THE DIFFERENCE BETWEEN CONSECUTIVE PRIME NUMBERS V

by R. A. RANKIN (Received 2nd September 1963)

Let p_n denote the *n*th prime and let ε be any positive number. In 1938 (3) I showed that, for an infinity of values of n,

 $p_{n+1} - p_n > (\frac{1}{3} - \varepsilon) \log p_n \frac{\log_2 p_n \log_4 p_n}{(\log_3 p_n)^2},$

where, for $k \ge 1$, $\log_{k+1} x = \log(\log_k x)$ and $\log_1 x = \log x$. In a recent paper (4) Schönhage has shown that the constant $\frac{1}{3}$ may be replaced by the larger number $\frac{1}{2}e^{\gamma}$, where γ is Euler's constant; this is achieved by means of a more efficient selection of the prime moduli used. Schönhage uses an estimate of mine for the number B_1 of positive integers $n \le u$ that consist entirely of prime factors $p \le y$, where

$$u = \alpha x \log x \log_3 x / (\log_2 x)^2$$
, $y = \exp(\delta \log x \log_3 x / \log_2 x)$.

Here x is large and α and δ are positive constants to be chosen suitably.

However, an improved estimate for B_1 can be obtained from the work of de Bruijn (1, 2). It follows from formulæ (1.3) and (1.4) of (1), that $B_1 \sim u\rho(v)$, where $v = (\log u)/\log y$; by formula (1.8) of (2), $\log \rho(v) \sim -v \log v$. It follows that $B_1 < u/\log x$, as required by Schönhage, if $\delta < 1$ and x is sufficiently large; this improves the previous estimate of $\delta < \frac{1}{2}$. The succeeding steps in the argument are unaltered, so that α may be chosen, as before, to be any number less than δe^y . This means that, for an infinity of values of n,

$$p_{n+1} - p_n > (e^{\gamma} - \varepsilon) \log p_n \frac{\log_2 p_n \log_4 p_n}{(\log_3 p_n)^2}.$$

Similar improvements can be made in Theorems II and III of my earlier paper (3).

REFERENCES

(1) N. G. DE BRUUN, On the number of positive integers $\leq x$ and free of prime factors > y, Nederl. Akad. Wetensch. Proc., (A), 54 (1951), 50-60.

(2) N. G. DE BRUIN, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc., 15 (1951), 25-32.

(3) R. A. RANKIN, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.

(4) A. SCHÖNHAGE, Eine Bernerkung zur Konstruktion grosser Primzahllücken, Arch. Math., 14 (1963), 29-30.

THE UNIVERSITY GLASGOW

332