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Abstract

The superintegrable chiral Potts model has many resemblances to the Ising model, so
it is natural to look for algebraic properties similar to those found for the Ising model
by Onsager, Kaufman and Yang. The spontaneous magnetization Mr can be written
in terms of a sum over the elements of a matrix Sr . The author conjectured the form
of the elements, and this conjecture has been verified by Iorgov et al. The author also
conjectured in 2008 that this sum could be expressed as a determinant, and has recently
evaluated the determinant to obtain the known result for Mr . Here we prove that the
sum and the determinant are indeed identical expressions. Since the order parameters of
the superintegrable chiral Potts model are also those of the more general solvable chiral
Potts model, this completes the algebraic calculation of Mr for the general model.
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1. Introduction

The first exact solution of a two-dimensional statistical mechanical model of an
interacting system was Onsager’s derivation [18] of the free energy of the Ising model
in 1944. This is a model of spins living on a square lattice, each having two possible
states (“up” or “down”), and interacting ferromagnetically with their neighbours. The
model has a phase transition: there is a critical temperature Tc such that the system is
ferromagnetically ordered at temperatures T < Tc, disordered for T ≥ Tc.

For T < Tc, there is a nonzero spontaneous magnetization M1 (also known as the
order parameter). The result for this was announced by Onsager in 1949 [19], and a
derivation published by Yang in 1952 [20]. This and subsequent derivations were
explicit algebraic calculations, applied to a system of finite size. Only at the end of the
calculation was the desired thermodynamic limit taken of an infinite lattice.
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Since then many other two-dimensional models have been solved that also have
order–disorder transitions. Notable amongst these is the solvable chiral Potts model,
which can be regarded as an N -state generalization of the two-state Ising model. Its
free energy was calculated in 1988 [5, 6] and in 1989 it was conjectured [1] that the
order parameters M1, . . . , M N−1 are given by

Mr = (1− k′2)r(N−r)/2N 2
(1.1)

for r = 1, . . . , N − 1 and 0< k′ < 1. Here k′ is a temperature-like parameter,
increasing from 0 to ∞ as T increases from 0 to ∞, and having value k′ = 1 at
T = Tc.

It was not until 2005 [7, 8] that a derivation was obtained of that conjecture. The
method used was analytic: one obtained equations for a generalization of Mr in the
infinite lattice limit, and solved them. This necessarily involves plausible assumptions
that the desired functions are analytic in certain domains.

However, the order parameters Mr are known to depend only on N , r and k′, and
not on other “rapidity” parameters in the model. There are special values of these
extra parameters where the model becomes “superintegrable”, and it has recently been
shown that the model is then amenable to explicit algebraic calculations that parallel
those of the Ising model.

By considering the square lattice of finite width L , the author [9–11] showed that
Mr could be expressed in terms of a sum over the elements of a 2m-by-2m′ matrix Sr .
In [11] he conjectured a formula for these elements as simple products. He also
conjectured in [10, 11] that the sum could be written as the determinant DPQ of an
m-dimensional (or m′-dimensional) matrix. These P, Q, r are related by Q = P + r
(mod N ), and (for 0≤ P, Q < N )

m =

[
(N − 1)L − P

N

]
, m′ =

[
(N − 1)L − Q

N

]
(1.2)

where [x] is the integer part of x . Note that these definitions imply

|m − m′| ≤ 1. (1.3)

In a recent paper [12], the author showed that this determinant can be written as the
product (or ratio) of Cauchy-like determinants, so is also a simple product. Taking the
limit L→∞, one does indeed regain the known result (1.1).

This still left open the two conjectures, the first being the product expression for
the elements of Sr . The matrix Sr satisfies two commutation relations. In unpublished
work, the author was able to prove that the conjectured form did in fact satisfy these
relations, and from numerical studies for small values of N , L it appeared that there
was only one such solution to these linear equations, but this fell short of a proof.
The problem of calculating such matrix elements has been studied more directly by
Au-Yang and Perk [2–4]. Iorgov et al. [14] have now given a proof, and have gone on
to calculate Mr directly.
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The second conjecture was that the sum over the elements of Sr was the determinant
DPQ . This is the problem we address here. It is a very self-contained problem, being
just an algebraic identity between rational functions of many variables. It completes
the algebraic proof of the formula (1.1) via the determinant DPQ .

We shall refer to papers [9–12] as papers I, II, III, IV, respectively, and quote their
equations accordingly.

2. Definitions

Let c1, . . . , cm, y1, . . . , ym and c′1, . . . , c′n, y′1, . . . , y′n be sets of variables, where
n = m′ and m, m′ are the integers mentioned above. In this paper we do not use the
above definitions (1.2), nor the integers N , L , P, Q. We can take m, m′ to both be
arbitrary positive integers, and the ci , yi , c′i , y′i to be arbitrary variables. In this paper
we can and do allow m and m′ to be arbitrary. We ignore the restriction (1.3).

Let s = {s1, . . . , sm} be a set of m integers with values

si = 0 or 1 for 1≤ i ≤ m.

Similarly, let s′ = {s′1, . . . , s′n}, where each s′i = 0 or 1. Set

κs = s1 + · · · + sm, κs′ = s′1 + · · · + s′n. (2.1)

For a given set s, let V be the set of integers i such that si = 0 and W the set such
that si = 1. Hence, from (2.1), V has m − κs elements, while W has κs . Define V ′,
W ′ similarly for the set s′, so V ′ has n − κs′ elements, while W ′ has κs′ .

Define

As,s′ =
∏
i∈W

∏
j∈V ′

(ci − c′j ), Bs,s′ =
∏
i∈V

∏
j∈W ′

(ci − c′j ),

Cs =
∏
i∈W

∏
j∈V

(c j − ci ), Ds′ =
∏
i∈V ′

∏
j∈W ′

(c′j − c′i ).
(2.2)

Then the afore-mentioned matrix Sr has elements (Sr )s,s′ which are proportional to
As,s′Bs,s′/(Cs Ds′) and the sum over its elements is given in (III.3.48) as

R=
∑

s

∑
s′

ys1
1 ys2

2 · · · y
sm
m

(
As,s′Bs,s′

Cs Ds′

)
y′1

s′1 y′2
s′2 · · · y′n

s′n , (2.3)

the sum being restricted to s, s′ such that

κs = κs′ . (2.4)

Now define ai , . . . , am, b1, . . . bm and a′i , . . . , a′n, b′1, . . . b′n by

ai =

n∏
j=1

(ci − c′j ), a′i =
m∏

j=1

(c′i − c j ), (2.5)

bi =

m∏
j=1, j 6=i

(ci − c j ), b′i =
n∏

j=1, j 6=i

(c′i − c′j ), (2.6)
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and let B be an m-by-n matrix, and B′ an n-by-m matrix, with elements

Bi j =
ai

bi (ci − c′j )
, B′i j =

a′i
b′i (c
′

i − c j )
.

Also, define an m-by-m diagonal matrix Y and an n-by-n diagonal matrix Y ′ by

Yi, j = yiδi j , Y ′i, j = y′iδi j .

Then the determinant mentioned above is

D = DPQ = det[Im + Y BY ′B′], (2.7)

where Im is the identity matrix of dimension m.
(The definition (2.7) is the same as (II.7.2), (III.4.9), (IV.1.18). If f, f ′i are defined

by (IV.2.31) and BPQ by (IV.2.29), and F, F ′ are the diagonal matrices with elements
Fi,i = fi , F ′i,i = f ′i , then B = εF BPQ F ′−1, B′ =−εF ′BQ P F−1 and ε2

= 1.)
We can also write (2.7) as

D = det[In + Y ′B′Y B],
so both R and D are unaltered by simultaneously interchanging m with n, the ci with
the c′i and the yi with the y′i . It follows that without loss of generality, we can choose

n ≥ m. (2.8)

The expressions R, D are functions of m, n, c1, . . . cm, y1, . . . , ym , c′1, . . . c′n,
y′1, . . . , y′n . We shall write them as Rmn, Dmn .

3. Proof that Rmn = Dmn

Both Rmn and Dmn are rational functions of c1, . . . cm , c′1, . . . c′n . They are
symmetric, being unchanged by simultaneously permuting the ci and the yi , as well as
by simultaneously permuting the c′i and the y′i . We find that they are identical, for all
ci , yi , c′i , y′i . The proof proceeds by recurrence, in the following four steps.

3.1. The case m = 1

Calculation of R1n If m = 1 then s = {s1} and either s1 = 0 or s1 = 1. In the first
case, since κs = κs′ , all the s′i must be zero and the sets W, W ′ are both empty, so we
get a contribution to (2.3) of unity.

In the second case, s′ = {0, . . . , 0, 1, 0, . . . , 0}, with the 1 in position r , for
r = 1, . . . , n. Then V is empty, so Bs,s′ = Cs = 1, while

As,s′ =

n∏
j=1, j 6=r

(c1 − c′j ), Ds′ =

n∏
j=1, j 6=r

(c′r − c′j ).

From (2.3) it follows that

R1n = 1+
n∑

r=1

y1 y′r

n∏
j=1, j 6=r

c1 − c′j
c′r − c′j

.
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Calculation of D1n The right-hand side of (2.7) is a determinant of dimension one,
so

D1n = 1+ Y1,1

n∑
r=1

B1,r Y ′r,r B′r,1

= 1−
a1 y1

b1

n∑
r=1

a′r y′r
b′r (c1 − c′r )2

, (3.1)

where ai , a′i , bi , b′i are defined by (2.5), (2.6). Note that here b1 = 1.
We therefore obtain

D1n = 1+
n∑

r=1

y1 y′r

n∏
j=1, j 6=r

c1 − c′j
c′r − c′j

and we see explicitly that
R1n =D1n.

3.2. Degree of the numerator polynomials Consider Rmn and Dmn as functions
of cm . They are both rational functions. We show here that they are both of the form

polynomial of degree (n − 1)
bm

. (3.2)

Degree for Rmn First consider the sum Rmn in (2.3) as a function of cm . Each
term is plainly a polynomial divided by bm . If m ∈W , then sm = 1 and the numerator
is proportional to As,s′ . The degree of the numerator is the number of elements of V ′.
The condition (2.4) means that W ′ must have at least one element, so V ′ must have at
most n − 1. The degree of the numerator is therefore at most n − 1.

If m ∈ V , then the numerator is proportional to Bs,s′ and the degree of the numerator
is the number of elements of W ′, which from (2.4) is the same as the number of
elements of W . Since V has at least one element, W can have at most m − 1.
From (2.8), this is at most n − 1.

The sum of all the terms in (2.3) is therefore a polynomial in cm of degree at most
n − 1, divided by bm , as in (3.2).

Degree for Dmn Now consider the determinant Dmn in (2.7) as a function of cm .
At first sight there appear to be poles at cm = c′j , coming from Bmj . However, they are
cancelled by the factor am . Similarly, the ones in the element B′jm of the matrix B′ are
cancelled by the factor a′j . So there are no poles at cm = c′j , for any j .

There are poles at cm = ci (for 1≤ i < m) coming from the bi , bm factors in
Bi j , Bmj , respectively, so there are simple poles in each of the rows i and m. This
threatens to create a double pole in the determinant Dmn . However, if cm = ci , the
rows i and m of the matrix (cm − ci )B are equal and opposite. By replacing row i by
the sum of the two rows (corresponding to pre-multiplying B by an elementary matrix),
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we can eliminate the poles in row i . Hence there is only a single pole at cm = ci . The
determinant is therefore a polynomial in cm , divided by bm .

To determine the degree of this polynomial, consider the behaviour of Dmn when
cm→∞. Then, writing cm simply as c,

Bi j ∼ c−1 if i < m, Bi j ∼ cn−m if i = m,

B′i j ∼ c if j < m, B′i, j ∼ 1 if j = m

and hence the orders of the elements of the matrix product in (2.7) are given by

Y BY ′B′ ∼


1 1 · · · 1 c−1

1 1 · · · 1 c−1

· · · · · · · · · · · · · · ·

1 1 · · · 1 c−1

cn−m+1 cn−m+1
· · · cn−m+1 cn−m

.
Since n ≥ m, it follows that Dmn grows at most as

Dmn ∼ cn−m

as c→∞. The numerator polynomial in (3.2) is therefore of degree at most n − 1.
This completes the proof of (3.2).

3.3. The case cm = c′
n

The sum Rmn Consider the case when cm = c′n . If m ∈W and n ∈ V ′, then
from (2.2) As,s′ = 0. Similarly, if m ∈ V and n ∈W ′, then Bs,s′ = 0. So the summand
in (2.3) is zero unless either m ∈ V, n ∈ V ′, or m ∈W, n ∈W ′.

In the first instance, sm = s′n = 0. The AB/C D factor in (2.3) is the same as if we
replace m, n by m − 1, n − 1, respectively, except for a factor∏

i∈W

ci − c′n
cm − ci

∏
j∈W ′

cm − c′j
c′j − c′n

.

Since cm = c′n , the factors in the product cancel, except for a sign. From (2.4), there are
as many elements in W as in W ′, so the sign products also cancel, leaving unity. Thus
this contribution to (2.3) is exactly that obtained by replacing m, n by m − 1, n − 1.

In the second instance, sm = s′n = 1. This time AB/C D has an extra factor

∏
j∈V ′

cm − c′j
c′n − c′j

∏
i∈V

ci − c′n
ci − cm

= 1,

so this contribution to (2.3) is again that obtained by replacing m, n by m − 1, n − 1,
except that now there is an extra factor ym y′n . Adding the two contributions, we see that

Rmn = (1+ ym y′n)Rm−1,n−1. (3.3)
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The determinant Dmn Now look at the determinant (2.7) when cm = c′n . Since am
and a′n both contain the factor cm − c′n , the mth row of B vanishes except for the
element m, n, which is

Bm,n =

∏n−1
j=1(cm − c′j )∏m−1
j=1 (cm − c j )

.

Similarly, the nth row of B′ vanishes except for

B′n,m =
∏m−1

j=1 (c
′
n − c j )∏n−1

j=1(c
′
n − c′j )

.

Since cm = c′n , we see that Bm,n B′n,m = 1.
It follows that the matrix in (2.7) has a block-triangular structure:

Im + Y BY ′B′ =
(

1+ yby′b′ · · ·

0 1+ ym y′n

)
,

where 1, y, b, y′, b′ are the matrices Im, Y, B, Y ′, B′ with their last rows and columns
omitted. Hence

Dm,n = (1+ ym y′n)Dm−1,n−1. (3.4)

3.4. Proof by recurrence The proof now proceeds by recurrence. Suppose that
D(m−1, n − 1)= R(m − 1, n − 1) for all ci , c′i . Then from (3.3) and (3.4) it is
true that Dm,n =Rm,n when cm = c′n . By symmetry it is also true for cm = c′j for
j = 1, . . . , n. Thus Dm,n −Rm,n is zero for all these n values. However, from
Subsection 3.2 above, this difference (times bm) is a polynomial in cm of degree n − 1.
The polynomial must therefore vanish identically, so Rm,n =Dm,n for arbitrary values
of cm .

Since it is true for m = 1, it follows that

Rm,n =Dm,n

for all m, n.
This proves the second conjecture of [11].

4. Summary

We have proved that the sum R over the elements of the matrix Sr is identical
to the determinant D. In [12] we calculated D and hence obtained the spontaneous
magnetization Mr .

The recent work by Iorgov et al. [14] proves that the elements of the matrix Sr are
indeed given by (III.3.45), being proportional to As,s′Bs,s′/(Cs Ds′), so the algebraic
calculation of Mr is now complete.

Further, Iorgov et al. [14] go on to calculate R, and hence Mr , directly, thereby
avoiding the determinantal formulation altogether. While this last step is efficient,
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it bypasses the author’s original motivation for this work, which was to obtain
a derivation of Mr that more closely resembled the algebraic and combinatorial
determinantal calculations for the Ising model of Yang [20], Kac and Ward [15], Hurst
and Green [13], and Montroll et al. [17] all of whom write the partition function in
terms of a determinant or Pfaffian (the square root of an antisymmetric determinant).
Indeed, the D = DPQ of this paper is the immediate generalization of the Ising model
determinant, as formulated in (I.7.7) in the first paper of this series.

In fact, it would still be illuminating to obtain a simple and direct derivation of
DPQ parallelling Kaufman’s spinor operators (Clifford algebra) method for the Ising
model [16].
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