
Chapter 26

Embedding and machine
learning

Machine learning, especially neural network methods, is increasingly important in net-
work analysis. As discussed in Ch. 16, much of the success of modern machine learning
is thanks to a neural network’s power to obtain useful representations—embeddings—
of data. In this chapter, we will discuss the theoretical aspects of network embedding
methods and graph neural networks.

26.1 Embeddings as representations
Network embedding refers to a variety of methods that represent each node (or edge,
or even a whole network) as a point in a space. Formally, this means we seek to learn
a function 𝑉 → R𝑑 that maps each node1 to a 𝑑-dimensional vector that meaningfully
captures the network’s structure. In other words, network embedding methods embed a
network into a (vector) space.

You may be wondering: “But doesn’t the adjacency matrix itself represent each
node as a vector?” Very clever! Indeed, if we look at each row of the adjacency matrix,
the row is a vector with a fixed dimension (𝑁) that captures information about the
node’s neighbors. Then, why do we apply embedding methods? Don’t we already have
an “embedding”? Usually, embedding methods aim to find representations that are (1)
compact,2 (2) continuous, and (3) dense.

To understand why we need these three properties, let’s think about the adjacency
matrix as an embedding. First, assuming that the network is sparse like most real-
world networks, each node representation vector would have few nonzero entries; the
representation vectors are sparse. If we pick two random nodes from a large network,
they are likely to share no common neighbors. In other words, they are completely
orthogonal from the perspective of adjacency matrix embedding and we don’t have any

1 Or each edge 𝐸 → R𝑑 or even network 𝐺 → R𝑑 .
2 We can also think of embedding methods as dimensionality reduction methods, because the compactness

leads to a reduced number of dimensions, often significantly reduced.

429

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

430 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

information about their relationship. This would be the case for most pairs of nodes for
many real-world networks. Even if they share some common neighbors, it is very likely
that the amount of information that can be gleaned from the shared nodes is negligible
for most pairs.

Second, the adjacency vectors—assuming a non-weighted network—treats all neigh-
bors exactly the same, which is quite limiting. For instance, suppose 𝑖 has two neighbors
𝑢 and 𝑣, where 𝑖 and 𝑢 share numerous common neighbors and 𝑖 and 𝑣 do not share any.
It is reasonable to assume that the relationship between 𝑖 and 𝑢 is much stronger than
that between 𝑖 and 𝑣. Yet, the adjacency embedding—which only considers immediate
neighbors—does not tell us anything about such relationships. The two neighbors are
identical. A better representation would capture the difference.

Lastly, the adjacency vectors are big, of dimension 𝑁 . We are not compressing
the information in the original adjacency matrix into a compact representation. It not
only produces undesirable sparsity and discontinuity, it is also inefficient, and high-
dimensional spaces are notoriously poor settings for building predictive models. We
need compactness.

What’s a simple alternative to using the adjacency matrix? A low-rank approxima-
tion, found with matrix factorization:

Laplacian Eigenmaps Although the term “embedding” is popular recently, thanks to
the advancement of deep learning and neural network methods, the idea of low-
dimensional representation has a long history. One notable method is Laplacian
Eigenmaps [48], which leverages the spectral properties of networks.
In fact, we have encountered this embedding method before, as it is spectral
clustering (Sec. 25.7.2). The graph Laplacian is diagonalized and its 𝑘 leading
eigenvectors are used to represent the nodes in a 𝑘-dimensional space (specifically,
for a node 𝑖, its 𝑗 th embedding coordinate is the 𝑖th element of eigenvector v 𝑗). The
only difference from earlier was that spectral clustering limited the dimensionality
to the number of clusters being inferred. For a Laplacian eigenmap, we can take
the dimensionality as a “hyperparameter” of the method.

Of course, many other approaches exist, such as non-negative matrix factorization
(Sec. 16.7.1).

What can we do with embedded representations?
Embeddings are helpful for exploratory tasks such as visualization, but one major reason
we seek embedded versions of nodes in a network is that these representations can help
with subsequent machine learning tasks. We may want to train a node classifier, for
instance, and a classifier that uses node vectors instead of the network structure may
be easier to set up, less costly to train, and may work better at predicting node classes.
Node classes can be considered a form of attribute (Ch. 9) and we can even train a
model to impute missing attributes by learning a combined representation of nodes
and attributes. Another example is link prediction, which is essentially a node-pair
classification task. And we can even in principle learn to generate synthetic networks
by embedding the entire network and then learning a “decoder” mechanism that can

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.2. LANGUAGE MODELS AND WORD2VEC 431

translate an embedding back to a network structure. In general, dense vectors may be
more “learnable” than sparse network structure. Logistic regression (Sec. 16.2.1) with
the embedding vectors as features is often used.

Transductive and inductive learning

One important distinction we should mention involves the kinds of predictions we
make. Will our model make predictions within a network it has already seen, or will
it be expected to accommodate an unseen network? For the former, as an example,
suppose we have our network 𝐺 and a 𝑁 × 𝑝 node attribute matrix X. One of our
attributes, say the last one, is incomplete for some nodes: 𝑋𝑖 𝑝 is missing for some nodes
𝑖 ∈ 𝑉missing. Can we train a model to predict 𝑋𝑖 𝑝 for those nodes? Our model is able
to see all of 𝐺, all of X for nodes 𝑖 ∈ 𝑉 \ 𝑉missing, and the non-missing columns of
X for nodes 𝑖 ∈ 𝑉missing. We can use all this information to supervise the training and
validation of our model, then apply it to the same network to impute 𝑋𝑖 𝑝 .

This imputation problem is an example of transductive learning (we also can call
it a semi-supervised problem). Because the model will be trained on the same network
it will make its predictions on, we can’t expect it to generalize to an entirely different
network. Doing that is called inductive learning, which is a more difficult problem.
Many other problems can be either transductive or inductive depending on the setting,
such as link prediction in a seen or unseen network.

26.2 Language models and word2vec—embeddings come
of age

Often but not always when we now say “embedding,” researchers now refer to neural
network methods. To explain common embedding methods, it is useful to first visit
the idea of language models and word embedding methods, upon which many network
embedding methods build.

The word2vec method [307] is one of the early neural network methods that heralded
the recent boom of deep learning. Word2vec and related models build on the classical
idea of “language models.” To understand where the idea came from, let’s imagine a
basic approach to obtain word representations. Let us simply assume that the properties
of any given word can be represented by a bunch of numbers—a vector. Each element
of this vector answers a particular question about the property of the word. Say, the
first element is about whether the word is a verb or not. The second element quantifies
how concrete (vs. abstract) the word is. We can imagine preparing a bunch of questions
and building a vector for each word. Once we build these vectors—representations—for
every word, we can estimate the similarity between words based on the similarity (e.g.,
cosine similarity) of the vectors and do all sorts of other tasks. But the list of questions
can be arbitrary and it will not be trivial to build these vectors. The question is: can
we build a meaningful vector of a word so that it captures the meaning of every word
coherently? But then, how do we know the meaning of a word and how can we represent
it quantitatively?

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

432 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

Language models assume that the meaning of a word comes from the contexts in
which that word appears. This idea can be traced to Ferdinand de Saussure, who lays an
important foundation for modern linguistics. Saussure argued [123] that the meaning
of a “sign” converges onto the same concept through the averaging of the speakers who
use the sign to communicate:

Among all the individuals that are linked together by speech, some sort
of average will be set up: all will reproduce—not exactly of course, but
approximately—the same signs united with the same concepts.

This idea was later more formalized into the distributional hypothesis by Zellig S. Harris,
who argued [202], as summarized by Pantel [357]: “words that occur in the same
contexts tend to have similar meaning.” John R. Firth succinctly captures this idea by
saying [159],

You shall know a word by the company it keeps.

Therefore, we can study large corpora of natural language to understand the meaning
of those words.

Language models In other words, the idea is that we can figure out the meaning of a
word by examining the other words around it. Let’s look at these three sentences:

“The quick brown jumps over the lazy dog.”
“He is cunning as a .”
“The was already in the hen house.”

Just by examining the words around the blank, we can see that the word that can fill the
blank should represent something brown, quick, cunning, something that can jump and
likes to go into hen houses. And you may be already thinking about a fox.

Let’s approach it more formally. A language model is a statistical model of natural
language, in a sense answering the question, “can we distinguish a natural document
from gibberish?” Mathematically, this question can be written as: can we accurately
estimate the probability of an observed sequence of words (Pr({𝑤1, 𝑤2, . . . , 𝑤𝑇 }))?
If we can assign high probability to actual sentences and low probability to random
sequences of words, then we have a good language model. Note that this joint probability
can be broken down into a product of conditional probabilities using the chain rule:

Pr(𝑤1, 𝑤2, . . . , 𝑤𝑇) = Pr(𝑤𝑇 | 𝑤1, 𝑤2, . . . , 𝑤𝑇−1) · · · Pr(𝑤3 | 𝑤1, 𝑤2)
× Pr(𝑤2 | 𝑤1) Pr(𝑤1). (26.1)

In other words, if we can accurately estimate Pr(target word | context words), we
can construct a good language model. And this conditional probability captures the
conceptual idea of language models—given the context (previous words), can we predict
the word that comes next?3

3 Also note that we can rearrange context and target words: “what would be the missing word in the middle,
given the words around it?”

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.2. LANGUAGE MODELS AND WORD2VEC 433

𝑁-gram model However, estimating the conditional probabilities directly from data
is not feasible due to the exploding number of word combinations. A common simpli-
fication to address this issue is the n-gram model, where we only consider the previous
𝑛 words, not all previous words. Namely, we assume that

Pr(𝑤𝑡 | 𝑤1, . . . , 𝑤𝑡−1) ≃ Pr(𝑤𝑡 | 𝑤𝑡−𝑛, . . . , 𝑤𝑡−1). (26.2)

If we set 𝑛 small enough, we can find most 𝑛-gram combinations and count their actual
occurrences. Then we can estimate the conditional probabilities by using our counts.
This is the 𝑛-gram language model.

Word2vec takes a different approach. Instead of estimating the conditional probabil-
ities directly, we assume that there exists a meaningful vector representation for every
word that allows us to estimate the conditional probabilities without counting the actual
occurrences.

Imagine every word has two vector representations that capture their meaning very
well. For convenience, we call them query and key vectors4 and denote as q𝑖 and k𝑖 (for
word 𝑖). Now we assume that

Pr(𝑤𝑡 | 𝑤𝑡−𝑛, . . . , 𝑤𝑡−1) ≃ 𝑓 (k𝑤𝑡
, q𝑤𝑡−𝑛 , . . . , q𝑤𝑡−1). (26.3)

In other words, instead of directly estimating Pr(𝑤𝑡 | 𝑤𝑡−𝑛, . . . , 𝑤𝑡−1) from the data,
we imagine a function 𝑓 that can estimate the conditional probability based on the
representations of the words (vectors). A database is a nice analogy. The query to the
database is the sequence of 𝑛-gram context words. When the query matches the key
of a target word, we return this target word. Unlike a real database, where we identify
a single perfect and unique match, everything here is probabilistic. Our training goal
becomes learning the vectors from data (the corpus) to make this work.

Skip-gram model The word2vec method suggested a further simplification to the
𝑛-gram model. It asks, why don’t we just decompose the 𝑛-gram conditional probability
into a product of 1-gram conditional probabilities (and also consider both preceding
and following contexts)? This gives

Pr(𝑤𝑡 | 𝑤𝑡−𝑙 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . , 𝑤𝑡+𝑙) ≃
∏

𝑡−𝑙≤𝑖≤𝑡+𝑙
Pr(𝑤𝑡 | 𝑤𝑖). (26.4)

This is called the “skip-gram” model, where we skip all the other words but one from
the 𝑛-gram formulation. Then, we can focus on a much simpler function with just two
vectors: 𝑓 (k𝑤𝑖

, q𝑤 𝑗
). Specifically, the word2vec model proposes to use the softmax

function of the dot product k · q = k⊺q between the two vectors:

𝑓 (k𝑤𝑡
, q𝑤𝑐
) = exp(k𝑤𝑡

· q𝑤𝑐
)∑

𝑖 exp(k𝑤𝑖
· q𝑤𝑐
) . (26.5)

4 They are analogous to the query and key vectors in the self-attention mechanism used in Transformer
models like BERT and GPT [277].

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

434 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

Then,

Pr(𝑤1, . . . , 𝑤𝑇) ≃
∏
𝑡

∏
𝑐∈𝐶𝑡

Pr(𝑤𝑡 | 𝑤𝑐)

=
∏
𝑡

∏
𝑐∈𝐶𝑡

exp(k𝑤𝑡
· q𝑤𝑐
)∑

𝑖 exp(k𝑤𝑖
· q𝑤𝑐
) , (26.6)

where𝐶 is the set of words that are considered as context words (usually 𝑤𝑡−𝑙 , . . . , 𝑤𝑡+𝑙
not including 𝑤𝑡 , with 𝑙 being the size of the context window). The skip-gram model
tries to maximize the log probability log Pr(𝑤𝑡 | 𝑤𝑖).

Hierarchical softmax and negative sampling Once we can compute Pr(𝑤𝑡 | 𝑤𝑐), we
can initialize every word vector randomly and then go through actual natural sentences
to generate context–target word pairs. For every context–target word pair from our
data, we can estimate Pr(𝑤𝑡 | 𝑤𝑐) and use the backpropagation algorithm to learn the
vectors. All standard stuff at this point. Yet, this is computationally challenging because
we have to compute

∑
𝑖 exp(k𝑤𝑖

· q𝑤𝑐
) every time for all possible words. The word2vec

model proposes another simplifying innovation here. Instead of directly computing this
summation, the authors suggest two methods to drastically reduce the computational
complexity: hierarchical softmax and negative sampling (NS). The hierarchical softmax
method is a tree-based data structure that allows us to compute the summation in
log(𝑛) time, where 𝑛 is the number of words. Although it is a very clever algorithm,
it is not as popular as NS. NS is a simple idea that belongs to the class of methods
called “contrastive learning,” which suggests that, instead of computing the probability
directly, we can solve another problem, that of distinguishing the actual word 𝑤𝑡 from a
small set of randomly sampled words. If our representation and conditional probability
function can distinguish the actual answer very well from random noise, then we can
argue that the representation is good (recall the basic idea of language models). Formally,
we can write the NS objective as

log𝜎(k𝑤𝑡
· q𝑤𝑐
) +

𝑏∑︁
𝑖=1
E𝑤𝑖∼Pr𝑛 (𝑤)

[
log𝜎(−k𝑤𝑖

· q𝑤𝑐
)] , (26.7)

where 𝜎(𝑥) = 1/(1+ e−𝑥) is the sigmoid function and 𝑏 is the number of negative pairs
we sample from the “noise” or “negative” distribution Pr𝑛. (Mikolov et al. [307] used
Pr𝑛 (𝑤) ∝ 𝑛3/4

𝑤 , where 𝑛𝑤 is the (unigram) count of occurrences of word 𝑤.) This is
called the “negative sampling” model or skip-gram negative sampling. We seek vectors
that align the word and context (first term) and oppose the negative word and context
(second term; note the minus sign on the dot product). It allows us to learn by sampling
a few random words rather than computing the softmax over all possible words.

26.3 From writing to walking: embedding networks
What does all this have to do with networks? Once word2vec achieved great success
at natural language processing tasks, particularly at capturing analogical relationships

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.3. FROM WRITING TO WALKING: EMBEDDING NETWORKS 435

between words, many researchers recognized the generalizability of the word2vec model
and the idea of language modeling itself. Note that in the word2vec model, all we need
is a fixed vocabulary5 and lots of example sentences, where a sentence is simply a
sequence of “words” in the vocabulary. There isn’t, however, any restriction about the
nature of the “words.” Any set of entities where we can find their natural sequences can
be considered as “words” and “sentences.”

Not surprisingly, networks were one such generalization. Networks consist of nodes
and they can be considered as “words.” How can we get the natural sequences of nodes?
One place to start is a random walk. If we perform a random walk on a network, we
will have a sequence of nodes that organically captures the structural information of the
network. If two nodes are close in a network, they will likely appear nearby in more
random walk trajectories than another pair of nodes that are far apart. If two nodes share
many neighbors together, they are more likely to co-appear in random walk trajectories
than another pair of nodes that do not share any neighbors.

The first model that applies this line of thinking is “DeepWalk” [369]. The idea
is exactly as laid out above. We generate many random walks from a network and
then feed them as “sentences” to the word2vec model. Soon, another model called
“node2vec” [193] was published with a similar idea, but an additional twist of using a
biased random walk. Node2vec argued that we can modulate the nature of the random
walks to obtain different representations that focus on different aspects of the network
structure. For instance, if we want to capture the community structure of a network,
we can bias the random walk so that it is more likely to stay in the same community
(like BFS); if we want to capture the hierarchical structure of a network, we can bias
the random walk so that it explores the network more (like depth-first search). These
two models became foundational for many following models that adopt the paradigm
of language models.

There was an interesting, subtle difference in the implementation of DeepWalk
and node2vec. As we discussed, the softmax function is difficult to calculate and
word2vec proposed using either hierarchical softmax or negative sampling to speed
it up. DeepWalk’s implementation adopted hierarchical softmax while node2vec used
negative sampling. It turned out that this choice was actually an important one that
changed how the two behave and perform.

The hidden bias of negative sampling Analysis has shown that negative sampling
has an implicit bias [325, 249]. To see this, we need to first look at a similar, yet unbiased
model called “noise contrastive estimation” (NCE) [197]. NCE is a general contrastive
estimator that allows us to estimate a probability model Pr𝑚 (𝑥) of the following form:

Pr𝑚 (𝑥) = 𝑓 (𝑥; 𝜃)∑
𝑥′∈X 𝑓 (𝑥′; 𝜃)

, (26.8)

where 𝑓 is a non-negative function of 𝑥 and 𝜃 is a parameter vector. The word2vec model
can be considered a special case of NCE where 𝑓 (𝑥) = exp(𝑥) and 𝑥 = k⊤𝑖 q 𝑗 . NCE
tries to solve the same logistic regression problem as the negative sampling model, but

5 How about new words? It is still possible to inductively learn the vector representations of new words
based on those of existing words.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

436 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

using Bayesian inference. Given one positive example and 𝑏 randomly sampled negative
examples, we take as prior probabilities for the positive and negative samples:

Pr(𝑌 𝑗 = 1) = 1
𝑏 + 1

, Pr(𝑌 𝑗 = 0) = 𝑏

𝑏 + 1
. (26.9)

Here, the positive example is sampled from Pr𝑚 (𝑗) and negative examples are sampled
from a noise distribution 𝑝0 (𝑗),

Pr(𝑗 | 𝑌 𝑗 = 1) = Pr𝑚 (q𝑖 · k 𝑗), Pr(𝑗 | 𝑌 𝑗 = 0) = 𝑝0 (𝑗). (26.10)

Based on Bayes’ rule, the posterior probability of the positive example is

PrNCE (𝑌 𝑗 = 1 | 𝑗) = Pr(𝑗 | 𝑌 𝑗 = 1) Pr(𝑌 𝑗 = 1)∑
𝑦∈{0,1} Pr(𝑗 | 𝑌 𝑗 = 𝑦) Pr(𝑌 𝑗 = 𝑦)

=
Pr𝑚 (q𝑖 · k 𝑗)

Pr𝑚 (q𝑖 · k 𝑗) + 𝑏𝑝0 (𝑗) , (26.11)

which can be written in the form of a sigmoid function:

PrNCE (𝑌 𝑗 = 1 | 𝑗) = 1
1 + 𝑏𝑝0 (𝑗)/Pr𝑚 (q𝑖 · k 𝑗)

=
1

1 + exp
[− ln 𝑓 (q𝑖 · k 𝑗) + ln 𝑝0 (𝑗) + 𝑐

] . (26.12)

The negative sampling estimator PrNS is similar to the NCE estimator, and can be
written as

PrNS (𝑌 𝑗 = 1 | 𝑗) = 1
1 + exp(−q𝑖 · k 𝑗)

=
1

1 + exp
[− (

q𝑖 · k 𝑗 + ln 𝑝0 (𝑗) + 𝑐
) + ln 𝑝0 (𝑗) + 𝑐

]
=

1
1 + exp

[− ln 𝑓 ′ (q𝑖 · k 𝑗) + ln 𝑝0 (𝑗) + 𝑐
] . (26.13)

By comparing the two estimators, we can see that the negative sampling estimator is
a special case of the NCE estimator with 𝑓 ′ (q𝑖 · k 𝑗) = exp(q𝑖 · k 𝑗 + ln 𝑝0 (𝑗) + 𝑐).
This means that the negative sampling word2vec model is an unbiased estimator for the
following probability model:

Prw2v-NS (𝑗 | 𝑖) =
𝑝0 (𝑗) exp(q𝑖 · k 𝑗)∑
𝑗′ 𝑝0 (𝑗 ′) exp(q𝑖 · k 𝑗′) . (26.14)

In other words, the negative sampling model of the word2vec model is a biased estimator
of the original word2vec model, but an unbiased estimator of a modified model where
the word similarity represents the deviation from 𝑝0 (𝑗), or the information about the
words that is not captured by the noise distribution, which is the frequency of each
word.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.3. FROM WRITING TO WALKING: EMBEDDING NETWORKS 437

The implicit bias of the negative sampling model has a profound impact when
applied to random walks on networks. The random walk is naturally biased towards the
nodes with higher degrees, because whenever we sample a neighbor we preferentially
sample a node with higher degree (the friendship paradox; Ch. 21). This degree bias
is, however, captured by the noise distribution 𝑝0 (𝑗). Because of this, the resulting
embedding of the negative sampling model captures the deviation from what is expected
based on the degree alone. In other words, the bias of the negative sampling model
exactly negates the bias of the random walk, producing embedding vectors that are free
of the degree bias!

Although DeepWalk and node2vec methods look like more or less the same method
when we don’t apply any biased random walk for node2vec, the subtle difference in
the choice of estimation method in their implementations has a profound impact on the
resulting embedding vectors, usually producing much better results for node2vec.

Other embedding methods
There exist a plethora of other methods for graph embedding and it will be impossible
to cover all of them in this chapter. Let us mention a few of the most popular methods
with unique ideas.

LINE (Large-scale Information Network Embedding) [453], a simpler special case
of DeepWalk, aims to encode the “proximity” between nodes into a dense embedding.
LINE adopts the ideas of word2vec and seeks to model from random walks the prob-
ability for a directed edge Pr(𝑗 | 𝑖) = exp(u 𝑗 · v𝑖)/

∑𝑁
𝑠=1 exp(u𝑠 · v𝑖), where v𝑖 and

u 𝑗 are node vectors and context vectors, respectively. Crucially, the same node gets
different vectors depending on whether it is treated as a context for a walk or the target
of the walk itself. LINE’s overall objective is to learn the vectors which maximize∑
𝑖, 𝑗∈𝐸 𝐴𝑖 𝑗 log 𝑝(𝑗 | 𝑖). It also adopts NS, leading to an objective function for each

edge 𝑖, 𝑗 that mirrors Eq. (26.7) with k → u and q → v. The negative distribution
Pr𝑛 (𝑣) = 𝑘𝑎𝑣 /

∑
𝑣′ 𝑘

𝑎
𝑣′ 6 accounts for the overall degree distribution of the network.

The ComplEx method [463] shows success at link prediction by using a matrix
factorization technique similar to many others (such as Laplacian Eigenmaps), but
with the twist of allowing for complex-valued vectors as the representations. Among
other motivations, directed networks lead to non-symmetric matrices, a problem we
mostly avoided in Ch. 25, and we may encounter complex eigenvalues and eigenvectors.
Embracing complex values and using this for link prediction was very successful.

ComplEx was tailored for knowledge graphs (Ch. 27) as are many other methods. In
a knowledge graph, links are semantic triples (“Rome IsA City”) that represent factual
statements. Nodes are identified by words or phrases, and this brings in many ways to
use word embeddings, either as the node embeddings or, more often, as part of learning
the node embeddings. The TransE [65] method, for example, was designed around
translation of words to learn embeddings; the factual relationships should hold across
languages. Other knowledge graph methods include DistMult [501], which shares some
similarities with TransE, and RESCAL [346], which uses tensor factorization instead
of matrix factorization.

6 The authors followed word2vec and used 𝑎 = 3/4; 𝑎 = 1 is also common.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

438 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

It’s common to treat the space we embed in as Euclidean but there is no need to
do so. Indeed, hyperbolic spaces have properties of interest specifically for modeling
networks. A metric defined on a hyperbolic geometry can incorporate heterogeneous
degree distributions, transitive closure, and hierarchy more naturally than in Euclidean
space [254, 60]. This has led to researchers pursuing embedding methods specific to
hyperbolic spaces [347, 98].

Finally, a large class of methods called graph neural networks incorporate embed-
ding as part of their function. We discussed these briefly in Sec. 16.7.3 and we’ll return
to them in Sec. 26.5.

26.4 Embedding as matrix factorization
Soon after word2vec emerged, researchers seeking to understand what it was calculating
showed that it was implicitly performing a matrix factorization [269]. This is powerful
to know. Matrix factorization is very useful for data analysis, as we see whenever we
use singular value decomposition (SVD), and many other embedding approaches use
it explicitly. Indeed, in the context of natural language processing, SVD powers latent
semantic analysis (LSA) a classical NLP technique [261]. In a way, it’s both surprising
(because it looks so different) and not surprising that the more advanced word2vec
method does something similar.

Let’s derive the factorization occurring in word2vec. Then we’ll discuss some
network-specific embedding methods in this context.

Negative sampling as implicit matrix factorization
First, we summarize an influential discovery by Levy and Goldberg [269]: the sampling
strategy used by word2vec (and adopted for networks by DeepWalk and its descendents)
is implicitly factorizing a matrix M.

Recall that a language model seeks to understand the co-occurrence between words
𝑤 ∈ 𝑉𝑊 and contexts 𝑐 ∈ 𝑉𝐶 , the surrounding words; for a word 𝑤𝑖 , the surrounding
𝐿-sized context is 𝑤𝑖−𝐿 , . . . , 𝑤𝑖−1, 𝑤𝑖+1, . . . , 𝑤𝑖+𝐿 . Let 𝐷 be the multiset of observed
word–context pairs and use #(𝑤, 𝑐) to denote the number of occurrences of pair (𝑤, 𝑐) ∈
𝐷. Marginalizing gives counts for 𝑤 and 𝑐, #(𝑤) =

∑
𝑐′∈𝑉𝐶 #(𝑤, 𝑐′) and #(𝑐) =∑

𝑤′∈𝑉𝑊 #(𝑤′, 𝑐), respectively. Our embedding goal is to find vector representations for
words and contexts. Let w ∈ R𝑑 be the vector representing word 𝑤 ∈ 𝑉𝑊 and likewise
c ∈ R𝑑 for context 𝑐 ∈ 𝑉𝐶 , where 𝑑 is the embedding dimension. (Previously we used
k and q.) Generally only the word vectors are used for subsequent NLP tasks, but both
are necessary for optimization.

From Eq. (26.7), the negative sampling objective is

ℓ =
∑︁
𝑤∈𝑉𝑊

∑︁
𝑐∈𝑉𝐶

#(𝑤, 𝑐)
(

log𝜎(w · c) + 𝑏 E𝑐𝑁∼Pr𝐷 [log𝜎 (−w · c𝑁)]
)

=
∑︁
𝑤∈𝑉𝑊

∑︁
𝑐∈𝑉𝐶

#(𝑤, 𝑐) log𝜎(w · c) +
∑︁
𝑤∈𝑉𝑊

#(𝑤) (𝑏 E𝑐𝑁∼Pr𝐷 [log𝜎 (−w · c𝑁)]
)
,

(26.15)

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.4. EMBEDDING AS MATRIX FACTORIZATION 439

where 𝑏 is the number of negative samples and 𝐶𝑁 is the sampled context drawn from
the empirical distribution Pr𝐷 (𝑐) := #(𝑐)/|𝐷 |.7 Next, pull the true context out of the
NS expectation:

E𝑐𝑁∼Pr𝐷 [log𝜎 (−w · c𝑁)] =
∑︁

𝑐𝑁 ∈𝑉𝐶

#(𝑐𝑁)
|𝐷 | log𝜎 (−w · c𝑁)

=
#(𝑐)
|𝐷 | log𝜎 (−w · c) +

∑︁
𝑐𝑁 ∈𝑉𝐶\{𝑐}

#(𝑐𝑁)
|𝐷 | 𝜎 (−w · c𝑁) . (26.16)

For sufficiently large 𝑑, we can assume each product w ·c takes on a value independently
of the others, letting us treat ℓ as a function of independent w · c terms. Using this and
Eq. (26.16), the term specific to the pair (𝑤, 𝑐) is

ℓ(𝑤, 𝑐) = #(𝑤, 𝑐) log𝜎(w · c) + 𝑏 #(𝑤) #(𝑐)|𝐷 | log𝜎(−w · c). (26.17)

Because we seek to optimize this objective, we find the partial derivative with respect
to 𝑥 := w · c:

𝜕ℓ

𝜕𝑥
= #(𝑤, 𝑐) 𝜎(−𝑥) − 𝑏 #(𝑤) #(𝑐)|𝐷 | 𝜎(𝑥). (26.18)

Simplifying and setting equal to zero gives

𝑒2𝑥 − ©­
«

#(𝑤, 𝑐)
𝑏 #(𝑤) #(𝑐)

|𝐷 |
− 1ª®

¬
𝑒𝑥 − #(𝑤, 𝑐)

𝑏 #(𝑤) #(𝑐)
|𝐷 |

= 0. (26.19)

Letting 𝑦 := e𝑥 , this equation becomes a quadratic of 𝑦, which has two solutions. The
first, 𝑦 = −1, is invalid (since e𝑥 > 0) while the second (using w · c = log(𝑦)) is

w · c = log ©­
«

#(𝑤, 𝑐)
𝑏 #(𝑤) #(𝑐)

|𝐷 |

ª®
¬
= log

(
#(𝑤, 𝑐) |𝐷 |
#(𝑤)#(𝑐)

)
− log 𝑏. (26.20)

We can now see better what is happening. The expression

log ©­«
#(𝑤,𝑐)
|𝐷 |

#(𝑤)
|𝐷 |

#(𝑐)
|𝐷 |

ª®¬
= log

(
#(𝑤, 𝑐) |𝐷 |
#(𝑤)#(𝑐)

)
(26.21)

is the pointwise mutual information (PMI) for (𝑤, 𝑐), estimated from the corpus 𝐷. It
tells us how strongly associated 𝑤 and 𝑐 are by comparing their joint distribution to the
joint distribution if they were independent. And lastly, the matrix being factorized by
NS, since this is equal to a dot product for each term, has elements defined by the PMI:
𝑀𝑖 𝑗 = PMI (𝑤𝑖 , 𝑐 𝑗) − log 𝑏. For 𝑏 > 1, we can think of this as a shifted PMI matrix.

7 The original word2vec and DeepWalk models drew negative contexts from ∝ #(𝑐)3/4 instead of ∝ #(𝑐) .
This difference does not substantially change our results [269] and avoiding the 3/4 exponent also lets us
make clear graph-theoretic connections we’ll use shortly.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

440 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

However, we assumed every w𝑖 · c 𝑗 was independent. If this is not true, the loss for
a given pair (Eq. (26.17)) depends on the observed counts of the pair together (#(𝑤, 𝑐))
versus the expected number of negative samples (𝑏 #(𝑤)#(𝑐)/|𝐷 |) and we can instead
think of NS as performing a weighted factorization, where the solution is biased in favor
of more frequent pairs, the same bias discussed above.

Having a better understanding of what NS is doing “behind-the-scenes” motivates
spectral methods, the original approach to embedding, which can be more computa-
tionally efficient than using stochastic gradient descent and more theoretically tractable.
Indeed, Levy and Goldberg [269] compare NS to SVD on the shifted PPMI8 and show
that it achieves better optimization of the loss function than NS. That said, NS per-
formed better at subsequent linguistic tasks, such as finding word analogies, probably
due to the weighted factorizing, as PMI solutions are known to be over-affected by rare
observations. It is good to understand what NS is doing here because it motivates in
NLP the search for better weighted factorization methods [269].

Network embedding as factorization
Network embedding methods such as DeepWalk and node2vec follow the spirit of
word2vec closely, so it stands to reason that they too are implicitly performing matrix
factorization. Indeed, Qiu et al. [382] show that this is exactly the case.

For brevity, we focus our discussion on LINE [453], which is a special case of
DeepWalk. As mentioned, LINE follows the word2vec model and uses NS to learn
vector representations that help predict node associations during random walks. The
objective function they derive is nearly identical to that of word2vec:

ℓ =
∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉

𝐴𝑖 𝑗
(
log𝜎(v𝑖 · u 𝑗) + 𝑏E𝑠∼Pr𝑛 [log𝜎(−v𝑖 · u𝑠)]

)
, (26.22)

where, as discussed in Sec. 26.4, for simplicity, we now take Pr𝑛 (𝑣) = 𝑘𝑣/2𝑀 . (For a
weighted network, 𝑘𝑣 and 𝑀 are the total edge weights for a node 𝑣 and the entire graph,
respectively.) Our previous analysis for word2vec transfers over almost exactly given
the similar objective function, meaning that LINE also performs an implicit matrix
factorization [382]:

v𝑖 · u 𝑗 = log
(2𝑀𝐴𝑖 𝑗
𝑏𝑘𝑖𝑘 𝑗

)
(26.23)

or, in matrix form,
V⊺U = log(2𝑀D−1AD−1) − log 𝑏, (26.24)

where V and U contain the node and context vectors as columns, D is the diagonal
degree matrix, and the log works element-wise. Notice the resemblance between the
matrix D−1AD−1 and some of the matrices we encountered in Ch. 25.

LINE is a special case of DeepWalk, and Qiu et al. [382] show that DeepWalk
factorizes log

(
2𝑀

(
𝐿−1 ∑𝐿

𝑟=1
(
D−1A

)𝑟) D−1
)
− log 𝑏. (We recover LINE when the

8 The positive PMI matrix is defined as PPMI = max(PMI, 0) . This is often used in NLP because the
PMI matrix estimated from a corpus will have entries log 0 = −∞ for any pairs not observed in the corpus.
The PPMI ensures the matrix is well-defined and sparse. (Other fixes, such as Dirichlet smoothing, will not
ensure sparsity.)

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.5. GRAPH NEURAL NETWORKS 441

context window 𝐿 = 1.) Qiu et al. [382] also derive the implicit factorization for
node2vec and use these results to demonstrate a superior method called NetMF that
explicitly factorizes these matrices using SVD instead of implicitly using NS.

26.5 Graph neural networks
The 2010s conclusively demonstrated that neural networks had finally fulfilled their
promise, addressing and in some cases even solving longstanding problems of computer
vision, speech recognition, and natural language processing. And now neural networks
are also making inroads with network data (Ch. 16).

We’re going to start using “graphs” more consistently when referring to our data
to avoid any confusion with the neural networks.

Just as neural network methods have wildly succeeded in NLP, so have neural meth-
ods proliferated for graphs. These networks also learn representations—embeddings—
but often also seek to incorporate node and link attributes (Ch. 9) into their representa-
tions. Using these as features can enable more and better predictive models, including
inductive models that work on entirely unseen graphs.

The challenge with graphs, unlike other forms of data such as written text or spoken
audio, is that we must be permutation-invariant: shuffling the neighborhood of a node
should change nothing, but shuffling the context of a word should change (or destroy)
the meaning of the writing. This need for permutation invariance extends to graph
isomorphism (Sec. 12.6), and two isomorphic graphs (including attributes) should
ideally lead to the same representations; we return to this point later.

Recall the basic feedforward neural network propagates data through a collection of
layers where linear combinations of values at one layer are passed through a nonlinear
activation function when arriving at the next layer, that is,

a(𝑙) = W(𝑙−1)h(𝑙−1) , h(𝑙) = 𝜎(a(𝑙)), (26.25)

where W(𝑙−1) represents the matrix of weights connecting layers 𝑙 − 1 and 𝑙, h(𝑙) is the
vector of activations at layer 𝑙, and 𝜎(·) is a nonlinear function, often a sigmoid but
not always. Bias units for each layer, which act like the intercept in a linear model, are
absorbed into the weight matrices. Our input data x serve as the original activations,
h(0) = x. The parameters {W} of the network are learned with optimization, often by
“backpropagating” errors on training data using stochastic gradient descent and possibly
various regularization techniques. Again, for practitioners, all standard stuff.

Modern graph neural networks (GNNs) have coalesced around a framework of
learning functions that iteratively update a node’s representation by aggregating it
with the representations of its neighbors in the graph, including possibly higher-order
neighbors such as next-nearest neighbors. Let x𝑖 be the attribute vector for node 𝑖
and h(𝑙)𝑖 be the representation (or activation) of 𝑖 at the 𝑙th layer of the network, with
h(0)𝑖 = x𝑖 (we feed the original features into the neural network). (Note in principle the
dimensionality of h may be different for different layers.) Broadly, a GNN’s 𝑙th iteration

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

442 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

for node 𝑖 comes from two learned functions:

a(𝑙)𝑖 = AGGREGATE(𝑙)
({

h(𝑙−1)
𝑗

��� 𝑗 ∈ 𝑁𝑖}) , (26.26)

h(𝑙)𝑖 = COMBINE(𝑙)
(
h(𝑙−1)
𝑖 , a(𝑙)𝑖

)
, (26.27)

where 𝑁𝑖 are the (possibly higher-order) neighbors of 𝑖. Choices for AGGREGATE
include mean, max, and sum, which can encapsulate many different GNN architec-
tures, while vector concatenation is often used for COMBINE. Lastly, when seeking a
representation h𝐺 for the entire graph, a permutation-invariant READOUT function is
applied to the final iteration 𝐿:

h𝐺 = READOUT
({

h(𝐿)𝑖

��� 𝑖 ∈ 𝑉})
. (26.28)

Some authors have also pursued more complex pooling READOUT functions [21] but
a simple sum is often used.

Many architectures are described by these functions, including graph convolutional
networks (GCNs) that explicitly feed the graph’s adjacency matrix into the neural
network. For example, Kipf and Welling [242] use the following layer-wise propagation
step:

H(𝑙) = 𝜎
(
D̃−1/2 (I𝑁 + A)D̃−1/2H(𝑙−1)W(𝑙−1)

)
, (26.29)

where H(𝑙) ∈ R𝑁×𝑑 are the layer representations, W(𝑙) are the corresponding network
weights, and 𝜎(·) is a nonlinear (not necessarily sigmoid) activation function. Here the
adjacency matrix has been augmented with self-loops (I𝑁) which are included in the
diagonal rescaling matrices [D̃]𝑖𝑖 = 𝑘𝑖 + 1. (Notice the similarities with the Laplacian
matrices we saw in Ch. 25.) By “hitting” the output of each layer of the neural network
with the adjacency matrix, the network is forced into accounting for the graph structure,
a form of masking. However, by explicitly including the adjacency matrix, the GCN
is unable to accommodate an unseen network structure, unlike follow-up methods like
GraphSAGE [200] whose aggregate methods only sample features from neighborhoods
(usually first and second neighbors) and thus can handle novel graphs and perform
inductive learning.

One of the problems faced with NLP methods and the network methods they inspire
is learning long-range relationships. The solutions9 devised for language, the attention
mechanism and transformers, have been wildly successful, and have been adopted for
graph structured data. Graph attention networks [475] (GATs; here we described what
is called GATv2 [77]) learn a scoring function 𝑒 : R𝑑 × R𝑑 → R for every edge 𝑖, 𝑗
which captures how important the features of neighbor 𝑗 are to node 𝑖 (we omit the
layer index 𝑙):

𝑒(h𝑖 , h 𝑗) = a⊺LeakyReLU
(
W [h𝑖 | |h 𝑗]

)
, (26.30)

where a and W are learned parameters whose dimensionalities depends on the network
architecture, [·| |·] denotes concatenation, LeakyReLU(𝑦) = 𝑦 if 𝑦 > 0, 𝛽𝑦 otherwise,10

9 Recurrent neural networks (RNNs) have long struggled with this, with LSTMs being a solution. Attention
works even better, allowing networks to learn long-range associations without the long-range computational
paths of RNNs, speeding up training and avoiding vanishing and exploding gradients.

10 A common choice in GAT is 𝛽 = 0.2.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.5. GRAPH NEURAL NETWORKS 443

and bias units are again omitted for brevity. Attention scores come from a softmax of
the edge scores,

𝛼𝑖 𝑗 =
exp(𝑒(h𝑖 , h 𝑗))∑

𝑗′∈𝑁𝑖
exp(𝑒(h𝑖 , h 𝑗′)) , (26.31)

and the next layer’s representations are computed from an attentive weighted average,

h′𝑖 = 𝜎

(∑︁
𝑗∈𝑁𝑖

𝛼𝑖 𝑗W h 𝑗

)
. (26.32)

For simplicity we described a single attention mechanism, but common practice is
to learn 𝐾 parallel attention “heads” which are then concatenated or averaged. Many
other important details such as hyperparameter values and choice of regularizer will
depend on the researcher and the task at hand, but GAT networks have proven successful
at transductive and inductive prediction tasks.

Expressiveness and isomorphism
As we mentioned, neural networks intended for graph-structured data have to deal with
permutation invariance in ways that networks working with images or other data do
not—the set of neighboring nodes in a graph is order-invariant, the set of neighboring
pixels in an image is not. The graph isomorphism (GI) problem, understanding whether
two graphs are the same regardless of how we order or label the nodes, is thus highly
relevant to learning GNNs: GNNs trained on two apparently different but actually
isomorphic graphs should converge on the same learned functions. We often need to
ask whether the GNN architecture is expressive enough to accomplish this.

GI is an interesting computational problem. For many years, it had its own location,
called “GI,” in the hierarchy of complexity classes, not in P and not in NP. Recently, it
has been shown to be in quasi-polynomial time, with complexity 2O((log 𝑁)𝑐) , worse than
polynomial time but not as bad as exponential [18, 19]. An influential algorithm that
tests for isomorphism is called the Weisfeiler–Lehman (WL) algorithm [487]. Roughly
speaking, WL works by “coloring” nodes of the graph, then updating the coloring of a
node using the colors of its neighbors. These colors are found with hash functions that
ensure different colorings are represented differently.

The color-passing idea of WL is very closely connected to what GNNs do, passing
the node representations as messages during learning. Indeed, many researchers have
used this connection as the foundation to understand what GNNs can and cannot
do [293, 320, 497, 32]. For example, many of the GNNs we have encountered above
cannot distinguish graphs that WL can distinguish, meaning they are less expressive or
else powerful. Work continues [32] to improve upon this.

Open problems and the future
GNNs struggle in several key areas. One is computational complexity. Often the methods
require significant training time and memory. Many methods are currently limited to
small networks or small subgraphs of larger networks. As an extreme example, the

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

444 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

Graphormer, a recently introduced, successful application of the Transformer natural
language network to GNNs, is intended for networks of at most only dozens of nodes.
GNNs currently struggle with larger and more complex graphs and attributes, especially
heterogeneous attributes.

Because GNNs work by passing updates between nodes, they suffer when it comes
to long-range signals. Skip connections, which allow for information to bypass some
layer updates, can be a remedy, but the problem remains substantial. Bottlenecks
(cf. Sec. 25.5) often prevent appropriate learning [12]. This leads to “over-smoothing”
where the network fails to retain differences in representations between obviously dif-
ferent nodes—as we move outward in a graph, the exponentially growing number of
nodes lead to information that must be squashed by the network into a representation
of fixed dimensionality. This remains a fundamental challenge. Natural language net-
works struggled with similar problems for decades, before recent progress led away
from recurrent networks to attention and Transformer models. While the problems with
graphs are different, the hope is that, like with natural language, the problems can be
overcome.

Lastly, robustness and interpretability are concerns for users of GNNs just as with
other neural network models. Adversarial data and even noise (Ch. 10) can be a particular
problem for GNNs [119, 514], leading us to worry about our robustness. Likewise, in
practice, GNNs can be sensitive to choices of architecture and hyperparameter settings.
Even design choices, like how to incorporate graph features such as centrality measures
or shortest path lengths into the GNN, are often approached in an ad hoc manner. And
these models are far over to one side of the interpretability–flexibility curve (Chs. 3
and 16): like many complex machine learning methods, they are black boxes that we
can struggle to understand.

26.6 Summary
Embedding network nodes and edges is big business. Embeddings should be compact,
continuous and dense, and these properties allow for novel ways to work with network
data. We’ve already encountered ways to embed networks, such as the spectral methods
of Ch. 25 but more and better embedding techniques continue to be introduced.

Machine learning and embedding are closely aligned. Translating network elements
to embedding vectors and sending those vectors as features to a subsequent predictive
model often leads to a simpler, more performant model than designing a model that
works directly with the network. Embeddings help with network learning tasks, from
node classification to link prediction. We can even embed entire networks and then use
models to summarize and compare networks.

But the relationship is also a two-way street. Not only does machine learning benefit
from embeddings, but embeddings benefit from machine learning. Inspired by the
incredible recent progress with natural language data, embeddings created by predictive
models are becoming increasingly important and useful. Often these embeddings are
produced by neural networks of various flavors.

Neural networks are a major area of machine learning and graph neural networks
are currently a very fast moving area of research. Many types exist and many more

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

26.6. SUMMARY 445

are sure to come. Currently, they work well at many tasks but significant challenges
remain. Mathematically, our understanding of these neural networks is still nascent.
Computationally, they are very costly and often struggle to scale up to very large
networks. Yet neural networks have shown great success in many previously intractable
settings, and it’s likely they’ll make their mark on graphs as well.

Bibliographic remarks
Although dense vector representations have long been pursued in NLP [261, 51, 357]
and network analysis (Ch. 25), word2vec [307] has had a large influence on natural
language processing. DeepWalk [369] brought this idea directly to networks (graphs),
leading to an explosion of interest in learned embeddings; see Goyal and Ferrara [188]
and Xu [498] for recent reviews.

The connections between random walk embeddings, pioneered by Perozzi et al.
[369], and matrix factorization were noted by Qiu et al. [382] following the word2vec
analysis of Levy and Goldberg [269]. Kojaku et al. [249] noted the mechanism that
negative sampling introduced (and effectively removed) which led to a general way
(residual2vec) to remove the bias from graph embeddings.

Graph neural networks, proposed by Scarselli et al. [415], are now a very large and
fast-evolving area. See Zhou et al. [508] and Chami et al. [99] for recent overviews.
Grohe and Schweitzer [192] give a recent review of the graph isomorphism, one of
the tools we use to understand the representational power of different graph machine
learning methods.

Exercises
26.1 (Focal network) Use a Laplacian Eigenmap to embed the Zachary Karate Club.

In two dimensions, visualize the embedding in a meaningful manner and interpret
what you see in terms of the club’s known community structure.

26.2 How might graph neural networks help with some of the problems discussed in
Sec. 9.5?

26.3 What are AGGREGATE(·) and COMBINE(·) for the basic GCN (Eq. (26.29))?

26.4 (Focal network) Implement the basic GCN (Eq. (26.29)), making some choices
for hyperparameters and other details as necessary. Apply to the Malawi So-
ciometer Network and use its embeddings as input to a logistic regression link
prediction method. Validate your predictive model as per Ex. 16.5.

26.5 (Focal network) Same as Ex. 26.4 but try changing the propagation mechanism
to use the graph Laplacian or other variation. Can you improve your predictions?

26.6 The devil is in the details. You may have noticed that our treatments of different
graph neural networks omitted many important, practical details such as hyper-
parameter values, fitting methods, choice of regularization technique (if any),
validation procedures, and more.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

446 CHAPTER 26. EMBEDDING AND MACHINE LEARNING

(a) Find the original paper introducing one of the specific GNNs we described,
such as GAT, and identify all the specific implementation details employed
in the paper. Use the paper’s references if necessary. Describe all the details.

(b) Having determined all this information, are you able to reproduce exactly
the original study? If not, what is missing?

26.7 (Focal network) Gather GO terms (Sec. 9.1) as node attributes for HuRI. What
opportunities are there to predict new or missing GO terms? If the attributes
support it, build a GNN-based node classifier to predict GO terms. Validate using
held-out attributes or other means and interpret your performance.

https://doi.org/10.1017/9781009212601.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.031

