subgroup of G containing 〈𝑥〉. Then 𝐻𝑊 ∗ ≤ 𝑆∗.

Proof. If 𝑝 ≠ 5, the only 1-spaces of 𝑉𝑛𝑎𝑡 stabilised by the semisimple element x are spanned by a
standard basis vector; therefore, 𝐻 ≤ 𝐺𝑈 , where 𝑈 ≤ 𝑉𝑛𝑎𝑡 is a 1-space, a totally singular 2-space
or a nondegenerate 2-space, in each case spanned by standard basis vectors. However, if 𝑝 = 5, then
𝐻 ≤ 𝐺𝑈 , where 𝑈 = 〈𝑒1〉 or 𝑈 = 〈𝑒1, 𝑒2〉, as x is a regular unipotent element contained in the standard
Borel subgroup. In all the cases where U is totally singular (i.e., 𝐺𝑈 � 𝑃1 or 𝐺𝑈 � 𝑃2), it is easily
seen that 𝐺𝑈 stabilises a unique 6-space of V. We intersect this 6-space with 𝑊∗, identifying a 1-space
spanned by a regular nilpotent element v that must be stabilised by 𝐻𝑊 ∗ . This then reduces the problem
to computing the stabilizer of 𝑊∗ within a 𝑈2𝑇1. If 𝑝 = 5, we find that 〈𝑣〉 = 〈𝑢 (1) 〉, concluding by
Lemma 5.22.

Therefore, from now on, assume that 𝑝 ≠ 5. If 𝐻 = 𝐺 〈𝑒1 〉 , then H stabilises 〈𝑒±𝛼2 , 𝑒𝛼1 , 𝑒𝛼3 , 𝑒𝛼4 , ℎ𝛼2〉,
which intersects 𝑊∗ in 〈𝑣 (1) 〉. We find that 𝐺 〈𝑣 (1) 〉 = 𝑈2𝑇1, where

𝑈2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�����
1 𝑏 𝑏2𝜁

2 𝑎

1 𝜁𝑏 −
𝑏2𝜁

2
1 −𝑏

1

������
: 𝑎, 𝑏 ∈ 𝐾

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, 𝑇1 = {diag(𝜅3, 𝜅, 𝜅−1, 𝜅−3) : 𝜅 ∈ 𝐾∗}.

A direct calculation like in the proof of Lemma 5.22 then shows that (𝑈2𝑇1)𝑊 ∗ = ±〈𝑥〉. The other cases
with 𝐺𝑈 � 𝑃1 or 𝐺𝑈 � 𝑃2 are similarly dealt with. Here, we report just the intersection 〈𝑣〉. If𝑈 = 〈𝑒2〉,
then 〈𝑣〉 = 〈𝑣 (2) 〉; if 𝑈 = 〈 𝑓1〉, then 〈𝑣〉 = 〈𝑣 (4) 〉; if 𝑈 = 〈 𝑓2〉, then 〈𝑣〉 = 〈𝑣 (3) 〉; if 𝑈 = 〈𝑒1, 𝑒2〉, then
〈𝑣〉 = 〈𝑣 (1) 〉; if 𝑈 = 〈𝑒1, 𝑓2〉, then 〈𝑣〉 = 〈𝑣 (3) 〉; if 𝑈 = 〈𝑒2, 𝑓1〉, then 〈𝑣〉 = 〈𝑣 (4) 〉.
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It remains to consider the case 𝐻 ≤ 𝐺 〈𝑒1 , 𝑓1 〉 . Here, H fixes the subspace 〈ℎ𝛼1 , ℎ𝛼2 , 𝑒±𝛼2 , 𝑒±𝛼4〉, which
intersects 𝑊∗ in 〈𝑣 (0) 〉. Therefore, 𝐻𝑊 ∗ ≤ 𝑁𝐺 (𝑇), and we conclude by Lemma 5.23. �

Lemma 5.25. Suppose that 〈𝑥〉 ≤ 𝐻.Z2 < 𝐺, where H is an arbitrary subgroup of G. Then (𝐻.Z2)𝑊 ∗ ≤

𝑆∗ if and only if 𝐻𝑊 ∗ ≤ 𝑆∗.
Proof. The forward direction is trivial. Suppose that 𝐻𝑊 ∗ ≤ 〈𝑥, 𝜏∗〉 = 𝑆∗. Since x has order 5, we must
have 〈𝑥〉 ≤ 𝐻. Since 𝐻𝑊 ∗ ≤ 𝑆∗, the subgroup 〈𝑥〉 is the unique subgroup of order 5 in 𝐻𝑊 ∗ . Therefore,
since 𝐻𝑊 ∗ � (𝐻.Z2)𝑊 ∗ , the subgroup 〈𝑥〉 is normal in (𝐻.Z2)𝑊 ∗ . By Lemma 5.23, we know that the
stabilizer of 𝑊∗ in 𝑁𝐺 (〈𝑥〉) is 𝑆∗, concluding. �

Proposition 5.26. Let 𝐺 = 𝐶2, 𝜆 = 2𝜆1 with 𝑝 ≠ 2. Then 𝐶S′
5 (𝑉 ) = Z5.Z4 and 𝐶S′′

5 (𝑉 ) = Z5/(𝑝,5) .Z4.
Proof. Let 𝑆 = 𝐺𝑊 ∗ . We shall prove that 𝑆 ≤ 𝑁𝐺 (〈𝑥〉). This will conclude the proof of the proposition
as follows. By Lemma 5.23, we have (𝑁𝐺 (〈𝑥〉)𝑊 ∗ = 𝑆∗, which then implies 𝑆 = 𝑆∗ and that 𝑊∗ is in
a dense G-orbit on one of the two 𝐷5-orbits on S5 (𝑉). If 𝑝 ≠ 5, then 𝑊(𝑖,𝜁 ) and 𝑊(−𝑖,𝜁 ) intersect in
a 4-dimensional subspace, and therefore, by Lemma 2.6, they belong to distinct 𝐷5-orbits on S5 (𝑉).
They each have stabilizer 𝑆∗, concluding the 𝑝 ≠ 5 case. If 𝑝 = 5, the subspace 𝑊∗ intersects 𝑊(3,𝜁 )
trivially, which by Lemma 2.6 implies that 𝑊∗ and 𝑊(3,𝜁 ) belong to distinct 𝐷5-orbits on S5 (𝑉). Again,
𝐺𝑊 ∗ = 𝑆∗, concluding.

In order to prove that 𝑆 ≤ 𝑁𝐺 (〈𝑥〉), we show that for all 𝑝 < ∞ and 𝑒 ∈ Z≥1, if

〈𝑥〉 ≤ 𝑅 ≤ 𝑆𝑝4 (𝑝
𝑒) = 𝑆𝑝4 (𝑞) < 𝐺, with 𝑅 � 𝑁𝐺 (〈𝑥〉),

then R does not stabilise 𝑊∗. Note that this is indeed sufficient, since if 𝑔 ∈ 𝑆 \ 𝑁𝐺 (〈𝑥〉), then there
must exist 𝑒 ∈ Z≥1 such that 𝑔 ∈ 𝑆𝑝4 (𝑝

𝑒), with 𝑅 = 〈𝑥, 𝑔〉 satisfying the condition above. We shall
make extensive use of maximal subgroups of 𝑆𝑝4 (𝑞), often combined with exhaustive computations in
Magma. The commented code is made available both in the Appendix as well as on the author’s Github
[28]. The 𝑝 = ∞ case then follows from the 𝑝 < ∞ case since they are equivalent once p is sufficiently
large.

Suppose that

〈𝑥〉 ≤ 𝑅 ≤ 𝑀𝑞 < 𝑆𝑝4 (𝑞) < 𝐺, with 𝑅 � 𝑁𝐺 (〈𝑥〉),

where 𝑀𝑞 is a maximal subgroup of 𝑆𝑝4 (𝑞), as listed in Table 7. The goal is to prove that R does not
stabilize W.

If 𝑀𝑞 is as in one of the first 6 rows of Table 7, then by Lemma 5.25, we can assume that R is
reducible, and Lemma 5.24 implies that R does not stabilize W. If 𝑀𝑞 = 𝑆𝑝4 (𝑞0).(2, 𝑟) where r is prime
and 𝑞 = 𝑞𝑟

0, then Lemma 5.25 allows us to reduce to one of the other cases.
Suppose that 𝑀𝑞 is the double cover of 𝐴𝑙𝑡 (6), 𝑆𝑦𝑚(6) or 𝐴𝑙𝑡 (7), in which case 𝑞 = 𝑝. An exhaustive

search using Magma shows that 𝑍 (𝐺).〈𝑥〉 ≤ 𝑅∗ ≤ 𝑅 where 𝑅∗ = 𝑍 (𝐺).𝐴𝑙𝑡 (5), the double cover of
𝐴𝑙𝑡 (5), isomorphic to 𝑆𝐿2 (5). The general strategy adopted for this exhaustive search is the following.
We set up R as an abstract group. Then for all conjugacy classes of elements of order 5 of R, we take
a representative 𝑔5 and go through all subgroups of R that contain 𝑔5, determining which ones do not
normalise 〈𝑔5〉. By Lemma 5.24, we can assume that 𝑅∗ is irreducible in G. If 𝑝 ≠ 5, since 𝑝 ≠ 2 by
assumption and 𝑝 ≠ 3 by choice of 𝑀𝑞 , we can use ordinary character theory to show that 𝑅∗ does not
fix any 5-space of V. The subgroup 𝑅∗ must be embedded in G via its unique irreducible symplectic
character 𝜒 of degree 4. We then verify that 𝑆2(𝜒) = 𝜒4 + 𝜒5 + 𝜒7, where 𝜒4, 𝜒5, 𝜒7 are irreducible
characters of degrees 3, 3, 4. Therefore, 𝑅∗ fixes no 5-space of V. See Listing 3 for the corresponding
Magma code. If 𝑝 = 5, we can use a direct construction of 2.𝐴𝑙𝑡 (6) ≤ 𝑆𝑝4 (5) to check that 𝑅∗ acts on
V with composition factors of dimensions 3, 3, 3, 1. Again, this means that R fixes no 5-space of V. See
Listing 3 for the Magma code proving this.

Suppose that 𝑀𝑞 = 𝑍 (𝐺).Z4
2.𝑆𝑦𝑚(5), the normalizer of an extraspecial subgroup of G of minus

type. Similarly to the previous case, an exhaustive search shows that R must contain 𝑅∗ = 𝑍 (𝐺).Z4
2.〈𝑥〉
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or 𝑅∗ = 𝑍 (𝐺).𝐴𝑙𝑡 (5). By Lemma 5.24, we can assume that 𝑅∗ is irreducible in G. In the second case,
we have already seen that 𝑅∗ does not fix a 5-space of V when 𝑝 ≠ 3. If 𝑝 = 3, the same holds,
which can be checked directly in 𝑆𝑝4 (3) by taking an explicit construction of 𝑍 (𝐺).𝐴𝑙𝑡 (5). Therefore,
assume that 𝑅∗ = 𝑍 (𝐺).Z4

2.〈𝑥〉, a group with GAP Id (160, 199). If 𝑝 ≠ 5, we can use the ordinary
characters of 𝑅∗ to check that 𝑅∗ does not fix any totally singular 5-spaces of V. The subgroup 𝑅∗ must
be embedded in G via its unique irreducible symplectic character 𝜒 of degree 4. One then finds that
𝑆2 (𝜒) = 𝜓1 + 𝜓2, where 𝜓1 and 𝜓2 are distinct self-dual irreducible characters of degree 5. Therefore,
𝑅∗ stabilises exactly two nondegenerate 5-spaces of V. See Listing 2 for the Magma code. If 𝑝 = 5,
we can use a direct construction of Z2.Z

4
2.𝐴𝑙𝑡 (5) ≤ 𝑆𝑝4 (5) to show that the 𝐾𝑅∗-module 𝑉 ↓ 𝑅∗ has

two self-dual non-isomorphic composition factors, implying that 𝑅∗ does not stabilise a totally singular
5-space. See details of the computations in Listing 4.

It remains to consider the case 𝑀𝑞 = 𝑆𝐿2 (𝑞) with 𝑝 ≥ 5 and 𝑞 ≥ 7, as in the last row of Table 7.
In order to handle this case, we consider the subgroup structure of the maximal subgroups of 𝑆𝐿2 (𝑞),
as classified in Table 8. First note that 𝑆𝐿2 (𝑞) does not fix a 5-space of V, as if 𝑝 = 5 it acts on V
with composition factors of dimensions 4, 3, 3, while if 𝑝 > 5, it acts on V with composition factors
of dimension 7 and 3. Therefore, assume that 𝑅 ≤ 𝑀∗

𝑞 < 𝑆𝐿2 (𝑞), where 𝑀∗
𝑞 is a maximal subgroup

of 𝑆𝐿2 (𝑞), as described by Table 8. If 𝑀∗
𝑞 is as in one of the first five rows of Table 8, then by

Lemma 5.25, we can assume that R is reducible, and Lemma 5.24 implies that R does not fix 𝑊∗. If
𝑀∗

𝑞 = 𝑆𝐿2 (𝑞0).(2, 𝑟) where r is prime and 𝑞 = 𝑞𝑟
0, then Lemma 5.25 allows us to reduce to one of the

other cases. Since 𝑝 ≠ 2, the case 𝑀∗
𝑞 = 𝑃𝑆𝐿2 (𝑞0) is excluded, while since x has order 5, the cases

𝑀∗
𝑞 = Z2.Z

2
2.𝑆𝑦𝑚(3) and 𝑀∗

𝑞 = Z2.Z
2
2.Z3 are not possible. The only other possibility is 𝑀∗

𝑞 = 𝑆𝐿2 (5)
with 𝑝 ≠ 5, as per the last two rows of Table 8. In this case, we must have 𝑅 = 𝑀∗

𝑞 = 𝑆𝐿2 (5), which we
have already dealt with. This completes the case-by-case analysis. �

5.2. The case (𝐶3, 𝜆2, 𝑝, 7)

In this section, we handle the last remaining case needed to complete the proof of Theorem 2. In
particular, we shall prove that the 𝑡𝑠-small quadruples (𝐶3, 𝜆2, 𝑝, 7′) and (𝐶3, 𝜆2, 𝑝, 7′′) have a finite
generic stabilizer. The strategy is entirely similar to the one used for the (𝐶2, 2𝜆1, 𝑝, 5) case. We shall,
however, make even greater use of computational methods, sometimes resorting to solving large systems
of equations using Magma. Again, the code can be found in Appendix A, as well as on the author’s
GitHub [28].

Suppose that 𝑝 ≠ 3. Let 𝐺 = 𝑆𝑝6 (𝐾) and order the standard basis of the natural module 𝑉𝑛𝑎𝑡 as
(𝑒1, 𝑒2, 𝑒3, 𝑓3, 𝑓2, 𝑓1). Let V be the submodule of

∧2 𝑉𝑛𝑎𝑡 defined by

𝑉 = 〈𝑒𝑖 ∧ 𝑒 𝑗 , 𝑓𝑖 ∧ 𝑓 𝑗 , 𝑒𝑖 ∧ 𝑓 𝑗 ,
∑

𝛼𝑖𝑒𝑖 ∧ 𝑓𝑖 : 𝑖 ≠ 𝑗 ,
∑

𝛼𝑖 = 0〉.

Then 𝑉 = 𝑉𝐺 (𝜆2). Let 𝜔 be a primitive cube root of unity and let (𝑣1, . . . , 𝑣14) be the ordered basis of
V given by

𝑣1 = 𝑒1 ∧ 𝑒2, 𝑣5 = 𝑒2 ∧ 𝑓3, 𝑣10 = 𝑒3 ∧ 𝑓2,

𝑣2 = 𝑒1 ∧ 𝑒3, 𝑣6 = 𝑒1 ∧ 𝑓2, 𝑣11 = 𝑒3 ∧ 𝑓1,

𝑣3 = 𝑒2 ∧ 𝑒3, 𝑣7 = 𝑒1 ∧ 𝑓1 + 𝜔𝑒2 ∧ 𝑓2 + 𝜔2𝑒3 ∧ 𝑓3, 𝑣12 = 𝑓2 ∧ 𝑓3,

𝑣4 = 𝑒1 ∧ 𝑓3, 𝑣8 = 𝑒1 ∧ 𝑓1 + 𝜔2𝑒2 ∧ 𝑓2 + 𝜔𝑒3 ∧ 𝑓3, 𝑣13 = 𝑓1 ∧ 𝑓3,

𝑣9 = 𝑒2 ∧ 𝑓1, 𝑣14 = 𝑓1 ∧ 𝑓2.

Then it is easy to check that G fixes a nondegenerate quadratic form on V, given by

𝑄

( 14∑
1

𝛼𝑖𝑣𝑖

)
=

7∑
1

𝛼𝑖𝛼15−𝑖 .
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Let T be the standard maximal torus of G. For i a primitive fourth root of unity, let 𝑊(𝜔,𝑖) be the totally
singular 7-space of V spanned by

𝑣 (0) = 𝑒1 ∧ 𝑓1 + 𝜔𝑒2 ∧ 𝑓2 + 𝜔2𝑒3 ∧ 𝑓3,

𝑣 (1) = 𝑒2 ∧ 𝑓3 + 𝑖𝑒1 ∧ 𝑓2,

𝑣 (2) = 𝑒1 ∧ 𝑓3 − 𝑖𝑒2 ∧ 𝑒3,

𝑣 (3) = 𝑓1 ∧ 𝑓2 + 𝑖𝑒1 ∧ 𝑒3,

𝑣 (4) = 𝑒1 ∧ 𝑒2 + 𝑖 𝑓1 ∧ 𝑓3,

𝑣 (5) = 𝑒3 ∧ 𝑓1 − 𝑖 𝑓2 ∧ 𝑓3,

𝑣 (6) = 𝑒3 ∧ 𝑓2 + 𝑖𝑒2 ∧ 𝑓1.

Let 𝑊7 be the 7-space of V spanned by

𝑢 (0) = 𝑒1 ∧ 𝑓1 + 4𝑒2 ∧ 𝑓2 + 2𝑒3 ∧ 𝑓3,

𝑢 (1) = 𝑒1 ∧ 𝑒2 + 3𝑒3 ∧ 𝑓1 + 3 𝑓2 ∧ 𝑓3,

𝑢 (2) = 𝑒2 ∧ 𝑒3 + 4 𝑓1 ∧ 𝑓2,

𝑢 (3) = 𝑒1 ∧ 𝑓3 + 4 𝑓1 ∧ 𝑓2,

𝑢 (4) = 𝑒2 ∧ 𝑓3 + 2𝑒1 ∧ 𝑓2,

𝑢 (5) = 𝑒2 ∧ 𝑓1 + 5𝑒3 ∧ 𝑓2,

𝑢 (6) = 𝑓1 ∧ 𝑓3,

a totally singular subspace if 𝑝 = 7. Let

𝜏 =

��������

0 0 0 0 −1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

���������
, and 𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag(𝜁−1, 𝜁−2, 𝜁−3, 𝜁3, 𝜁2, 𝜁) with 𝜁7 = 1, 𝜁 ≠ 1, if 𝑝 ≠ 7;����������

1 1 4 6 2 1
1 1 4 1 5

1 1 3 6
1 6 4

1 6
1

�����������
, if 𝑝 = 7.

Furthermore, let

𝜏∗ =

{
𝜏, if 𝑝 ≠ 7;
diag(𝛼, 5𝛼, 4𝛼, 6𝛼, 2𝛼, 3𝛼), where 𝛼2 = 5, if 𝑝 = 7.

Finally, let

𝑆† = 〈𝑥, (𝜏∗)4〉, 𝑆∗ = 〈𝑥, 𝜏∗〉, and 𝑊∗ =

{
𝑊(𝜔,𝑖) , if 𝑝 ≠ 7;
𝑊7, if 𝑝 = 7.

With this setup, it is easy to check that 𝑆† ≤ 𝑆∗ ≤ 𝐺𝑊 ∗ .

Proposition 5.27. Let 𝐺 = 𝐶3, 𝜆 = 𝜆2 with 𝑝 = 7. Then 𝐶S′
7 (𝑉 ) = Z6.

Proof. We use the setup of [10, Lemma 4.8(i)] and its proof. Let ℎ0 = diag(−1,−2,−3, 3, 2, 1), a regular
semisimple element of Lie(𝑇), and set𝔊 = 〈ℎ0〉. For a subspace U of Lie(𝐺), write AnnLie(𝐺) (𝑈) for the
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subspace {𝑣 ∈ Lie(𝐺) : [𝑣,𝑈] ≤ 𝑈}. A straightforward calculation shows that AnnLie(𝐺) (𝑊(2,𝑖) ) = 𝔊.
Let 𝑆 = 𝐺𝑊(2,𝑖) and take 𝑔 ∈ 𝑆. We have 𝔊 = AnnLie(𝐺) (𝑔.𝑊(2,𝑖) ) = 𝑔.𝔊. Therefore, 𝑔.𝔊 = 𝔊, which
is easily seen to imply 𝑔 ∈ 𝑇.〈𝜏〉. A direct calculation shows that 𝑇 ∩ 𝑆 = ±1, which implies that
𝑆 = 〈𝜏〉 = 𝑍 (𝐺).Z6. Since dim 𝐺 − dim 𝑆 = dim 𝐺 = dimS ′

7(𝑉), we conclude that 𝐶S′
7 (𝑉 ) = Z6. �

Lemma 5.28. Suppose that 𝐻 ≤ 𝐺 is a reducible subgroup of G containing 𝑆†. Then 𝐻𝑊 ∗ ≤ 𝑆∗.

Proof. Suppose that 𝑝 = 7. Since 𝑥 ∈ 𝑆† is a regular unipotent element contained in the standard Borel
subgroup B, we have that H is contained in 𝐺 〈𝑒1 〉 , 𝐺 〈𝑒1 ,𝑒2 〉 or 𝐺 〈𝑒1 ,𝑒2 ,𝑒3 〉 . We consider each of these
cases and deduce that 𝐻𝑊 ∗ ≤ 𝐵. We then use Magma to directly show that 𝐵𝑊 ∗ = 𝑆∗, concluding as
required. Suppose that 𝐻 ≤ 𝐺 〈𝑒1 ,𝑒2 〉 . The group 𝐺 〈𝑒1 ,𝑒2 〉 stabilises 𝑈6 = 〈𝑒1 ∧ 𝑒2, 𝑒1 ∧ 𝑒3, 𝑒2 ∧ 𝑒3, 𝑒1 ∧
𝑓3, 𝑒2 ∧ 𝑓3, 𝑒1 ∧ 𝑓1 + 𝑒2 ∧ 𝑓2 −2𝑒3 ∧ 𝑓3〉, and therefore, 𝐻𝑊 ∗ must stabilise 𝑊∗ ∩𝑈6 = 〈𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3〉
as well as 𝑊∗ ∩ (𝑈6)

⊥ = 〈𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3, 𝑒2 ∧ 𝑓3 + 2𝑒1 ∧ 𝑓2〉. The latter implies that 𝐻𝑊 ∗ stabilises
〈𝑒1, 𝑒2, 𝑒3, 𝑓3, 𝑓2〉 and therefore also its radical 〈𝑒1〉. Let 𝑔 ∈ 𝐻𝑊 ∗ . Since g stabilises 〈𝑒1〉, 〈𝑒1, 𝑒2〉,
〈𝑒1, 𝑒2〉

⊥ and 〈𝑒1∧ 𝑓3−𝑒2∧𝑒3〉, it is easy to see that 𝑔.𝑒3 ∈ 〈𝑒1, 𝑒2, 𝑒3〉. Therefore, 𝑔 ∈ 𝐵 and 𝐻𝑊 ∗ ≤ 𝐵.
Now consider the case 𝐻 ≤ 𝐺 〈𝑒1 〉 . Any element of H must also stabilise 〈𝑒1〉

⊥ = 〈𝑒1, 𝑒2, 𝑒3, 𝑓3, 𝑓2〉,
and similarly to the previous case, we find that 𝐻𝑊 ∗ stabilises 〈𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3, 𝑒2 ∧ 𝑓3 + 2𝑒1 ∧ 𝑓2〉.
Let 𝑔 = (𝑎𝑖 𝑗 )𝑖 𝑗 ∈ 𝐻𝑊 ∗ . We have 𝑔.(𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3) = 𝑎11𝑒1 ∧ (𝑎14𝑒1 + 𝑎24𝑒2 + 𝑎34𝑒3 + 𝑎44 𝑓3 +

𝑎54 𝑓2) − (𝑎12𝑒1 + 𝑎22𝑒2 + 𝑎32𝑒3 + 𝑎42 𝑓3 + 𝑎52 𝑓2) ∧ (𝑎13𝑒1 + 𝑎23𝑒2 + 𝑎33𝑒3 + 𝑎43 𝑓3 + 𝑎53 𝑓2). Since
𝑔.(𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3) = 𝛾1 (𝑒1 ∧ 𝑓3 − 𝑒2 ∧ 𝑒3) + 𝛾2 (𝑒2 ∧ 𝑓3 + 2𝑒1 ∧ 𝑓2) for some 𝛾1, 𝛾2 ∈ 𝐾 , we must have

det
(
𝑎22 𝑎23
𝑎52 𝑎53

)
= det

(
𝑎32 𝑎33
𝑎42 𝑎43

)
= det

(
𝑎32 𝑎33
𝑎52 𝑎53

)
= det

(
𝑎42 𝑎43
𝑎52 𝑎53

)
= 0.

If (𝑎52, 𝑎53) ≠ (0, 0), we get

𝛾1 = det
(
𝑎22 𝑎23
𝑎32 𝑎33

)
= 0 = det

(
𝑎22 𝑎23
𝑎42 𝑎43

)
= 𝛾2,

a contradiction. Therefore, 𝑎52 = 𝑎53 = 0. Considering the image of the second basis vector 𝑒2 ∧ 𝑓3 +
2𝑒1 ∧ 𝑓2, we similarly find that 𝑎52 = 𝑎54 = 0. Therefore, g stabilises 〈𝑒1, 𝑒2, 𝑒3, 𝑓3〉, and therefore also
its radical 〈𝑒1, 𝑒2〉, reducing to the case 𝐻 ≤ 𝐺 〈𝑒1 ,𝑒2 〉 . The case 𝐻 ≤ 𝐺 〈𝑒1 ,𝑒2 ,𝑒3 〉 follows similarly. This
proves that 𝐻𝑊 ∗ ≤ 𝐵. It remains to show that 𝐵𝑊 ∗ = 𝑆∗. Given 𝑔 ∈ 𝐵, we can write it as

𝑔 = ℎ𝛼1 (𝑡1)ℎ𝛼2 (𝑡2)ℎ𝛼3 (𝑡3)𝑥100(𝑎1)𝑥110 (𝑎2)𝑥010(𝑎3)𝑥221(𝑎4)𝑥121(𝑎5)

𝑥111 (𝑎6)𝑥021(𝑎7)𝑥011 (𝑎8)𝑥001(𝑎9),

where 𝑡1, 𝑡2, 𝑡3 ∈ 𝐾∗ and 𝑎𝑖 ∈ 𝐾 for 1 ≤ 𝑖 ≤ 9. Let U be the subspace of V with basis given by

𝑢1, . . . , 𝑢7 = 𝑒1 ∧ 𝑒3, 𝑒1 ∧ 𝑓2, 𝑒1 ∧ 𝑓1 − 𝑒2 ∧ 𝑓2, 𝑒3 ∧ 𝑓2, 𝑒3 ∧ 𝑓1, 𝑓2 ∧ 𝑓3, 𝑓1 ∧ 𝑓2.

Then 𝑉 = 𝑊∗ ⊕𝑈. For each basis vector 𝑢 (𝑖) of 𝑊∗, write 𝑔.𝑢 (𝑖) as 𝑤∗ +
∑7

𝑗=1 𝑓𝑖 𝑗𝑢𝑖 , where 𝑤∗ ∈ 𝑊∗ and
we view 𝑓𝑖 𝑗 as an element of F7 [𝑡

±1
1 , 𝑡±1

2 , 𝑡±1
3 , 𝑎1, . . . , 𝑎9]. Then to determine 𝐵𝑊 ∗ it suffices to determine

the zero locus of the ideal 𝐼 ⊗𝐾 ≤ 𝐾 [𝑡±1
1 , 𝑡±1

2 , 𝑡±1
3 , 𝑎1, . . . , 𝑎9], where 𝐼 ≤ F7 [𝑡

±1
1 , 𝑡±1

2 , 𝑡±1
3 , 𝑎1, . . . , 𝑎9] is

the ideal generated by { 𝑓𝑖 𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 7}. We do this by first determining a Groebner basis for I using
Magma. See Listing 5 for the code that does this. We find that I is generated by

𝑎1 + 6𝑎9, 𝑎2 + 3𝑎2
9, 𝑎3 + 6𝑎9, 𝑎4 + 𝑎5

9, 𝑎5 + 6𝑎4
9, 𝑎6 + 𝑎3

9, 𝑎7 + 2𝑎3
9, 𝑎8 + 3𝑎2

9, 𝑎7
9 + 6𝑎9,

𝑡1 + 6𝑡−2
2 𝑡−3

3 , 𝑡2 + 6𝑡−2
2 , 𝑡3 + 6𝑡−3

3 , 𝑡−1
1 + 6(𝑡2𝑡3)−1, 𝑡−3

2 + 6, 𝑡−4
3 + 6.

It is now easy to find the zero locus of 𝐼 ⊗ 𝐾 , to determine that

ℎ𝛼1 (𝑡1)ℎ𝛼2 (𝑡2)ℎ𝛼3 (𝑡3)𝑥100(𝑎1)𝑥110(𝑎2)𝑥010(𝑎3)𝑥221(𝑎4)
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𝑥121 (𝑎5)𝑥111(𝑎6)𝑥021 (𝑎7)𝑥011(𝑎8)𝑥001(𝑎9) ∈ 𝐵𝑊 ∗

⇐⇒ 𝑎1 ∈ F7, 𝑎9 = 𝑎1, 𝑎2 = 4𝑎2
1, 𝑎3 = 𝑎1, 𝑎4 = 6𝑎5

1, 𝑎5 = 𝑎4
1, 𝑎6 = −𝑎3

1, 𝑎7 = 5𝑎3
1, 𝑎8 = 4𝑎2

1,

𝑡3
2 = 𝑡4

3 = 1, 𝑡1 = 𝑡2𝑡3.

Taking 𝑎1 = 𝑡1 = 𝑡2 = 𝑡3 = 1, we get the element x, while taking 𝑎1 = 0 we get the subgroup generated
by 𝜏∗. This completes the proof that 𝐵𝑊 ∗ = 𝑆∗.

We now turn to the case 𝑝 ≠ 7. The only proper nonzero subspaces of V stabilised by 𝑆† are
〈𝑒1, 𝑒2, 𝑓3〉 and 〈𝑒3, 𝑓1, 𝑓2〉. Suppose that 𝐻 ≤ 𝐺 〈𝑒1 ,𝑒2 , 𝑓3 〉 . Then it is easy to see that 𝐻𝑊 ∗ stabilises the
subspace 𝑊‡ = 〈𝑣 (0) , 𝑣 (1) , 𝑣 (2) , 𝑣 (4) 〉. Let

𝑔 = 𝑢−𝑛𝑡𝑢,

where

𝑢 = 𝑥100 (𝑎1)𝑥110(𝑎2)𝑥010(𝑎3)𝑥221(𝑎4)𝑥121(𝑎5)𝑥111(𝑎6)𝑥021(𝑎7)𝑥011(𝑎8)𝑥001(𝑎9),

𝑡 = ℎ𝛼1 (𝑡1)ℎ𝛼2 (𝑡2)ℎ𝛼3 (𝑡3),

𝑛 ∈ {1, 𝑛1, 𝑛2, 𝑛1𝑛2, 𝑛2𝑛1, 𝑛1𝑛2𝑛1},

𝑢− = 𝑥100 (𝑏1)𝑥110(𝑏2)𝑥010(𝑏3)𝑥221(𝑏4)𝑥121 (𝑏5)𝑥111(𝑏6)𝑥021(𝑏7)𝑥011(𝑏8)𝑥001(𝑏9),

𝑢− ∈ 〈𝑋𝛼 : 𝑛−1.𝛼 ∈ Φ−, 𝛼 ∈ Φ+〉,

for 𝑎1, . . . , 𝑎9, 𝑏1, . . . , 𝑏9 ∈ 𝐾 and 𝑡1, 𝑡2, 𝑡3 ∈ 𝐾∗. Then g is an arbitrary element of 𝐺 〈𝑒1 ,𝑒2 ,𝑒3 〉 , written
in terms of its Bruhat decomposition, and therefore, 𝑔𝑛3 is an arbitrary element of 𝐺 〈𝑒1 ,𝑒2 , 𝑓3 〉 .

For each possible n, we use Magma to solve the system of equations corresponding to 𝑔𝑛3 ∈ 𝐺𝑊 ‡ ,
similarly to how we did for 𝑝 = 7. More care is now required for the setup of the computations in
Magma since the characteristic is arbitrary. What we do is find a Groebner basis over Q and also output
the list of primes that the algorithm divided by in its various steps. If p is not in such list, we can use
the Groebner basis to easily solve the system; otherwise, we simply run the Groebner basis algorithm
again over F𝑝 . This is done as per Listing 6 and Listing 7. We find that 𝑔𝑛3 does not stabilise 𝑊‡ when
𝑛 ∈ {𝑛1, 𝑛2, 𝑛1𝑛2𝑛2}. When 𝑛 ∈ {1, 𝑛1𝑛2, 𝑛2𝑛1}, we find that 𝑔𝑛3 stabilises 𝑊‡ if and only if 𝑢 = 𝑢− = 1
and 𝑡1, 𝑡2, 𝑡3 satisfy the following:

𝑡1 = 𝑡−2
2 𝑡−1

3 , 𝑡7
2 = 1, 𝑡2

3 = 1, when 𝑛 = 1;
𝑡1 = −𝑡−2

2 𝑡−1
3 , 𝑡7

2 = 1, 𝑡2
3 = 1, when 𝑛 = 𝑛1𝑛2;

𝑡1 = 𝑡−2
2 𝑡−1

3 , 𝑡7
2 = −1, 𝑡2

3 = 1, when 𝑛 = 𝑛2𝑛1.

This is easily seen to be equivalent to 𝑔𝑛3 ∈ 𝑆∗. The case 𝐻 ≤ 𝐺 〈𝑒3 , 𝑓1 , 𝑓2 〉 follows similarly, with an
arbitrary element of 𝐺 〈𝑒3 , 𝑓1 , 𝑓2 〉 being given by 𝑔𝑛1𝑛2𝑛3𝑛2𝑛1𝑛2𝑛3𝑛2 . �

Lemma 5.29. Let 𝐻 = 𝑁𝐺 (𝑆†). Then 𝐻𝑊 ∗ = 𝑆∗.

Proof. Assume 𝑝 ≠ 7. Since x is a regular semisimple element, we have 𝐻 ≤ 𝑁𝐺 (𝑇), from which it is
easy to check that 𝐻 ≤ 𝑇.〈𝜏∗〉. A quick calculation shows that 𝑇𝑊 ∗ = ±〈𝑥〉, concluding as required.

If 𝑝 = 7, we have 𝐻 ≤ 𝐵, where B is the standard Borel subgroup of G. Then we conclude by
Lemma 5.28. �

Lemma 5.30. Suppose that 𝑆† ≤ 𝐻.Z2 < 𝐺, where H is an arbitrary subgroup of G. Then (𝐻.Z2)𝑊 ∗ ≤

𝑆∗ if and only if 𝐻𝑊 ∗ ≤ 𝑆∗.

Proof. The forward direction is trivial. Suppose that 𝐻𝑊 ∗ ≤ 𝑆∗. Since 𝑆† has order 21, we must have
𝑆† ≤ 𝐻. Since 𝐻𝑊 ∗ ≤ 𝑆∗, the subgroup 𝑆† is the unique subgroup of order 21 in 𝐻𝑊 ∗ . Therefore,
𝐻𝑊 ∗ � (𝐻.Z2)𝑊 ∗ implies that 𝑆† is normal in (𝐻.Z2)𝑊 ∗ . By Lemma 5.29, we know that the stabilizer
of 𝑊∗ in 𝑁𝐺 (𝑆†) is 𝑆∗, concluding. �
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Proposition 5.31. Let 𝐺 = 𝐶3, 𝜆 = 𝜆2 with 𝑝 ≠ 3. Then 𝐶S′
7 (𝑉 ) = Z7.Z6 and 𝐶S′′

7 (𝑉 ) = Z7/(𝑝,7) .Z6.

Proof. Let 𝑆 = 𝐺𝑊 ∗ . We shall prove that 𝑆 ≤ 𝑁𝐺 (𝑆†). This will conclude the proof of the proposition
as follows. By Lemma 5.29, we have (𝑁𝐺 (𝑆†))𝑊 ∗ = 𝑆∗, which then implies 𝑆 = 𝑆∗ and that 𝑊∗ is in
a dense G-orbit on one of the two 𝐷7-orbits on S7(𝑉). If 𝑝 ≠ 7, then 𝑊(𝜔,𝑖) and 𝑊(𝜔2 ,𝑖) intersect in
a 6-dimensional subspace, and therefore, by Lemma 2.6, they belong to distinct 𝐷7-orbits on S7 (𝑉).
They each have stabilizer 𝑆∗, concluding the 𝑝 ≠ 7 case. If 𝑝 = 7, the subspace 𝑊∗ intersects 𝑊(2,𝑖)
trivially, which by Lemma 2.6 implies that 𝑊∗ and 𝑊(4,𝜁 ) belong to distinct 𝐷7-orbits on S7(𝑉). Again
𝐺𝑊 ∗ = 𝑆∗, concluding.

In order to prove that 𝑆 ≤ 𝑁𝐺 (〈𝑥〉), we show that for all 𝑝 < ∞ and 𝑒 ∈ Z≥1, if

𝑆† ≤ 𝑅 ≤ 𝑆𝑝6 (𝑝
𝑒) = 𝑆𝑝6 (𝑞) < 𝐺, with 𝑅 � 𝑁𝐺 (𝑆†),

then R does not stabilise 𝑊∗. Note that this is indeed sufficient since if 𝑔 ∈ 𝑆 \ 𝑁𝐺 (𝑆†), then there must
exist 𝑒 ∈ Z≥1 such that 𝑔 ∈ 𝑆𝑝6 (𝑝

𝑒), with 𝑅 = 〈𝑆, 𝑔〉 satisfying the condition above. We shall make
extensive use of maximal subgroups of 𝑆𝑝6 (𝑞), combined with computations in Magma. The 𝑝 = ∞

case then follows from the 𝑝 < ∞ case since they are equivalent once p is sufficiently large.
Suppose that

𝑆† ≤ 𝑅 ≤ 𝑀𝑞 < 𝑆𝑝6 (𝑞) < 𝐺, with 𝑅 � 𝑁𝐺 (𝑆†),

where 𝑀𝑞 is a maximal subgroup of 𝑆𝑝6 (𝑞), as listed in [5, Table 8.28, Table 8.29]. By Lemma 5.28, we
can assume that 𝑀𝑞 is an irreducible subgroup, with order divisible by |𝑆† | = 21, and by Lemma 5.30,
we can assume that 𝑀𝑞 does not contain a reducible subgroup of index 2. The goal is to prove that R does
not stabilize 𝑊∗. Going through (5, Table 8.28,Table 8.29) for the maximal subgroups of 𝑆𝑝6 (𝑞), and (5,
Table 8.30,Table 8.31,Table 8.32,Table 8.33,Table 8.34) for the maximal subgroups of 𝑆𝑂+

6 (𝑞), 𝑆𝑂
−
6 (𝑞)

and 𝐺2(𝑞) in even characteristic, we reduce to having to consider the cases in the following table:

Class Mq Notes

𝒞2 (𝑆𝑝2 (𝑞)
3) .𝑆𝑦𝑚(3)

𝒞4 𝑆𝑝2 (𝑞) ⊗ 𝐺𝑂3 (𝑞) 𝑝 ≠ 2
𝒞5 𝑆𝑝6 (𝑞0) .Z2 𝑞 = 𝑞2

0
𝒮 𝑍 (𝐺) .𝑃𝑆𝐿2 (7) .Z2
𝒮 𝑍 (𝐺) .𝑃𝑆𝐿2 (13)
𝒮 (𝑍 (𝐺) ×𝑈3 (3)) .Z2
𝒮 𝑍 (𝐺) .𝐽2
𝒮 𝑆𝐿2 (𝑞) 𝑝 ≥ 7

If 𝑀𝑞 is 𝑆𝑝6 (𝑞0).Z2, then by Lemma 5.30, we reduce to one of the other cases.
Suppose that 𝑀𝑞 = (𝑆𝑝2 (𝑞)

3).𝑆𝑦𝑚(3). By Lemma 5.30, we can assume that 𝑅 ≤ (𝑆𝑝2 (𝑞)
3).Z3.

Since x has order 7, it must be contained in 𝑆𝑝2 (𝑞)
3. Therefore, 𝑝 ≠ 7 since 𝑆𝑝2 (𝑞)

3 does not contain
a regular unipotent element. Then 𝑆𝑝2 (𝑞)

3 must be the stabilizer of the orthogonal sum 〈𝑒1, 𝑓1〉 ⊥

〈𝑒2, 𝑓2〉 ⊥ 〈𝑒3, 𝑓3〉 in 𝑆𝑝6 (𝑞). This implies that (𝑆𝑝2 (𝑞)
3).Z3 = (𝑆𝑝2 (𝑞)

3).〈𝜏4〉. Since 𝜏4 ∈ 𝑆†, it
remains to determine the stabilizer of 𝑊∗ in (𝑆𝑝2 (𝑞)

3), which is easily seen to be 〈𝑥, 𝜏3〉 ≤ 𝑆∗,
concluding.

Suppose that 𝑀𝑞 = 𝑆𝑝2 (𝑞) ⊗ 𝐺𝑂3 (𝑞) with 𝑝 ≠ 2. Then 𝑀𝑞 does not contain a regular unipotent
element, and therefore, 𝑝 ≠ 7. Comparing the actions of 𝑀𝑞 and 𝑆† on V, we also see that 𝑀𝑞 does not
contain 𝑆†.

Suppose that 𝑀𝑞 = 𝑍 (𝐺).𝑃𝑆𝐿2(7).Z2. By Lemma 5.30, we can assume that 𝑅 ≤ 𝑍 (𝐺).𝑃𝑆𝐿2(7).
Here, we use Magma to determine that the only possibility for R is 𝑍 (𝐺).𝑃𝑆𝐿2 (7) itself, which acts
on V as a sum of a 6-dimensional irreducible and an 8-dimensional irreducible when 𝑝 ≠ 7, and with
composition factors of dimension 5, 1, 3, 5 when 𝑝 = 7, therefore not stabilising 𝑊∗. The Magma code
used here and for the next cases can be found in Listing 8.
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Suppose that 𝑀𝑞 = 𝑍 (𝐺).𝑃𝑆𝐿2(13). Then 𝑀𝑞 does not contain a subgroup of order 21, a contradic-
tion. Suppose that 𝑀𝑞 = (𝑍 (𝐺) ×𝑈3 (3)).Z2. Clearly, we can reduce to the case 𝑅 ≤ 𝑈3 (3). Here, we
find that the only possibility for R is 𝑃𝑆𝐿2 (7), concluding like for the 𝑀𝑞 = 𝑍 (𝐺).𝑃𝑆𝐿2(7).Z2 case.

Suppose that 𝑀𝑞 = 𝑍 (𝐺).𝐽2. Then we find that all the possibilities for R contain one of 𝑃𝑆𝐿2 (7),
𝑆𝐿2 (7), 𝑈3 (3), concluding via the previous analysis. Finally, if 𝑀𝑞 = 𝑆𝐿2 (𝑞), a similar treatment using
the maximal subgroups of 𝑆𝐿2 (𝑞) allows us to conclude. �

6. Proof of Theorem 4

In this section, we shall prove Theorem 4. Unlike with previous work, we shall not be interested in
determining the exact structure of the (semi-)generic stabilizers, if they exist. Instead, we will often
resort to finding a dense open subset of the variety where the stabilizers have a certain minimal dimension
in order to exclude the possibility of a dense orbit, in a very similar fashion to the work we have done
to determine (semi-)generic stabilizers. The following lemma is a crucial tool for narrowing down the
cases we will have to consider.

Lemma 6.1. Let 𝐻 = 𝐶𝑙 (𝑉1) ⊗ 𝐶𝑙 (𝑉2) ≤ 𝐶𝑙 (𝑉1 ⊗ 𝑉2) = 𝐶𝑙 (𝑉). Assume that dim𝑉2 = 𝑘 dim𝑉1
for some 𝑘 ≥ 1. Let 𝐺 = 𝐶𝑙 (𝑉1) ⊗ 𝐶𝑙 (𝑉 ′

2) ≤ 𝐶𝑙 (𝑉1 ⊗ 𝑉 ′
2) = 𝐶𝑙 (𝑉 ′) with dim𝑉 ′

2 ≥ dim𝑉2 and
𝐶𝑙 (𝑉), 𝐶𝑙 (𝑉 ′) = 𝑆𝑂 (𝑉), 𝑆𝑂 (𝑉 ′) or 𝐶𝑙 (𝑉), 𝐶𝑙 (𝑉 ′) = 𝑆𝑝(𝑉), 𝑆𝑝(𝑉 ′). Then H has a dense orbit on
S𝑘 (𝑉) if and only if G has a dense orbit on S𝑘 (𝑉

′).

Proof. Write dim𝑉1 = 𝑑1, dim𝑉2 = 𝑑2 = 𝑘𝑑1, dim𝑉 ′
2 = 𝑑 ′

2; then dim𝑉 = 𝑑1𝑑2, dim𝑉 ′ = 𝑑1𝑑
′
2. We

may assume 𝑉2 ≤ 𝑉 ′
2; let 𝑉 ′′

2 be the orthogonal complement to 𝑉2 in 𝑉 ′
2, so that dim𝑉 ′′

2 = 𝑑 ′
2 − 𝑑2. Let

𝜖𝑉 be 1 or −1 according as V and 𝑉 ′ are both orthogonal or both symplectic, and similarly 𝜖𝑉2 be 1 or
−1 according as 𝑉2, 𝑉 ′

2 and 𝑉 ′′
2 are all orthogonal or all symplectic. Then

dim 𝐺 − dimS𝑘 (𝑉
′) = dim𝐶𝑙 (𝑉1) + dim𝐶𝑙 (𝑉 ′

2) − 𝑘𝑑1𝑑
′
2 +

3𝑘2 + 𝜖𝑉 𝑘

2
,

dim 𝐻 − dimS𝑘 (𝑉) = dim𝐶𝑙 (𝑉1) + dim𝐶𝑙 (𝑉2) − 𝑘𝑑1𝑑2 +
3𝑘2 + 𝜖𝑉 𝑘

2
;

thus,

(dim 𝐺 − dimS𝑘 (𝑉
′)) − (dim 𝐻 − dimS𝑘 (𝑉))

= dim𝐶𝑙 (𝑉 ′
2) − dim𝐶𝑙 (𝑉2) − 𝑘𝑑1(𝑑

′
2 − 𝑑2)

=
1
2
𝑑 ′

2 (𝑑
′
2 − 𝜖𝑉2 ) −

1
2
𝑑2(𝑑2 − 𝜖𝑉2 ) − 𝑑2(𝑑

′
2 − 𝑑2)

=
1
2
(𝑑 ′

2 − 𝑑2) (𝑑
′
2 − 𝑑2 − 𝜖𝑉2 )

= dim𝐶𝑙 (𝑉 ′′
2 ).

Now let 𝑣1, . . . , 𝑣𝑑1 be a fixed basis of 𝑉1. Given 𝑦 ∈ S𝑘 (𝑉
′), choose a basis 𝑥1, . . . , 𝑥𝑘 of y and write

each 𝑥 𝑗 uniquely as
∑𝑑1

𝑖=1 𝑣𝑖⊗𝑢𝑖 𝑗 with each 𝑢𝑖 𝑗 ∈ 𝑉 ′
2; set supp2(𝑦) = 〈𝑢𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑑1, 1 ≤ 𝑗 ≤ 𝑘〉 ≤ 𝑉 ′

2.
Define

𝑌 = {𝑦 ∈ S𝑘 (𝑉
′) : supp2 (𝑦) is nondegenerate of dimension 𝑑2}.

The set Y is dense in S𝑘 (𝑉
′) because the set {𝑦 ∈ S𝑘 (𝑉

′) : dim supp2(𝑦) < 𝑑2} is a proper closed
subvariety of S𝑘 (𝑉

′), and nondegenerate 𝑑2-spaces are dense in the variety of all 𝑑2-spaces in 𝑉 ′
2;

likewise, 𝑌 ∩ S𝑘 (𝑉) is dense in S𝑘 (𝑉). Moreover, all nondegenerate 𝑑2-spaces in 𝑉 ′
2 lie in a single

𝐶𝑙 (𝑉 ′
2)-orbit; thus, given 𝑦 ∈ 𝑌 , by applying an element of G, we may assume that supp2 (𝑦) = 𝑉2,
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and then the stabilizer of y in G must fix 𝑉2 and hence 𝑉 ′′
2 , whence 𝐺𝑦 = 𝐻𝑦 × 𝐶𝑙 (𝑉 ′′

2 ), so that
dim 𝐺𝑦 − dim 𝐻𝑦 = dim𝐶𝑙 (𝑉 ′′

2 ), and hence,

dimS𝑘 (𝑉
′) − (dim 𝐺 − dim 𝐺𝑦) = dimS𝑘 (𝑉) − (dim 𝐻 − dim 𝐻𝑦).

Now if H has a dense orbit on S𝑘 (𝑉), it must meet 𝑌 ∩S𝑘 (𝑉); thus, it contains some 𝑦 ∈ 𝑌 ∩S𝑘 (𝑉) for
which the right side of the above equation is zero, whence the left side is also zero and so G has a dense
orbit on S𝑘 (𝑉

′). Conversely, if G has a dense orbit on S𝑘 (𝑉
′), it must meet Y, and therefore, 𝑌 ∩S𝑘 (𝑉);

thus, it contains some 𝑦 ∈ 𝑌 ∩ S𝑘 (𝑉) for which the left side of the above equation is zero, whence the
right side is also zero and H has a dense orbit on S𝑘 (𝑉). �

Lemma 6.2. Let 𝐺 = 𝑆𝑂 (𝑉1) ⊗ 𝑆𝑂 (𝑉2) with 3 ≤ dim𝑉1 ≤ dim𝑉2. Then G does not have a dense orbit
on S𝑘 (𝑉1 ⊗ 𝑉2) for all 1 ≤ 𝑘 ≤ 1

2 dim𝑉1 dim𝑉2.

Proof. Let 𝑚 = dim𝑉1, 𝑛 = dim𝑉2 and assume that G does have a dense orbit on S𝑘 (𝑉1 ⊗ 𝑉2). Then

dim 𝐺 =
1
2
(𝑚2 + 𝑛2 − 𝑚 − 𝑛) ≥ 𝑚𝑛𝑘 −

3𝑘2 + 𝑘

2
= dimS𝑘 (𝑉1 ⊗ 𝑉2).

We first show that 𝑚𝑘 ≤ 𝑛. If 𝑘 = 1 this is immediate, so assume 𝑘 > 1. Write 𝑛 = 𝑎𝑚 for some 𝑎 ≥ 1.
Then if we define 𝑔 : R→ R by

𝑔(𝑥) = 𝑚2 + 𝑚2𝑥2 − 𝑚 − 𝑚𝑥 − 2𝑚2𝑥𝑘 + 3𝑘2 + 𝑘,

we have 𝑔(𝑎) = 2(dim 𝐺−dimS𝑘 (𝑉1⊗𝑉2)) ≥ 0. The discriminant of 𝑔(𝑥) is (−𝑚−2𝑚2𝑘)2−4𝑚2 (𝑚2−
𝑚 + 3𝑘2 + 𝑘) = 𝑚2ℎ(𝑚), where we define ℎ : R→ R by

ℎ(𝑥) = 1 − 4𝑘 − 12𝑘2 + 4(𝑘 + 1)𝑥 + 4(𝑘2 − 1)𝑥2.

In turn, the discriminant of ℎ(𝑥) is 16(𝑘+1)2−16(𝑘2−1) (1−4𝑘−12𝑘2) = 16(𝑘+1) (12𝑘3−8𝑘2−4𝑘+2) ≥
0, so that the equation 𝑦 = ℎ(𝑥) has real roots; the positive root is

𝑚 =
−(𝑘 + 1) +

√
(𝑘 + 1) (12𝑘3 − 8𝑘2 − 4𝑘 + 2)

2(𝑘2 − 1)
,

which is easily seen to be always less than 2. Thus, as 𝑚 ≥ 3, we have ℎ(𝑚) > 0, so that 𝑔(𝑥) has
positive discriminant, and therefore, the equation 𝑦 = 𝑔(𝑥) has real roots

𝑟1, 𝑟2 =
1 + 2𝑘𝑚 ±

√
ℎ(𝑚)

2𝑚
,

where 𝑟1 < 𝑟2. We claim that 𝑟1 < 𝑎. Since 𝑎 ≥ 1, the claim is certainly true if 𝑟1 < 1; we have
𝑟1 < 1 ⇔ ℎ(𝑚) > (2𝑘𝑚 − 2𝑚 + 1)2 ⇔ 2𝑘𝑚2 − 2𝑚2 + 2𝑚 − 3𝑘2 − 𝑘 > 0. If 𝑘 ≤ 4, the last inequality
holds as 𝑚 ≥ 3, so we may assume 𝑘 ≥ 5. If we had 𝑘 ≤ 1

2𝑚
2, this would force 𝑚 ≥ 4, and then

2𝑘𝑚2 − 2𝑚2 + 2𝑚 − 3𝑘2 − 𝑘 =
2
5
(𝑘 − 5)𝑚2 + 2𝑚 + 𝑘

(
8
5
𝑚2 − 3𝑘 − 1

)
≥

2
5
(𝑘 − 5)𝑚2 + 2𝑚 + 𝑘

(
8
5
𝑚2 −

3
2
𝑚2 − 1

)
=

2
5
(𝑘 − 5)𝑚2 + 2𝑚 + 𝑘

(
1

10
𝑚2 − 1

)
> 0,
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so we may assume 𝑘 ≥ 1
2𝑚

2. Write 𝑘 = 𝜃𝑚2; as 𝑘 ≤ 1
2𝑚𝑛 = 1

2𝑎𝑚
2, we have 1

2 < 𝜃 ≤ 1
2𝑎. Then 𝑟1 < 2𝜃

if and only if

1 + 2𝜃𝑚3 −

√
4𝜃2𝑚6 − 12𝜃2𝑚4 + 4𝜃𝑚3 − 4(1 + 𝜃)𝑚2 + 4𝑚 + 1 < 4𝜃𝑚,

which reduces to

𝑚(𝜃2 (𝑚2 − 4) − 𝜃 − 1) + (1 + 2𝜃) > 0,

which is true for all 𝑚 ≥ 3 and 𝜃 > 1
2 . Thus, we do have 𝑟1 < 𝑎, as claimed; so as 𝑔(𝑎) ≥ 0, we must

have 𝑟2 < 𝑎, whence 𝑎 > 𝑟1+𝑟2
2 = 1+2𝑘𝑚

2𝑚 > 𝑘 as required.
Let 𝑈 ≤ 𝑉2 be a nondegenerate subspace of dimension 𝑘 dim𝑉1. By Lemma 6.1, we know that

𝑆𝑂 (𝑉1)⊗𝑆𝑂 (𝑈) has a dense orbit onS𝑘 (𝑉⊗𝑈). The dimension requirement is that 𝑚2−𝑚+𝑚2𝑘2−𝑚𝑘 ≥

2𝑚2𝑘2 − 3𝑘2 − 𝑘 , which is absurd when 𝑚 ≥ 3 and 𝑘 ≥ 1. This contradicts G having a dense orbit on
S𝑘 (𝑉1 ⊗ 𝑉2). �

Lemma 6.3. Let 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑂 (𝑉2) with 4 ≤ dim𝑉1 ≤ dim𝑉2 or 3 ≤ dim𝑉2 ≤ dim𝑉1. Then G
does not have a dense orbit on S𝑘 (𝑉1 ⊗ 𝑉2) for all 2 ≤ 𝑘 ≤ 1

2 dim𝑉1 dim𝑉2.

Proof. This is similar to Lemma 6.2. Note that here 𝑘 ≥ 2. �

Lemma 6.4. Let 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2) with 4 ≤ dim𝑉1 ≤ dim𝑉2. Then if G has a dense orbit on
S𝑘 (𝑉1 ⊗ 𝑉2), we must have 𝑘 = 1.

Proof. Let 𝑚 = dim𝑉1
2 , 𝑛 = dim𝑉2

2 and assume that G does have a dense orbit on S𝑘 (𝑉1 ⊗ 𝑉2). Then

dim 𝐺 = 2𝑚2 + 2𝑛2 + 𝑚 + 𝑛 ≥ 4𝑚𝑛𝑘 −
3𝑘2 + 𝑘

2
= dimS𝑘 (𝑉1 ⊗ 𝑉2), .

Similar calculations as in Lemma 6.2 show that 𝑘 dim𝑉1 ≤ dim𝑉2. By Lemma 6.1, we then deduce
that 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑈2) has a dense orbit on S𝑘 (𝑉1 ⊗ 𝑈2), where dim𝑈2 = 𝑘 dim𝑉1. Then dimensional
considerations rule out 𝑘 ≥ 2. �

Proposition 6.5. Let 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉1) with dim𝑉1 ≥ 6. Then G does not have a dense orbit on
S1 (𝑉1 ⊗ 𝑉1).

Proof. Let 2𝑛 = dim𝑉1 and 𝑒1, . . . , 𝑒𝑛, 𝑓𝑛, . . . , 𝑓1 be the standard basis of 𝑉1. Let

𝑌 =

{〈
𝑛∑

𝑖=1
𝑎𝑖𝑒𝑖 ⊗ 𝑓𝑖

〉
:
∑

𝑎2
𝑖 = 0

}
,

a subvariety of S1(𝑉1 ⊗ 𝑉1). Let

𝑌 =

{〈
𝑛∑

𝑖=1
𝑎𝑖𝑒𝑖 ⊗ 𝑓𝑖

〉
:
∑

𝑎2
𝑖 = 0, 𝑎𝑖 ≠ 𝑎 𝑗 if 𝑖 ≠ 𝑗

}
,

a dense subset of Y. Let 𝑦 ∈ 𝑌 . Then Tran𝐺 (𝑦,𝑌 ) contains an 𝐴𝑛
1 stabilising all elements of y, which

projects onto each 𝑆𝑝(𝑉1) as
⋂

𝑆𝑝(𝑉1)〈𝑒𝑖 , 𝑓𝑖 〉 . By assumption on the 𝑎𝑖’s, it is easy to see that this is the
connected component of Tran𝐺 (𝑦,𝑌 ). Since dim 𝐺−dim Tran𝐺 (𝑦,𝑌 ) = 4𝑛2+2𝑛−3𝑛 = 4𝑛2−2−(𝑛−2) =
dimS1 (𝑉1 ⊗ 𝑉1) − dim𝑌 , we find that y is Y-exact. Therefore, by Lemma 2.14, we conclude that there
is an open dense subset of the variety of singular 1-spaces of 𝑉1 ⊗ 𝑉1 such that all stabilizers are 3𝑛-
dimensional. Therefore, 3𝑛 is the lower bound for the dimension of the stabilizer of any singular 1-space.
Since dim 𝐺 − 3𝑛 = 4𝑛2 − 2− (𝑛− 2) > dimS1(𝑉1 ⊗𝑉1) when 𝑛 ≥ 3, we conclude that G does not have
a dense orbit on S1 (𝑉1 ⊗ 𝑉1). �
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Lemma 6.6. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝(𝑉2) ≤ 𝑆𝑂 (𝑉) with dim𝑉 = 2 dim𝑉2 ≥ 20. Suppose that G has a dense
orbit on S𝑘 (𝑉) for some 2 ≤ 𝑘 ≤ dim𝑉2. Then k is either 2, 3, 4, dim𝑉2 − 1, dim𝑉 ′

2 or dim𝑉 ′′
2 .

Proof. Calculations similar to the ones in Lemma 6.2 show that if 𝑘 < dim𝑉2−1, we have 2𝑘 ≤ dim𝑉2.
We can then apply Lemma 6.1 to determine that 𝑆𝑝2 ⊗ 𝑆𝑝2𝑘 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑈) must have a dense
orbit on S𝑘 (𝑉1 ⊗𝑈). Dimensional considerations then give 3+ 2𝑘2 + 𝑘 ≥ 4𝑘2 − 3

2 𝑘
2 − 𝑘

2 , which implies
𝑘 ≤ 4. �

Lemma 6.7. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝(𝑉2) ≤ 𝑆𝑂 (𝑉) with dim𝑉 = 2 dim𝑉2 ≤ 16. Suppose that G has
a dense orbit on S𝑘 (𝑉) for some 2 ≤ 𝑘 ≤ dim𝑉2 − 2. Then either 𝑘 = 2 or (𝑘, dim𝑉2) is one of
(3, 6), (3, 8), (4, 6), (4, 8), (6, 8).

Proof. This is simply a matter of checking the dimension of S𝑘 (𝑉) in all finitely many cases. �

Proposition 6.8. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝2𝑛 ≤ 𝑆𝑂4𝑛 = 𝑆𝑂 (𝑉). Then G has a dense orbit on S ′
2𝑛 (𝑉) (and

S ′′
2𝑛 (𝑉)) if and only if 𝑛 = 1, 2, 3.

Proof. When 𝑛 = 1, 2 the group G is spherical in 𝑆𝑂 (𝑉). Therefore, assume that 𝑛 ≥ 3. Let 𝑉1 = 〈𝑒, 𝑓 〉
and𝑉2 = 〈𝑒1, . . . , 𝑒𝑛, 𝑓𝑛, . . . , 𝑓1〉 so that 𝐺 = 𝑆𝑝(𝑉1)⊗𝑆𝑝(𝑉2) and the given bases are the standard bases
for 𝑉1 and 𝑉2. Given a = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐾𝑛, define 𝑊a = 〈(𝑒 + 𝑎𝑖 𝑓 ) ⊗ 𝑒𝑖 , (𝑒 + 𝑎𝑖 𝑓 ) ⊗ 𝑓𝑖 : 1 ≤ 𝑖 ≤ 𝑛〉, a
2𝑛-dimensional totally singular subspace of V. Define

𝑌 = {𝑊a : a ∈ 𝐾𝑛},

an n-dimensional subvariety of S ′
2𝑛 (𝑉). Let

𝑌 = {𝑊a : a ∈ 𝐾𝑛, 𝑎1 . . . 𝑎𝑛 ≠ 0, 𝑎𝑖 ≠ 𝑎 𝑗 for all 𝑖 ≠ 𝑗},

a dense subset of Y. Let 𝑦 ∈ 𝑌 . It is easily seen that Tran𝐺 (𝑦,𝑌 ) has connected component 𝐴𝑛+1
1 =

𝑆𝑝(𝑉1) ⊗
⋂

𝑆𝑝(𝑉2)〈𝑒𝑖+ 𝑓𝑖 〉 , while 𝐺0
𝑦 = 1 ⊗

⋂
𝑆𝑝(𝑉2)〈𝑒𝑖+ 𝑓𝑖 〉 � 𝐴𝑛

1 . Since

dim 𝐺 − dim Tran𝐺 (𝑦,𝑌 ) = dimS ′
2𝑛 (𝑉) − dim𝑌,

we have that 𝑌 is Y-exact. Therefore, by Lemma 2.14 and Corollary 2.12, we know that dim 𝐴𝑛
1 is the

minimum dimension for the stabilizer of any 𝑦 ∈ S ′
2𝑛 (𝑉). Dimensional considerations rule out 𝑛 ≥ 4,

while for 𝑛 = 3, we have dim 𝐺 −dim 𝐴3
1 = 15 = dimS ′

2𝑛 (𝑉). By Lemma 2.6, changing the definition of
𝑊a by swapping the first two generators (𝑒+𝑎1 𝑓 ) ⊗ 𝑒1, (𝑒+𝑎1 𝑓 ) ⊗ 𝑓1 with 𝑒⊗ (𝑒1+𝑎1 𝑓1), 𝑓 ⊗ (𝑒1+𝑎1 𝑓1)
leads to the same result for the action on S ′′

2𝑛 (𝑉). �

Proposition 6.9. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝2𝑛 ≤ 𝑆𝑂 (4𝑛) = 𝑆𝑂 (𝑉). Then G has a dense orbit on S2𝑛−1 (𝑉) if
and only if 𝑛 = 1, 2, 3.

Proof. Suppose that G has a dense orbit on S2𝑛−1 (𝑉). Every 𝑦 ∈ S2𝑛−1 (𝑉) is contained in precisely one
element of S ′

2𝑛 (𝑉) and one of S ′′
2𝑛 (𝑉). Let O be the dense orbit of G on S2𝑛−1 (𝑉); then its complement

S2𝑛−1 (𝑉) \ O is contained in a proper closed subvariety X of S2𝑛−1 (𝑉). Let Z be the set of elements
of S ′

2𝑛 (𝑉) all of whose hyperplanes lie in X; then Z is a proper closed subvariety of S ′
2𝑛 (𝑉), so its

complement S ′
2𝑛 (𝑉) \ 𝑍 is a dense subset of S ′

2𝑛 (𝑉) with the property that any of its elements has a
hyperplane lying in O. Thus, given two elements of S ′

2𝑛 (𝑉) \ 𝑍 , we can choose hyperplanes within them
and an element of G which sends one hyperplane to the other and therefore one element of S ′

2𝑛 (𝑉) \𝑍 to
the other; so S ′

2𝑛 (𝑉) \ 𝑍 lies in a single G-orbit, and therefore, G has a dense orbit on S ′
2𝑛 (𝑉). Replacing

S ′
2𝑛 (𝑉) by S ′′

2𝑛 (𝑉) shows that G also has a dense orbit on S ′′
2𝑛 (𝑉). By Proposition 6.8, we therefore have

𝑛 = 1, 2, 3. When 𝑛 = 1, 2 the group G is spherical in 𝑆𝑂 (𝑉). Therefore, assume that 𝑛 = 3. Given y
in the dense G-orbit on S ′

6 (𝑉), the group induced by 𝐺𝑦 on y is 𝐴3
1 acting as a sum of three natural

modules for 𝐴1. Therefore, 𝐺𝑦 has a dense orbit on 5-spaces of y, concluding that G has a dense orbit
on S5 (𝑉). �
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Proposition 6.10. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝6 ≤ 𝑆𝑂 (12) = 𝑆𝑂 (𝑉). Then G has a dense orbit on S3(𝑉).

Proof. Let 𝑉1 = 〈𝑒, 𝑓 〉 and 𝑉2 = 〈𝑒1, 𝑒2, 𝑒3, 𝑓3, 𝑓2, 𝑓1〉 so that 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2) and the given bases
are the standard bases for 𝑉1 and 𝑉2. Let

𝑊 = 〈𝑒 ⊗ 𝑒1 + 𝑓 ⊗ 𝑒2, 𝑒 ⊗ 𝑓2 + 𝑓 ⊗ 𝑓1, 𝑒 ⊗ (𝑒2 + 𝑒3) + 𝑓 ⊗ ( 𝑓3 − 𝑓2)〉,

a totally singular 3-space of V. Let 𝑆 = 𝐺𝑊 . Let 𝑔 ∈ 𝑆 such that 𝑔 = 1⊗𝑔1. Then 𝑔1 fixes 〈𝑒1, 𝑓2, 𝑒2+𝑒3〉
and 〈𝑒2, 𝑓1, 𝑓3 − 𝑓2〉, and consequently their radicals 〈𝑒1〉 and 〈 𝑓1〉. One then quickly reaches the
conclusion that 𝑔1 must also fix 〈𝑒2〉, 〈 𝑓2〉, 〈𝑒2 + 𝑒3〉 and 〈 𝑓3 − 𝑓2〉. However, this would mean that g
acts on W by sending 𝑒 ⊗ (𝑒2 + 𝑒3) + 𝑓 ⊗ ( 𝑓3 − 𝑓2) ↦→ 𝜆𝑒 ⊗ (𝑒2 + 𝑒3) + 𝜆−1 𝑓 ⊗ ( 𝑓3 − 𝑓2), implying that
𝑔1 = ±1. To conclude, we observe that given 𝑔 = 𝑔1 ⊗ 1, by a simple application of Witt’s Lemma, we
can find 𝑔′ = 1 ⊗ 𝑔2 such that 𝑔𝑔′ ∈ 𝑆. Therefore, 𝑆0 = 𝑆𝑝2. Since dim 𝐺 − dim 𝑆 = 21 = dimS3 (𝑉),
we conclude that G has a dense orbit on S3 (𝑉). �

Proposition 6.11. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝6 ≤ 𝑆𝑂12 = 𝑆𝑂 (𝑉). Then G has no dense orbit on S4 (𝑉).

Proof. Let 𝑉1 = 〈𝑒, 𝑓 〉 and 𝑉2 = 〈𝑒1, 𝑒2, 𝑒3, 𝑓3, 𝑓2, 𝑓1〉 so that 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2) and the given bases
are the standard bases for 𝑉𝑛𝑎𝑡 . The stabilizer of an element in a dense orbit would have dimension 1.
We will show that already the group 𝐺2 := 1 ⊗ 𝑆𝑝6 < 𝐺 acts on S4(𝑉) with stabilizers that are at least
3-dimensional. Let 𝑊𝑎𝑏𝑐𝑑 be the totally singular 4-space spanned by

𝑒 ⊗ 𝑒1 + 𝑓 ⊗ (𝑎𝑒1 + 𝑏𝑒2 + 𝑐𝑒 : 3 + 𝑑𝑒4), 𝑒 ⊗ 𝑒2 + 𝑓 ⊗ (𝑏𝑒1 + 𝑑𝑒2),
𝑒 ⊗ 𝑓1 + 𝑓 ⊗ (𝑎 𝑓1 + 𝑏 𝑓2 + 𝑐 𝑓3 + 𝑑𝑓4), 𝑒 ⊗ 𝑓2 + 𝑓 ⊗ (𝑏 𝑓1 + 𝑑𝑓2).

Let 𝑌 = {𝑊𝑎𝑏𝑐𝑑 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐾}, a 4-dimensional subvariety of S4 (𝑉). Let 𝑌 = {𝑊𝑎𝑏𝑐𝑑 : 𝑎, 𝑏, 𝑐, 𝑑 ∈

𝐾∗}, a dense subset of Y. Take 𝑦 = 𝑊𝑎𝑏𝑐𝑑 ∈ 𝑌 . Since 𝑦 ⊆ 𝑒⊗ 〈𝑒1, 𝑓2, 𝑒2, 𝑓2〉+ 𝑓 ⊗𝑉6, the stabilizer (𝐺2)𝑦
must preserve 〈𝑒1, 𝑓1, 𝑒2, 𝑓2〉, and therefore its orthogonal complement 〈𝑒3, 𝑓3〉. Since for all 𝑔 ∈ (𝐺2)𝑦
we must have 𝑔.(𝑒 ⊗ 𝑒2 + 𝑓 ⊗ (𝑏𝑒1 + 𝑑𝑒2)) ∈ 𝑦 and 𝑔.(𝑒 ⊗ 𝑓2 + 𝑓 ⊗ (𝑏 𝑓1 + 𝑑𝑓2)) ∈ 𝑦, we get that 〈𝑒2, 𝑓2〉
must also be preserved by (𝐺2)𝑦 . Therefore, (𝐺2)𝑦 ≤ 𝐴3

1. It is now immediate to see that the image
of any 𝑒𝑖 or 𝑓𝑖 in 〈𝑒𝑖 , 𝑓𝑖〉 completely determines the element 𝑔 ∈ (𝐺2)𝑦 . Since the standard diagonal
subgroup 𝐴 := 𝐴1 ≤ 𝐴3

1 fixes y, we must then have (𝐺2)𝑦 = 𝐴. Now assume that 𝑔 ∈ Tran𝐺2 (𝑦,𝑌 ).
Again, we have 𝑔 ∈ 𝐴3

1, and since A clearly fixes any element of Y, it is the stabilizer of 𝑔.𝑦. Therefore,
𝑔 ∈ 𝑁𝐴3

1
(𝐴), which is a finite extension of A. This shows that dim Tran𝐺2 (𝑦,𝑌 ) = 3, and therefore,

codim Tran𝐺2 (𝑦,𝑌 ) = 18 = 22 − 4 = codim𝑌 . This shows that all points in 𝑌 are Y-exact, and Lemma
2.14 allows us to conclude that 3 = dim 𝐴1 is the lower bound for the dimension of any stabilizer for the
𝐺2-action on S4 (𝑉). In particular, this proves that G has no dense orbit on S4 (𝑉). �

Proposition 6.12. Let 𝐺 = 𝑆𝑝2 ⊗ 𝑆𝑝8 ≤ 𝑆𝑂16 = 𝑆𝑂 (𝑉). Then G has no dense orbit on S4 (𝑉) and on
S6 (𝑉).

Proof. Let 𝑉1 = 〈𝑒, 𝑓 〉 and 𝑉2 = 〈𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑓4, 𝑓3, 𝑓2, 𝑓1〉 so that 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2) and the
given bases are the standard bases for 𝑉1 and 𝑉2. The stabilizer of an element in a dense orbit would have
dimension 2. We will show that already the group 𝐺2 := 1 ⊗ 𝑆𝑝8 < 𝐺 acts on S4(𝑉) with stabilizers
that are at least 3-dimensional. Given a ∈ 𝐾7, let 𝑊a be the totally singular 4-space spanned by vectors

𝑒 ⊗ 𝑒1 + 𝑓 ⊗ (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4), 𝑒 ⊗ 𝑒2 + 𝑓 ⊗ (𝑎2𝑒1 + 𝑎5𝑒2 + 𝑎6𝑒3 + 𝑎7𝑒4),
𝑒 ⊗ 𝑓1 + 𝑓 ⊗ (𝑎1 𝑓1 + 𝑎2 𝑓2 + 𝑎3 𝑓3 + 𝑎4 𝑓4), 𝑒 ⊗ 𝑓2 + 𝑓 ⊗ (𝑎2 𝑓1 + 𝑎5 𝑓2 + 𝑎6 𝑓3 + 𝑎7 𝑓4).

Let𝑌 = {𝑊a : a ∈ 𝐾7}, a 7-dimensional subvariety of S4(𝑉). Let𝑌1 = {𝑊a : a ∈ (𝐾∗)7}, a dense subset
of Y. The standard diagonal 𝐴1 ≤ 𝐴4

1 =
⋂
(𝐺2)〈𝑒𝑖 , 𝑓𝑖 〉 fixes any 𝑦 ∈ 𝑌 . Call this 𝐴1-subgroup A. Let 𝑦 ∈ 𝑌 .

We will now prove that the connected component of (𝐺2)𝑦 is A. We begin by observing that (𝐺2)𝑦 fixes
〈𝑒1, 𝑓1, 𝑒2, 𝑓2〉, and therefore, (𝐺2)𝑦 ≤ 𝐶2𝐶2. Let 𝜋𝑖 (𝐴) (𝑖 = 1, 2) denote the projection of A onto each
𝐶2. Assume 𝑝 ≠ 2. Then 𝜋𝑖 (𝐴) is a diagonal 𝐴1 in 𝐶2, which lies in two opposite parabolic subgroups
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of 𝐶2, acting irreducibly on their unipotent radicals, and in precisely one Levi subgroup 𝐿𝑖 . Also, 𝜋𝑖 (𝐴)
is maximal in infinitely many 𝐴2

1’s stabilising a sum of two nondegenerate 2-spaces. Let M be a minimal
connected overgroup of A in 𝐶2𝐶2. Then 𝜋𝑖 (𝑀) is one of 𝐴1, 𝐴2

1, 𝐿𝑖 , 𝑈3𝐴1. If 𝜋1 (𝑀) � 𝜋2 (𝑀), then M
is diagonal in 𝐶2𝐶2 by minimality. Suppose that 𝜋1 (𝑀) � 𝜋2 (𝑀). If 𝜋𝑖 (𝑀) � 𝐿𝑖 for 𝑖 = 1 or 𝑖 = 2, then
M contains 𝜋1 (𝐴) ×𝜋2 (𝐴). Summarising, the minimal connected ovegroups of A in 𝐶2𝐶2 are as follows:

(i) 𝐴2
1 diagonal in 𝐶2𝐶2;

(ii) 𝐴2
1 = 𝜋1 (𝐴) × 𝜋2 (𝐴);

(iii) 𝐴𝑇1, where 𝑇1 < 𝑍 (𝐿1) × 𝑍 (𝐿2) is a 1-dimensional torus;
(iv) 𝑈3𝐴 diagonal in 𝐶2𝐶2.

Assume we are in the first case and 𝑀 = 𝐴2
1 is diagonal in 𝐶2𝐶2. Then 𝜋1 (𝐴) is maximal in an 𝐴2

1
fixing 〈𝑒1 + 𝜆1𝑒2, 𝑓1 + 𝜆1 𝑓2〉 ⊥ 〈𝑒1 − 𝜆−1

1 𝑒2, 𝑓1 − 𝜆−1
1 𝑓2〉, while 𝜋2 (𝐴) is maximal in an 𝐴2

1 fixing
〈𝑒3 + 𝜆2𝑒4, 𝑓3 + 𝜆2 𝑓4〉 ⊥ 〈𝑒3 − 𝜆−1

2 𝑒4, 𝑓3 − 𝜆−1
2 𝑓4〉, for some 𝜆1, 𝜆2 ∈ 𝐾∗. Let 𝑦 ∈ 𝑌1 and assume that M

fixes y. Considering a 1-dimensional torus in M but not in A, one finds four independent equations in
terms of the entries of a and 𝜆1, 𝜆2 that all need to be satisfied since M fixes y. As the variety of diagonal
𝐴2

1’s from case (𝑖) is 2-dimensional, the elements y of Y such that there is some such diagonal 𝐴2
1 fixing

y lie in a subvariety of Y whose codimension is at least 2. Therefore, there is a dense subset 𝑌2 of Y with
the property that no minimal connected overgroup of A of type (𝑖) fixes some 𝑦 ∈ 𝑌2. The same can be
quickly deduced for the other cases. This shows that there exists a dense subset 𝑌 of Y such that A is the
connected component of the stabilizer of any 𝑦 ∈ 𝑌 . Now take 𝑦 ∈ 𝑌 and 𝑔 ∈ Tran𝐺2 (𝑦,𝑌 ). Again, we
find 𝑔 ∈ 𝐶2𝐶2, and since A clearly fixes all elements of Y, it must be the connected component of the
stabilizer of 𝑔.𝑦. Therefore, 𝑔 ∈ 𝑁𝐶2𝐶2 (𝐴). The connected component of 𝑁𝐶2𝐶2 (𝐴) is 𝐴𝑇2, where 𝑇2 is
a 2-dimensional torus, and therefore, codim Tran𝐺2 (𝑦,𝑌 ) ≥ 31. However, codim𝑌 = 31, which means
that codim Tran𝐺2 (𝑦,𝑌 ) = 31 and that all points of 𝑌 are Y-exact. By 2.14, this proves that the minimal
dimension for the stabilizer of any totally singular 4-space of V is 3.

If instead 𝑝 = 2, the reasoning is similar, with the difference that 𝜋𝑖 (𝐴) is contained in a single
parabolic subgroup of 𝐶2 and in no Levi subgroup, and has connected centralizer 𝑈1. Therefore, the
minimal connected ovegroups of A in 𝐶2𝐶2 are as follows:

(i) 𝐴2
1 diagonal in 𝐶2𝐶2;

(ii) 𝐴2
1 = 𝜋1 (𝐴) × 𝜋2 (𝐴);

(iii) 𝑈1𝐴, where 𝑈1 ≤ 𝐶𝐶2 (𝜋1 (𝐴)) × 𝐶𝐶2 (𝜋2 (𝐴)) is a 1-dimensional unipotent subgroup.

The same analysis then concludes. The case S6 (𝑉) is entirely similar. �

Proof of Theorem 4. Recall that 𝑉 = 𝑉1 ⊗ 𝑉2. If 𝐺 = 𝑆𝑂 (𝑉1) ⊗ 𝑆𝑂 (𝑉2) ≤ 𝑆𝑂 (𝑉), Lemma 6.2 shows
that 𝐺 has no dense orbit on S𝑘 (𝑉). If 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑂 (𝑉2), Lemma 6.3 likewise shows that 𝐺 has
no dense orbit on S𝑘 (𝑉) if 𝑘 ≥ 2; if instead 𝑘 = 1, then S𝑘 (𝑉) = G𝑘 (𝑉), and so 𝐺 has a dense orbit on
S𝑘 (𝑉) if and only if 𝐾∗𝐺 has a dense orbit on 𝑉 , that is, if and only if (𝐾∗𝐺,𝑉) is a prehomogeneous
vector space, giving case (i) in the statement of Theorem 4.

For the remainder of the argument, assume 𝐺 = 𝑆𝑝(𝑉1) ⊗ 𝑆𝑝(𝑉2) ≤ 𝑆𝑂 (𝑉) with dim𝑉1 ≤ dim𝑉2,
and 𝐺 has a dense orbit on S𝑘 (𝑉). If 𝑘 = 1, Proposition 6.5 and Lemma 6.1 between them show
that we must have dim𝑉1 = 2 or 4; in both possibilities, [26, Thm. 3] shows that 𝐺 does indeed have
a dense orbit on S𝑘 (𝑉), giving cases (ii) and (vii) respectively in the statement of Theorem 4. Now
suppose 𝑘 ≥ 2. Lemma 6.4 shows that we must have dim𝑉1 = 2; write dim𝑉2 = 2𝑛. If 𝑛 ≥ 5, Lemma
6.6 shows that 𝑘 = 2, 3, 4, 2𝑛 − 1, (2𝑛)′ or (2𝑛)′′; if instead 𝑛 ≤ 4, Lemma 6.7 shows that either
𝑘 = 2 or (𝑘, 2𝑛) = (3, 6), (3, 8), (4, 6), (4, 8) or (6, 8). If 𝑘 = (2𝑛)′ or (2𝑛)′′, Proposition 6.8 shows
that we must have 𝑛 = 1, 2, 3 (and that then 𝐺 does indeed have a dense orbit), giving case (v); if
𝑘 = 2𝑛 − 1, Proposition 6.9 shows the same thing, giving case (vi). Propositions 6.11 and 6.12 show
that (𝑘, 2𝑛) ≠ (4, 6), (4, 8) or (6, 8), and then Lemma 6.1 shows that 𝑘 ≠ 4. If 𝑘 = 3, Proposition 6.10
shows that 𝐺 does have a dense orbit if 𝑛 = 3, and then Lemma 6.1 shows that the same is true if 𝑛 > 3,
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giving case (iv). Finally, if 𝑘 = 2, the sphericality of 𝑆𝑝2 ⊗ 𝑆𝑝4 shows that 𝐺 does have a dense orbit if
𝑛 = 2, and then Lemma 6.1 shows that the same is true if 𝑛 > 2, giving case (iii). �

7. Proof of Theorem 5

We conclude with the proof of Theorem 5.

Proof of Theorem 5. By Theorem 2.1, either both G and H are parabolic subgroups, and by the Bruhat
decomposition we have finitely many (𝐺, 𝐻)-double cosets in Γ; or they are both reductive, and by [6,
Thm. A], there is a dense double coset if and only if there is a single double coset (hence a factorization
Γ = 𝐺𝐻); or one of the two subgroups, say H, is a maximal parabolic, and G is reductive. It remains to
deal with this last case, so assume that 𝐻 = 𝑃𝑘 is a maximal parabolic and G is reductive. If Γ = 𝑆𝐿(𝑉)
or if Γ = 𝑆𝑝(𝑉) with 𝑘 = 1, there is a dense (𝐺, 𝐻)-double coset in Γ if and only if G acts on the
Grassmannian G𝑘 (𝑉) with a dense orbit. This is equivalent to 𝐺𝐿𝑘 ⊗ 𝐺 acting on 𝐾 𝑘 ⊗ 𝑉 with a dense
orbit – which is equivalent to the pair (𝐺𝐿𝑘 ⊗ 𝐺, 𝐾 𝑘 ⊗ 𝑉) being a prehomogeneous vector space, as
classified by [29][32][33].

Now assume that Γ ≠ 𝑆𝐿(𝑉) and 𝑘 ≠ 1 if Γ = 𝑆𝑝(𝑉). There are 4 options for G. The first option is
for G to be simple and irreducible on V, in which case there is a dense (𝐺, 𝐻)-double coset if and only
if G has a dense orbit on the variety of totally singular subspaces corresponding to Γ/𝐻, as classified
by Theorem 3.

The second option is for G to be the connected component of the stabilizer of an orthogonal sum (i.e.,
𝐺 = 𝑆𝑝(𝑉1) × 𝑆𝑝(𝑉2) and Γ = 𝑆𝑝(𝑉1 ⊥ 𝑉2) or 𝐺 = 𝑆𝑂 (𝑉1) × 𝑆𝑂 (𝑉2) and Γ = 𝑆𝑂 (𝑉1 ⊥ 𝑉2)), and in
both cases, G is a spherical subgroup of Γ. Thirdly, we can have G being the stabilizer of a degenerate
but nonsingular 1-space of V, where 𝑝 = 2 and V is orthogonal. In this case, G is again spherical in Γ.

Lastly, G can be semisimple but not simple, acting irreducibly and tensor decomposably on V. The
possibilities for (𝐺, 𝑘) are then given by Theorem 4. �

A. Magma code

Listing 1. Double covers of Sym(6) and Alt(7).

//Construct the double cover of Sym(6).
G := Sym(6);
F := FPGroup(G);
F2 := pCover(G, F, 2);
G2 := PermutationGroup(F2);

//There is a single conjugacy class of elements of order 5. Such an element
generates <x>

X2 := sub<G2|ConjugacyClasses(G2)[8][3]>;

/*
List the chief factors of overgroups of X2 in G2 that do not normalise X2.
Note how they all contain a double cover of Alt(5).
To run the check for Alt(7), change G to Alt(7) and set X2 :=

sub<G2|ConjugacyClasses(G2)[6][3]>;
*/

im:=IntermediateSubgroups(G2,X2);
imNN:=[H:H in im|IsNormal(H,X2) eq false];
for H in imNN do

ChiefFactors(H);
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end for;

// We now determine how 2.Alt(5) = SL(2,5) acts on V

G := SL(2,5);
C := CharacterTable(G);

chi := C[6];
IsSymplecticCharacter(chi);
sym2chi := Symmetrization(chi,[2,0]);
[InnerProduct(C[i],sym2chi) : i in [1..#C]];

// The output [ 0, 0, 0, 1, 1, 0, 1, 0, 0 ] indicates that 2.Alt(5) acts on V
as 3+3+4.

Listing 2. The case 2.24.𝑆𝑦𝑚(5).

// Get 2.2^4.Sym(5) directly from Sp(4,7)

cms := ClassicalMaximals("S",4,7);
G:= cms[#cms-1];
X := sub<G|ConjugacyClasses(G)[22][3]>;
im:=IntermediateSubgroups(G,X);
imNN:=[H:H in im|IsNormal(H,X) eq false];
for H in imNN do

ChiefFactors(H);
end for;

// The first element of imNN is the subgroup 2.2^4.5

G:=imNN[1];
C := CharacterTable(G);

chi:= C[6];
sym2chi := Symmetrization(chi,[2,0]);
for i in [1..#C] do

if InnerProduct(C[i],sym2chi) eq 1 then
C[i];

end if;
end for;

// The output consists of the two consitutents of S^2(chi), two distinct self
dual characters of degree 5.

Listing 3. The case 2.𝐴𝑙𝑡 (6) in characteristic 5.

// Get the subgroup M = 2.Alt(6) in Sp(4,5)
cms:=ClassicalMaximals("S",4,5);
M:=cms[#cms];

// There are 2 conjugacy classes of elements of order 5, leading to the same
result

U := sub<M|ConjugacyClasses(M)[6][3]>;
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/*
List the chief factors of overgroups of U in M that do not normalise U.
Note how they all contain a double cover of Alt(5) = SL(2,5).
In each case determine the composition factors for the action on V, by taking

the symmetric square of their module.
Also check that all composition factors are indeed absolutely irreducible.
*/

im:=IntermediateSubgroups(M,U);
imNN:=[H:H in im|IsNormal(H,U) eq false];
for H in imNN do

ChiefFactors(H);
V_H := GModule(H);
CompositionFactors(V_H);
CompositionFactors(SymmetricSquare(V_H));
// Output "true" as all composition factors of the symmetric square

are absolutely irreducible.
&and[IsAbsolutelyIrreducible(comp) : comp in

CompositionFactors(SymmetricSquare(V_H))];
end for;

Listing 4. The case 2.24.5 in characteristic 5.

// Get the subgroup M = 2.2^4.Alt(5) in Sp(4,5)
cms:=ClassicalMaximals("S",4,5);
M:=cms[#cms-1];

// There are 2 conjugacy classes of elements of order 10, leading to the same
result

U := sub<M|ConjugacyClasses(M)[15][3]>;

/*
List the chief factors of overgroups of U in M that do not normalise U.
In each case determine the composition factors for the action on V, by taking

the symmetric square of their module.
Also check that all composition factors are indeed absolutely irreducible.
*/

im:=IntermediateSubgroups(M,U);
imNN:=[H:H in im|IsNormal(H,U) eq false];

for H in imNN do
ChiefFactors(H);
V_H := GModule(H);
CompositionFactors(V_H);
CompositionFactors(SymmetricSquare(V_H));
// Output "true" as all composition factors of the symmetric square

are absolutely irreducible.
&and[IsAbsolutelyIrreducible(comp) : comp in

CompositionFactors(SymmetricSquare(V_H))];
end for;
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// Check that 2.2^4.5 has two self-dual non-isomorphic composition factors on
V

H := imNN[1];
V_H := GModule(H);
comps := CompositionFactors(SymmetricSquare(V_H));
&and[IsSelfDual(comp) : comp in comps];
IsIsomorphic(comps[1],comps[2]);

Listing 5. Groebner basis for I in characteristic 7.

//Construct C_3 and its lambda_2 representation over the field of fractions
of a polynomial ring over GF(7).

R<a1,a2,a3,a4,a5,a6,a7,a8,a9,t1,t2,t3,t1inv,t2inv,t3inv> :=
PolynomialRing(GF(7),15);

F<b1,b2,b3,b4,b5,b6,b7,b8,b9,x1,x2,x3,x1inv,x2inv,x3inv> :=
FieldOfFractions(R);

C := GroupOfLieType("C3",F:Isogeny:="SC");
f:=HighestWeightRepresentation(C,[0,1,0]);
V3:=VectorSpace(F,3);

//Define an arbitrary g in the standard Borel.
g:=elt<C|<3,a9>,<5,a8>,<7,a7>,<6,a6>,<8,a5>,<9,a4>,<2,a3>,
<4,a2>,<1,a1>,V3![t1,t2,t3]>;

// Define a basis for W7, which is easily seen to correspond to W^*.
V:=VectorSpace(F,14);
v1:=V.1+4*V.11+3*V.12;
v2:=V.3+3*V.14;
v3:=V.4+4*V.14;
v4:=V.5+5*V.6;
v5:=V.7+3*V.8;
v6:=V.9+5*V.10;
v7:=V.13;
W7:=sub<V|v1,v2,v3,v4,v5,v6,v7>;
//Extend the basis
B:=[v1,v2,v3,v4,v5,v6,v7,V.2,V.6,V.8,V.10,V.11,V.12,V.14];
VB:=VectorSpaceWithBasis(B);

// Build set of generators of the ideal I
polys := {x1*x1inv-1,x2*x2inv-1,x3*x3inv-1};
for v in Basis(W7) do

for poly in Coordinates(VB,v*f(g))[8..14] do
Include(~polys,poly);

end for;
end for;

// Build ideal I and determine its Groebner basis. It takes under 1 second.
I := ideal<R|[Numerator(p):p in polys]>;
time GroebnerBasis(I);
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Listing 6. Groebner basis routine in characteristic not 7.

/*
Let P_3 = G_<e1,e2,e3> and n = n3 or n1n2n3n2n1n2n3n2, so that
P_3^n is the stabilizer of <e1,e2,f3> or <e3,f1,f2>.
The following function is a wrapper for the routine of finding the Groebner

basis
of the system of polynomials that determine the stabilizer in P_3^n of W^*.
The variable field can be Rationals() or a finite field, while j is an integer
between 1 and 6, corresponding to the 6 possibilities for the Bruhat
decomposition of an element in P_3. If field == Rationals(), the function

also returns
a list of primes that need to be checked individually.
*/

findGroebnerBasis := function(field, j)

// Define the group and the representation.
R<a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, b3, b4, b5, b6, b7, b8, b9,
t1, t2, t3, t1inv, t2inv, t3inv, om, i> := PolynomialRing(field, 26);

F<a1_f, a2_f, a3_f, a4_f, a5_f, a6_f, a7_f, a8_f, a9_f, b1_f, b2_f, b3_f,
b4_f,
b5_f, b6_f, b7_f, b8_f, b9_f, t1_f, t2_f, t3_f, t1inv_f, t2inv_f,

t3inv_f,
om_f, i_f> := FieldOfFractions(R);

C := GroupOfLieType("C3", F : Isogeny := "SC");
f := HighestWeightRepresentation(C, [0, 1, 0]);

V3 := VectorSpace(F, 3);
V := VectorSpace(F, 14);

v1 := V.8 - om^2 * V.7;
v2 := V.5 - i * V.6;
v3 := V.4 + i * V.3;
v4 := V.14 - i * V.2;
v5 := V.1 - i * V.13;
v6 := V.11 + i * V.12;
v7 := V.10 + i * V.9;

// Here Wdd is the subspace W^\ddag, while the span of all 7 vectors
v1,...,v7 is W^*.

Wdd := sub<V | v1, v2, v3, v5>;

// Extend the basis for Wdd to a basis for the whole module
B := [v1, v2, v3, v5, V.8, V.6, V.4, V.13, V.2, V.9, V.10, V.11, V.12,

V.14];
VB := VectorSpaceWithBasis(B);

// Define the list of (preimages) of Weyl group elements that belong to
P_3

ns := [Identity(C), elt<C | 1>, elt<C | 2>, elt<C | 1, 2>,
elt<C | 2, 1>, elt<C | 1, 2, 1>];
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// Each such Weyl group element has a corresponding u^-, generated by
positive root elements

// that are sent to negative root elements by the Weyl group element.
u_minuss := [Identity(C), elt<C | <1, b9>>, elt<C | <2, b7>>,

elt<C | <2, a7>, <4, a8>>,
elt<C | <4, b8>, <1, b9>>,
elt<C | <2, a7>, <4, a8>, <1, a9>>];

n := ns[j];
u_minus := u_minuss[j];

// Write an arbitrary element g belonging to the double coset B n B.
g := elt<C | <3, a1>, <5, a2>, <7, a3>, <6, a4>, <8, a5>, <9, a6>,

<2, a7>, <4, a8>, <1, a9>, V3![t1, t2, t3]> * n * u_minus;

// Conjugate by either n3 or n2n3n2n1n2n3n2n1 to get an arbitrary element
of G_<e1,e2,f3> or G_<e3,f1,f2>

g := g^elt<C | 3>;

// Initialise the list of polynomials, encoding the fact that the ti’s
are non-zero,

// and that om and i are primitive fourth and third roots of unity
respectively.

polys := {t1_f * t1inv_f - 1, t2_f * t2inv_f - 1, t3_f * t3inv_f - 1,
om_f + om_f^2 + 1, i_f^2 + 1};

// Complete set of polynomials by adding the conditions required for g to
fix Wdd

for v in Basis(Wdd) do
for poly in Coordinates(VB, v * f(g))[5..14] do
Include(~polys, poly);

end for;
end for;

// If field is finite, output the Groebner basis
if IsFinite(field) then
A1, A2 := GroebnerBasis([Numerator(p) : p in polys]);
return A1;

end if;

// Otherwise also output the list of primes the F4 algorithm divided by.
These

// need to be checked individually by running the function again.
if field eq Rationals() then
SetGBGlobalModular(false);
A1, A2, A3 := GroebnerBasis([Numerator(p) : p in polys] :

ReturnDenominators := true);
return A1, A3;

end if;

end function;
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Listing 7. Executing the Groebner basis search using the function findGroebnerBasis.

for i in [1..6] do

time B, badPrimes := findGroebnerBasis(Rationals(), i);
"The case i = ", i;
B;

for p in [x : x in badPrimes | x in [3,7] eq false] do
"Checking the prime p = ", p;
findGroebnerBasis(GF(p), i);

end for;

end for;

Listing 8. Code for subgroups of 𝑆𝑝6 (𝑞).

// SL(2,7) case (p not 2).

G := SL(2,7);

// Range over all conjugacy classes of subgroups isomorphic to S^\dag

for rec in Subgroups(G) do
S := rec‘subgroup;
if IdentifyGroup(S) eq <21,1> then

// Find all intermediate subgroups between S and G
im:=IntermediateSubgroups(G,S);
// Filter out the ones that normalise S
imNN:=[H:H in im|IsNormal(H,S) eq false];
// Print the ChiefFactors of such subgroups
for H in imNN do

ChiefFactors(H);
end for;

end if;
end for;
// There are no non-normalising overgroups.

// SL(2,13) case (p not 2).

G := SL(2,13);

// Range over all conjugacy classes of subgroups isomorphic to S^\dag

for rec in Subgroups(G) do
S := rec‘subgroup;
if Order(S) eq 21 then

S;
end if;

end for;
// There are no subgroups of order 21.
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// U(3,3) case.

G := SU(3,3);

// Range over all conjugacy classes of subgroups isomorphic to S^\dag

for rec in Subgroups(G) do
S := rec‘subgroup;
if Order(S) eq 21 and IdentifyGroup(S) eq <21,1> then

// Find all intermediate subgroups between S and G
im:=IntermediateSubgroups(G,S);
// Filter out the ones that normalise S

imNN:=[H:H in im|IsNormal(H,S) eq false];
// Print the ChiefFactors of such subgroups
for H in imNN do

ChiefFactors(H);
end for;

end if;
end for;
// The only possibility is PSL(2,7).

// J_2 case.

// Construct 2.J2 by taking the appropriate maximal subgroup of Sp_6(5).
G := ClassicalMaximals("S",6,5)[10];

// Range over all conjugacy classes of subgroups isomorphic to S^\dag

for rec in Subgroups(G) do
S := rec‘subgroup;
if Order(S) eq 21 and IdentifyGroup(S) eq <21,1> then

// Find all intermediate subgroups between S and G
im:=IntermediateSubgroups(G,S);
// Filter out the ones that normalise S
imNN:=[H:H in im|IsNormal(H,S) eq false];
// Print the ChiefFactors of such subgroups
for H in imNN do

ChiefFactors(H);
end for;

end if;
end for;

// The only possibilities are PSL(2,7), SL(2,7), U(3,3).
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