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ABSTRACT 
In order to obtain new information concerning 

the anomalous properties of Antarctic ice previously 
observed through electrical measurements, we have 
studied specimens from a coastal site by means of 
internal friction measurements in the 1 Hz range. 
The results have been compared to previous ones 
obtained with polar ice from Dome C and electrical 
measurements have been made on the same samples in 
order to confirm the anomalous behaviour of such 
material. 

Two possible explanations of the anomalous prop
erties of polar ice are discussed, namely the role 
of impurities and the ageing effect. It seems improb
able that impurities could be responsible for such 
properties due to their low concentration. Some ex
periments, however, lead us to interpret the behav
iour of polar ice in terms of modifications with 
time of the concentration and distribution of intrin
sic point defects present at the beginning of the 
existence of the ice microcrystals. 

1. INTRODUCTION 
Previous work has shown that the electrical prop

erties of polar glacier ice are very different from 
those of temperate glacier ice or pure laboratory 
ice. In geophysical resistivity surveys, Rbthlis-
berger (1967) found that the electrical conductivity 
of cold polar glacier ice was orders of magnitude 
larger than that of temperate glacier ice. Dielectric 
properties of deep cores taken from polar glaciers 
have been studied by several authors (Paren 1973, 
Maeno 1974, Fitzgerald and Paren 1975, Maeno 1978). 
From these different studies, it was shown that 
relaxation times of the dielectric dispersion were 
shorter than those obtained with pure laboratory or 
temperate glacier ice. The activation energy of the 
principal relaxation time is around 0.23 eV in polar 
ice compared with around 0.58 eV in pure single 
crystals. Fitzgerald and Paren (1975) found that the 
electrical behaviour of polar ice is similar to that 
observed for single crystals doped with HF. It is 

difficult to explain the unusual electrical properties 
by impurity effects alone (Fitzgerald and others 
1977). The most recent idea put forward was based on 
the influence of CO2 adsorbed at the ice surface 
(Paren and Glen 1978). This assumption seemed to be 
confirmed by a reported high CO2 content of polar 
ice. However, recent measurements have clearly 
shown that the CO2 content of polar ice is small 
compared with values given previously (Delmas and 
others 1980). By measuring the static electrical 
conductivity and the sulphate content of Dome C and 
D 10 ice samples, Maccagnan and others (1931) found 
a relationship between the two studied parameters, 
but impurities did not seem to explain entirely the 
electrical properties of these samples. In other 
respects, internal friction measurements made in the 
1 Hz range on ice from Dome C have shown that 
anelastic properties of polar ice, just like electri
cal properties, are very different from those of pure 
ice (Vassoille and others 1980). The aim of this 
paper is firstly to present the internal friction 
spectrum versus temperature of polar ice from D 10 
(the relaxation phenomenon is observed at a particu
larly low temperature) and secondly to compare elec
trical and mechanical measurements made on the same 
polar ice. 

2. EXPERIMENTAL METHODS 
2.1 Ice samples investigated 

Thermal core drilling to 906 m depth was carried 
out at Dome C, Antarctica (lat.74°39'S,long.l24',10'E, 
elevation 3 240 m a.s.l., mean annual temperature 
-53.59°C) during the 1977-78 Antarctic field season 
(Lorius and Donnou 1978). Below depths of 150 m, many 
cracks were formed during the drilling operation. 
D 10 is a coastal site near Dumont d'Urville 
(lat.66o40'S, long.HO'Ol'E, elevation 270 m a.s.l., 
mean annual temperature -13°C). Thermal core drilling 
to bedrock (304 m) was carried out in January 1974 
(Gillet and others 1976). The two ice cores were 
kept at temperatures lower than -15°C after the 
drilling operation. 
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2.2 Dielectric measurements 
The dielectric behaviour of ice samples 70 mm in 

diameter and about 7 mm in thickness were analysed in 
the range 50 Hz to 100 kHz. The equipment and proced
ures are described by Maccagnan and Duval (1982). 
2.3 Internal friction of ice 

It is now well known that ice exhibits mechanical 
damping or internal friction, i.e. energy is dissip
ated when a cyclic stress is applied to the material. 
This property is often characterized by the logarith
mic decrement 5 of free oscillations of a mechanical 
oscillating system in which the elastic element is 
the sample. 

The internal friction of ice was first measured 
by Kneser and others (1955) and then studied in the 
1 kHz frequency range by Schiller (1958) and Kuroiwa 
(1964). More recently, low-frequency measurements 
(about 1 Hz) have been made with the torsional pendu
lum technique (Vassoille and others 1974, Nakamura 
and Abe 1977). 

In our laboratory, damping measurements are made 
on ice with a torsional pendulum either in the 1 Hz 
range (variations in the logarithmic decay of oscill
ations versus temperature are automatically recorded 
(Etienne and others 1975)) or in the 10"1* to 1 Hz 
range (forced-oscillation method (Etienne and others 
1981)). 

Specimens in the form of rectangular bars 
(8 mm x 2 mm x 76 mm) were mechanically cut from the 
driTled ice core. 

As ageing effects had been previously studied by 
maintaining pure ice crystals near the melting point 
(Tatibouet and others 1981[a]) some annealing treat
ments have been made on polar ice in the same condit
ions; that is, by putting ice specimens in glass 
tubes which were immersed in a glycol bath maintained 
at a constant temperature of 271 ± 0.5 K. 

3. EXPERIMENTAL RESULTS 
Thirteen samples cut from blocks situated between 

depths of 126 and 900 m from Dome C were studied: as 
the results have been published elsewhere (Vassoille 
and others 1980), only one example of the anelastic 
properties of these samples is shown in Figure 1(a) 
(curve A). The features previously observed with low-
frequency internal friction measurements made on pure 
ice (Vassoille and others 1974) can again be seen: 
(i) in the high-temperature range, a peak associated 
with the movement of grain boundaries (Perez and 
others 1979), and (ii) at lower temperatures, a 
relaxation peak generally interpreted in terms of 
reorientation of water molecules by means of rota
tional defects (Vassoille and others 1978). 

In the case of the former feature, no difference 
is observed between pure and polar ice; however, in 
the latter, the temperature Tp of the relaxation peak 
in polar ice (145 K) is lower than in the case of 
pure ice (190 to 200 K at 1 Hz: curve B, Fig.1(a)). 

To be sure that the preceding results are not 
caused by an experimental artefact, electrical 
measurements were also carried out. It is shown in 
Figure K b ) that the variations of e' and e" versus 
frequency of Dome C ice core (curves A) are very 
different from those of pure ice (curves B). 

To improve our knowledge of polar ice, other 
specimens have been studied. Thus, new results ob
tained on samples drilled from D 10 (46 m depth) 
have shown still larger differences from pure ice. In 
order to prevent any trouble connected with sample 
preparation, mechanical and electrical techniques 
have both been employed on the same specimens: the 
results are shown in Figure 2. The relaxation phen
omenon is observed at a lower temperature (127 K, 
Fig.2(a)) than in the case of Dome C ice, and dielec
tric measurements confirm this low value of the re
laxation time of the dominant dispersion (Fig.2(b)). 

Actually, results concerning dielectric behaviour 
are more complex than those concerning internal 

Fig.1(a). Internal-friction spectra versus tempera
ture; curve A: specimen from Dome C 680 m deep, 
curve B: pure ice. 

(b). Real and imaginary parts of the permit
tivity e' and e" versus frequency; curves A: 
specimen from Dome C 680 m deep, curves B: pure 
ice. 

friction as they are dependent on both relaxational 
effects and static electrical conductivity (SEC). For 
instance, the latter is higher in the case of Dome C 
than in the case of D 10 ice (compare Figs.Kb) and 
2(b)). As this point has been discussed by Maccagnan 
and others (1981), more attention will be paid to the 
relaxation time. It is well known that a correlation 
does exist between the relaxation time for mechanical 
and dielectric relaxation: on the one hand, for a 
given temperature, mechanical and electrical relax
ation times x have nearly the same value, and, on the 
other hand, the temperature dependence of these 
relaxation times is similar. 

Such a correlation has been experimentally veri
fied by Kuroiwa (1964), but only in a frequency 
(temperature) range where the relaxational phenomenon 
in so-called pure ice is not sensitive to the extrin
sic rotational defects. So it is interesting to note 
such a correlation at lower frequencies by comparing 
the results of Kawada (1978) on dielectric relaxa
tional properties with the very recent results of 
Tatibouet and others (1981[b]) on internal friction 
of pure ice measured between 10_1* and 1 Hz. 
Figure 3 shows that the experimental points can be 
considered to lie along two straight lines: at high 
temperatures, the slope corresponds to 0.58 eV, im
plying rotational defects in thermodynamic equili-

308 

https://doi.org/10.3189/S0260305500002974 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500002974


Vaesoille and others: Electrical and meahaniaal damping measurements 

-i T r 
100 150 2 0 0 2 5 0 

50-

2 5 -

£ . . 
•H t t 

Hz 

10 10 

[b] 
10 

F ig .2 . Comparison between mechanical and d i e l e c t r i c 
re laxat ion: specimen from D 10 s ta t ion 46 m deep. 

(a) in ternal f r i c t i o n spectrum (?) and 
period (P) versus temperature. 

(b) Pe rm i t t i v i t y e' and e" versus frequency; 
f u l l l i ne T = 258 K, dashed l i n e T = 230 K. 

brium; at low temperatures, the slope is 0.25 eV 
(Tatibouet and others 1981[b]) , implying ro ta t iona l 
defects wi th a concentration independent of tempera
tu re . In the same f i gu re , theoret ica l curves have 
been drawn from the s imp l i f i ed f i e l d re la t i on 

T B T 0 exp (EM/kT) 
C + exp 

with Ep = 0.34 eV and E^ = 0.24 eV being the energy 
of formation and energy of migration of intrinsic 
rotational defects, respectively, and C the concen
tration of extrinsic rotational defects. 

As an example, an experimental point obtained 
from internal friction measurement made on ice doped 
with about 10"2 °/oo HF (Vassoille and others 1978) 
is also indicated. 

Thus, by plotting the data obtained with polar ice 
in Figure 3, it appears that such a material has a 
high content of rotational defects; an estimation of 
their concentration can be made leading to 5 x 10- 7 

to 10"6 for ice samples from Dome C, and about 10~5 

for ice samples from D 10. 

4. DISCUSSION 
First, the effect of impurities and/or ice hist

ory will be specified and complementary experimental 
results presented. Then a tentative interpretation 
of the origin of the properties of ice from Antarc
tica will be proposed. 

At first glance (see Figure 3, for instance), the 
behaviour of Antarctic ice is very similar to that 
of laboratory-doped ice; the dielectric and mechani

cal relaxation peaks are observed at a low tempera
ture as for HF-doped ice. So it may seem that impuri
ties can explain all the experimental data concerning 
polar ice. However, chemical analysis does not sup
port this assumption. The low value of Tp would 
imply 0.5 to 1 x 10"6 ionic impurity molecules 
giving rotational defects (30 to 60 peqa _ 1 ) with 
Dome C samples, and about 10"5 with the D 10 sample 
(600 iieqJT1). Actually, values about one order 
of magnitude lower have been published for central 
areas in Antarctica (Delmas and Boutron 1980, Delmas 
and others in press). D 10 samples have a sea-salt 
burden relatively high for an Antarctic ice sample, 
but not more than 0.5 x 10"6 (32 ueqi-1) of Cl" 
(M Legrand personal communication). Thus, it does 
not seem possible to explain the low value of the 
relaxation time by extrinsic rotational defects. 

Nevertheless, in the case of ice from Dome C, a 
good correlation between SEC and sulphate content has 
been observed (Maccagnan and others 1981). This point 
has been interpreted by making an assumption about 
continuous paths of liquid hydrated sulphuric acid 
in ice (Maccagnan unpublished). 

The possibility that CO2 may be responsible has 
also been considered (Paren and Glen 1978), but 
Delmas and others (1980) have now shown that the CO2 
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Fig.3. Relaxation time versus T- 1. C is the 

concentration of impurities which leads to a 
rotational defect. 
Mechanical relaxation: 

-H+ all the results of Kuroiwa (1964), 

Jf all the results of Schiller (1958), 

v low frequency results of Tatibouet (1981), 

t=< all the results concerning Dome C ice core, 

• HF-doped ice, 

• specimen from D 10. 

Dielectric relaxation: 

© specimen from D 10, 

I all the results concerning Dome C ice core, 

• from results of Kawada (1978). 

309 

https://doi.org/10.3189/S0260305500002974 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500002974


Vaseoille and others: Electrical and mechanical damping measurements 

content in ice from Antarctica is lower than that 
previously anticipated, leading to a difficulty in 
attributing the anomalous properties of polar ice to 
the effect of CO2. 

Intrinsic defects connected with the history of 
the material should be taken into consideration. Snow 
crystals are created by the freezing of super-cooled 
water and subsequently grow by diffusion of vapour 
and by coalescence processes. Ice sheets are formed 
through the sintering of such snow grains. Ice prop
erties may therefore depend on (i) the conditions of 
crystal growth, i.e. climatic conditions, and (ii) 
ageing effects which probably occur in the first 
metres of the firn due to the high specific surface 
area presented by the material over an extended 
period. 

In order to specify how the origin of the proper
ties of polar ice may be better explained in terms 
of either impurity or intrinsic-defect effects, 
other experiments have been made (Vassoille and 
others 1980). These will be reviewed briefly. For 
example, a specimen of Dome C ice (depth equal to 
680 m) has been melted and recrystallized. After 
recrystallization, the relaxation peak appeared in 
the same temperature range as for pure ice. 

On the other hand, an annealing treatment at 
270 K has brought all the specimens to the same 
structural state since Tp was between 149 and 152 K, 
as it was for artificial ice aged at 271 K. 

As the ice from D 10 seems to have a higher con
tent of rotational defects, it was interesting to 
observe the effect of annealing at 271 K. Indeed, 
after 1 500 h at 271 K, the peak has clearly shifted 
from 127 to 140 K as shown in Figure 4. Such a result 
confirms that it is improbable that the anomalous 
properties of polar ice are induced by impurity 
effects. It seems easier to admit that the history of 
polar ice crystals implies that the formation of 
intrinsic defects in concentrations is higher than 
that of thermodynamic equilibrium in perfect crystals. 
Some fraction of these defects are then annealed 
when the material is kept at 271 K. 
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Fig.4. Internal friction spectra versus temperature 
of D 10 sample. The relaxation peak has shifted 
from 127 K to 140 K after 1 500 h at 271 K. 

Next, we compared the behaviour of Antarctic 1ce 
and that of aged ice studied by Tatibouet and others 
(1981[a]), who have shown that, during the ageing 
process, the microstructure is modified: In a freshly 
grown single crystal a dislocation lattice can be 
observed by X-ray topography; during ageing, sub-
grains are formed and polygonization becomes more 
pronounced with increased duration of annealing at 
271 K. After about 1 000 h, the mlcrostructural 
state seems constant. So observations by X-ray topo
graphy have been made with 1ce from Dome C: this 
material exhibits a fine microstructure which, in 
addition, varies with depth (Vassoille and others 
1980). 

The ageing phenomenon was interpreted by Tati
bouet and others (1981[a3) in terms of a sort of 
disaggregation of the ice crystal in order to lower 
its free energy, assuming that internal stresses 
might exist in freshly grown 1ce crystals. These 
internal stresses can be relaxed by the creation of 
linear and point defects. 

On the basis of these results (internal friction 
measurements and ageing studies), some ideas will be 
put forward to help to solve the problem. Anomalous 
properties of polar ice might be due to additional 
point defects induced by the ageing effect during the 
formation of ice crystals by transformation of snow. 
In the case of the ice from Dome C, the ageing temp
erature can rise to 250 K during summer in the first 
few metres of the firn, but is lower than 225 K 
between 10 and 900 m depth; nevertheless, Tp is as 
low as 140 to 145 K. With the ice from D 10, Tp 1s 
still lower; however, the temperature of ageing may 
be higher. The specific area may not only increase 
the kinetics of ageing but may affect the "strength" 
of ageing, i.e. the smaller the size of the crystal, 
the more Important the effect of ageing may be. Such 
an assumption implies that after growth of these 
small crystals the memory of the ageing effect is 
kept. This point remains to be clarified. To sum up, 
it seems possible that anomalous properties of polar 
ice are the consequence of the modification of the 
concentration and distribution of intrinsic defects 
through ageing phenomena connected with the condi
tions of formation of crystalline Ice from snow. 
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