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Abstract

Let G be a finite group, a be a fixed cocycle of G and Proj(G, o) denote the set of irreducible
projective characters of G lying over the cocycle a.

Suppose N is a normal subgroup of G. Then the author shows that there exists a G-
invariant element of Proj(V,ay) of degree 1 if and only if [a] is an element of the image
of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur
multiplier of G. However in many situations one can produce such G-invariant characters
where it is not intrinsically obvious that the cocycle could be inflated. Because of this the
author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact
sequence of cohomology. This restatement not only resolves the apparent anomalies, but also
yields as a corollary the well-known fact that the inflation-restriction sequence

{1} = M(G/N) - M(G) » M(N)
is exact when N is perfect.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 C 25.
Keywords and phrases: projective representations of finite groups.

All groups, G, considered in this paper are finite and all representations of G
are defined over the complex numbers. The reader unfamiliar with projective
representations is referred to [3] for basic definitions and elementary results.

The purpose of this paper is to investigate under which circumstances the fol-
lowing well-known corollary to Clifford’s theorem can be generalized to projective
characters.
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Let N 4 G, and x € Irr(G) such that [xn,1n] # O, where 15 denotes the
trivial character of N. Then N < Ker(x).

Our generalization will take the form of answering the following question.

Let o be a cocycle of G and N < G. Under which necessary and sufficient
conditions does there exist a G-invariant projective character of N with degree
1 and cocycle an?

Our motivation for investigating this problem is provided by Haggarty and
Humphreys [1] who said “Given a subgroup L of G, a cocycle a of G determines
a cocycle ay of L by restriction. However elements which are ay-regular in
L need not be o-regular in G. This fact complicates the theory of projective
characters.”

The implication here can be taken to be that given that every element of L is
o-regular (see 1.1 for this definition), then the theory of projective characters is
similar to ordinary character theory. Indeed as the theory applies to induction
from L to G this is the case, however we shall show in Section 1 that this
is certainly not the case when looking at the restriction from G to L, where
LaG.

1. Projective characters of degree one

To avoid repetition we fix the following notation for the rest of this paper. Let
G be a group, a be a cocycle of G, and Proj(G, a) denote the set of irreducible
projective characters of G with cocycle a. We shall also use without further
reference the fact due to Schur that o([a]) in M(G) divides £(1) for all £ €
Proj(G, a), where M(G) denotes the Schur multiplier of G. We thus have that
there is an element of Proj(G, ) of degree 1 if and only if [a] = [1]. We now recall
some more well-known facts about projective characters in a series of lemmas.
We start however with a basic definition.

DEFINITION 1.1. An element, z, of G is said to be a-regular if a(z,g) =
a(g, z) for all g € Cg(z).

It is easy to check that if (o] = [f], then z is a-regular if and only if z is
B-regular. Also any conjugate of an a-regular element is a-regular, so that we
may speak of the a-regular conjugacy classes of G.

LEMMA 1.2. (i) There exists 8 € [a] such that

B(g,z)B(gz,g71)
B(g,971)

Jor all B-regular z € G, and all g € G.

=1
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(ii) An element, z, of G is a-regular if and only if there exists £ € Proj(G, c)
such that §(z) #0.

PROOF. See (7.2.4) and (7.2.5) of [3].

We call a cocycle satisfying the condition of 1.2(i) a class-function cocycle, in
the sense that by (ii) the elements of Proj(G, 3) are then class functions.

Let N 4 G, for ¢ € Proj(N, ayn) we define the g-conjugate, ¢9, of ¢ by

9 () = falg, z)s(gzg™")

for ¢ € G, and all z € N; where f,(g,2) = a(g,z)a(gz, 97 !)/a(g,¢~1). This
defines an action of G on Proj(N, ay) for which Clifford’s theorem holds. Having
defined our action we can now being to look at the relationship between ay-
regular elements of N and Proj(N, an).

LEMMA 1.3. Let N 9 G and = be an an-regular element of N. Then for
all g € G, 29 1s apy-regular.

PROOF. Let ¢ € Proj(V,ayn) such that ¢(z) # 0, and g € G. Then ¢9 €
Proj(N,an) and ¢9(z9) = c¢(z) for some ¢ # 0. Thus z9 is an-regular.

Our next result shows that G-invariance, not surprisingly, does not depend
upon the choice of cocycle from [¢].

LEMMA 1.4. Let N QG, u: G — C* be a mapping with u(1) =1, and

B(g,h) = Ma(g, h) forall g,he€G.

u(gh)
Suppose Proj(N,an) = {¢1,..-,¢}. Then

(l) PI‘Oj(N, ﬂN) = {/J‘Ngl’ v ,”Ngt};
(i) for g € G, ¢f = ¢; if and only if (uwe)? = s,

PROOF. (i) See pages 72-73 of [3).
(ii) Let g € G. Then for all z € N,

(us:)?(z) = fa(g, ) (us:)(gzg™")

i -1
- ﬂ(g,ﬂ()f (gg—zl’)g )#(gzg‘l)ﬁ(g-’fg_l)

= falg, z)u(z)6i(gzg™t) = p(z)! (z).

PROPOSITION 1.5. Let N Q G, and let inf denote the inflation homo-
morphism from M(G/N) into M(G). Then there exists a G-invariant 6§ €
Proj(N,an) with (1) = 1 if and only if [o] € Im(inf).
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PROOF. Suppose there exists a G-invariant § € Proj(N, ax) with §(1) = 1.
Let P be an irreducible projective representation of G with cocycle o which has
6 as a constitutent of Py. Then, if P has degree n, we have that P induces a
homomorphism P: G/N — PGL(n,C) defined by P(gN) = II(P(g)) for all g €
G, where II denotes the natural homomorphism from GL(n,C) onto PGL(n,C).
Now any section of P will be a projective representation of G/N with some
cocycle 3 of G/N, moreover [§] does not depend on the choice of section, and it
is clear that inf([8]) = [a].

Conversely, suppose [a] = inf([§]) for some [] € M(G/N). Then regarding
B as a cocycle of G we have that the trivial character, 1y, of N is an element of
Proj(N, Bn). As such 1y is G-invariant since 3 is constant on the cosets of N in
G, and hence there exists a G-invariant § € Proj(NV, ax) with §(1) =1 by 1.4.

This result would appear to have easily answered our original question. How-
ever we shall now demonstrate that in certain circumstances it is possible to
produce G-invariant projective characters of degree 1 in situations where it is
not intrinsically obvious that the cocycle could be inflated.

LEMMA 1.6. Let N 9 G such that [an] = [1]. Then there exists 6 €
Proj(N', an) with 6(1) = 1 such that 6 is G-invariant.

PROOF. Since [an] = [1], & = {6 € Proj(N,an): 6(1) = 1} is non-empty
and G acts upon it. Now for § € &/ we have that §y- is irreducible, and so by
Clifford’s theorem there exists a bijection from Irr(N/N') onto & defined by
A +— A, Now if £ € Proj(G, a) such that § is a constitutent of {n, we have that
év =e(by + -+ 6;), where § = 6y,...,6; are the distinct G-conjugates of 6.
Thus &n+ = etén, and so Oy is G-invariant.

It is obvious that if there is a G-invariant element of Proj(N, an) of degree 1,
then necessarily every element of IV is a-regular. One could conjecture, falsely
as it happens, that this was also a sufficient condition, but our next major result
shows that to some extent this conjecture would be justified.

LEMMA 1.7. Let N 9 G and z be an apn-regular element of N. Suppose
that apn s class-function cocycle of N. Then for each g € G and ally € N,

fa(9,2) = fa(g,z¥).

PROOF. By 1.2 and 1.3 we may let ¢ € Proj(NV, an) such that ¢(gzg~1) # 0.
Now for g € G and all y € N we have that

¢(z) = falg,z)s(gzg™ ")
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and
. _
(€)Y (2) = faly™", 2)¢%(2Y)
=¢9(zY), since ay is a class-function cocycle;
= falg,2¥)s(g2%97").
But gzg~! and gz¥g~! are conjugate in N, since G permutes the classes of

N. Thus since ay is a class-function cocycle we have that both ¢(gz¥¢g~!) =
s(gzg™") # 0, and ¢¥(z) = ¢¥(z¥), hence fa(g,7) = fa(g, 2¥).

THEOREM 1.8. Let N 4 G;#,...,%, be the an-regular conjugacy classes
of N fized by g € G, and z; € %,. Suppose that an is a class-function cocycle of
N. Then 3°_, fo(g,z:i) 18 the number of g-invariant elements of Proj(N,an).

PROOF (BRAUER, ISAACS). Let ¢;, % for 1 < ¢ <t denote respectively the
elements of Proj(N, ax) and the ay-regular classes of N. Let z; € &, if 8¢ = &;
we shall write zJ = z;. For g € G, we define A(g) = (ai;), where a;; = 1, if
¢] = ¢; and is zero otherwise. We also define B(g) = (b;;), where b;; = fo(g, z;)
if & = %; and is zero otherwise. We note from 1.7 that f,(g, z;) is independent
of the choice of z; € &,. Finally let P = (p;;), where p;; = ¢i(z;). Then we
have that the (I, m)th entry of A(g)P is Z;=1 a15¢;(Zm) = ¢/ (Zm); whereas the
({,m)th entry of PB(g) is

t
> a(@)bim = fal9,2m)t(92mg™") = ¢f (Tm).
j=1
Thus P~'A(g)P = B(g) and so trace(A(g)) = trace(B(g)). But trace(A(g))
is the number of g-invariant elements of Proj(N,an), whereas trace(B(g)) =
Eiel fa(g,z;) where I = {i: gig =%}

As applications of the above theorem we have the following results.

COROLLARY 1.9. Let N 9 G, and suppose that every element of N s «-
regular. Then each g € G fizes at least one element of Proj(N, ay).

PROOF. By 1.4(ii) we may assume that «a is a class-function cocycle of G.
Let g € G, then by 1.8 the number of g-invariant elements of Proj(N, ax) equals
the number of classes of N fixed by g.

COROLLARY 1.10. Let N be a normal abelian subgroup of G such that
G/Cg(N) is cyclic. Suppose that every element of N is o-regular. Then there
exists 6 € Proj(N,an) with 6(1) = 1 which is G-invariant.

PROOF. Let C = Cg(N) and 6§ € Proj(N,an). Then §(1) =1and C is a
subgroup of the inertia subgroup, I (6), of 6 in G, since N is abelian and every
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element of N is a-regular. Let g € G such that (gC) = G/C, then by 1.9 g fixes
some &' € Proj(N,ay). Thus G = (g,C) < Ig(¢§').

It is interesting to note that Mangold in (5.1) of [7] claimed that every element
of G is a-regular if and only if [o] = [1]. The first of the following examples
demonstrates that this is in fact false in general for a non-abelian group, and
hence also shows that the condition of every element of G being a-regular is not
even sufficient generally, to guarantee the existence of an element of Proj(G, )
of degree 1.

EXAMPLES. Let p be a prime number, and H be the “einfachste” repre-
sentation group for (Cp)* as in (3.5.4) of [3], so that |H| = p!® and H =
(z1,%2,23,24: 2 = [z, 75,26 = 1, for 1 < 4,5,k < 4).

Let s = [z1,22][z3,24) and A = (s), so that A< Z(H)NH' and |A| =p. It
is easy to show that no non-trivial element of A is a commutator, see [5] for a
generalization of this result. Now let A € Irr(A) be defined by A(s?) = w? for
w = e?™/?_and let o be the cocycle of G; = H/A constructed in the normal way
from ), see pages 180-182 of [2] for example. Then by construction o([a]) = p.
Now with the definition and results of pages 195-197 of [2], we have that every
element of G is ‘A-special’ trivially, and hence every element of G; is a-regular.

For a different type of example let B = (s,t) where t = [z1,23]), M =
(z1, 23, A), and define u € Irr(B) by u(s’t*) = A(s?). One can then check
that every element of N = M/B is p-special, but that not every element of
MZ(H)/Z(H) is v-special for any extension, v, of u to Z(H). So if 3 is the
cocycle of G, = H/B constructed from p, we have shown that every element
of the abelian group N is S-regular, but that no element of Proj(N,3) can be
Ga-invariant.

2. The inflation-restriction sequence

Let N 94 G. Then we have the Lyndon-Hochschild-Serre exact sequence of
cohomology:

{1} — H'(G/N,C") = H'(G,C*) =5 H'(N,C*)°
2, M(G/N) 282, M(G)
where the action of all groups on C* is trivial, see [6, page 354].
It is clear that we may replace M(G) in this exact sequence by M(G)* =
{le] € M(G): [an] = [1]}. In this section we shall extend this new sequence one
term to the right, and in doing so we shall give a practical test to see whether

an element of M(G)¥ is in the image of inf,. Thus it is 1.5 which connects the
results of Section 1 to those of this section.
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LEMMA 2.1. Let N 9 G, a be a cocycle of G such that [o] € M(G)*, and
6 € Proj(N,an) with 6(1) = 1. Then

(i) the mapping o’ : G/N — HY(N,C*) defined by o/ (gN) = 6/89 1s a crossed
homomorphism;

(ii) the mapping r: M(G)* — HY(G/N,H'(N,C*)) defined by 7([a]) = [&]
18 a homomorphism.

PROOF. (i) Let ¢ € G. Then 89,6 € Proj(N,an), and so since (1) = 1 we
have that §/69 € H'(N,C*). Now let g1, g2 € G, and suppose that g;z = g2 for

z € N. Then

5 5 5
o'(g2N) = Fore = (o) oo (91N),

since N < I(69'). Thus ¢’ is well defined. Finally let g1, g2 € G. Then

e (SNt NN N
o'(g192N) = §9192  \gor ) Goz (a'(g1N))*" o (g2N).
(ii) Suppose B € [a], and let u: G — C* be a mapping with x(1) = 1 such that

B(g,h) = plg)u () h()h) (g,h) forallg hegq.
Let v € Proj(N, Bn) with v(1) = 1. Then by 1.4 we have that v = un6; for
some 6; € Proj(N,an). But 6; = A8 for A € HY(N,C*) as in the proof of 1.6.
Thus
v A und X6
Ve X9 (un6)9 NI 69

as in the proof of 1.4, and so 7 is well defined. Clearly 7 is a homomorphism.

THEOREM 2.2. Let N < G. Then the sequence
M(G/N) =5 M(G)* L H'(G/N, H'(N,C*))

18 exact.

PROOF. By 1.5 we have that Im(inf) < Ker(r). Let [a] € Ker(r). Then
for 6 € Proj(N,an) with 6(1) = 1, we have that §/69 = A\/A9 for some A €
H'(N,C*). But then A1 is G-invariant, and so by 1.5 we obtain that [o] €
Im(inf).

The above theorem can be regarded as a generalization of a result of Read,
see (4.4.5) of [3], which deals with the special case when N is a central subgroup
of G. We now mention some applications of 2.2, the first being well known.
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COROLLLARY 2.3. Let N be a perfect normal subgroup of G. Then the
sequence

{1} » M(G/N) 25 M(G) =% M(N)

13 ezact.

PROOF. We start by noting that H!(N,C*) = {1}, since N’ = N. Thus by
2.2 we have that Ker(res) = M(G)* = Im(inf).

Our next result was used by Liebler and Yellen in (2.4) of [4] to help prove
that groups of central type are solvable.

COROLLARY 2.4. Let N 4 G, and suppose that (|G/N|,|N/N'|) =1. Then
M(G)* = Im(inf).

PROOF. By the Schur-Zassenhaus theorem we have that H!(G/N, H(N,C*))
is trivial, and so the desired result is immediate from 2.2.

COROLLARY 2.5. Suppose G i3 metacyclic, and let N Q G such that both N
and G/N are cyclic. Then M(G) is isomorphic to a subgroup of H'(G/N,N).

PROOF. From 2.2 we have that the sequence
{1} - M(G) — H'(G/N, Irr(N))
is exact, since M(G)* = M(G). Thus 7 is a monomorphism.

For our last application we can now explain the result of 1.6.

COROLLARY 2.6. Let N;,N;, 9 G with N; < N,;,T denote the itmage
of res: HY(N1,C*) — H'(N,,C*), and M(G)* = {[a] € M(G): [an,] =
(1]}. Then the homomorphism 7: M(G)#2 — H(G/Nay, H(N;,C*)) defined
in 2.1, induces by restriction to M(G)#! a homomorphism from M(G)*: into

HY(G/Na,T).

PROOF. Let [a] € M(G)#!, and 6 € Proj(Ny,an,) with §(1) = 1. Then by
2.1 we have that 7([a]) = [o/], where o/ (gN2) = (&)n, € T.

In the situation of 1.6 we have that N, = N{ and so T = {1}, with the above
notation. Thus by 2.2 we obtain that M(G)#! is a subgroup of inf: M(G/N]) —
M(G).
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