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PRINCIPAL TRAIN ALGEBRAS OF RANK 3 AND
DIMENSION=S

by R. COSTA*
(Received 13th March 1988)

A commutative algebra A over the field F, endowed with a non-zero homorphism w: A—F is principal train if
it satisfies the identity x"+7y,w(x)x" "'+ +7y,_,(x) " 'x=0 where y,,...,y,-, are fixed elements in F. We
present in this paper, after the introduction of the concept of “type” of A, some results concerning the
classification in the case r=3. In particular we describe all these algebras of dimension £5.

1980 Mathematics subject classification (1985 Revision): 17A01.

1. Introduction

Let F be an infinite field of characteristic not 2 and A4 a finite-dimensional,
non-associative algebra over F. The principal powers of xe 4 are defined by x'=x and
xt=x'"'x for i22. If w: A—F is a non-zero homomorphism, the ordered pair (4, w) is
called a baric algebra and w its weight function. (A4, w) is a principal train algebra (train
algebra, for short) if we have identically in A: '

X +7,0()x" " 4y, o(x) T x=0 (1)

where y,,...,7,_, are fixed elements in F. The equation like (1) with minimum degree is
the rank equation of A, r is the rank of A and the roots of the algebraic equation
X +y;x " '4+---+y,_,x=0, in some extension field of F, are the train roots of A. Most
algebras appearing in the algebraic formalism of Genetics are in this class (see [8,
chapter 3, 3,4)).
The following properties of a train algebra are immediate:
(@ I+y,++47-,=0
(b) All xe A4 such that w(x)=1 satisfy the same equation;
(c) The kernel B of w is an ideal of codimension 1 satisfying the identity x"=0. Also
it is true that w is the only non-zero homomorphism from 4 to F. We say that B
is the kernel of A.

In this paper we deal only with train algebras of rank 3.
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Every baric algebra with an idempotent of weight 1 can be obtained in the following
way. Suppose B is an arbitrary commutative finite-dimensional algebra over F. Take the
direct sum B’ of F and B and define a multiplification in B’ by

(o, a)(B, b) =(aB,ab+t(ab+ Pa)); o, feF; abeB )]

where 7:B— B is an arbitrary F-linear mapping. Then w:B—F given by w(a,a)=a is a
non-zero homomorphism, (B, w) is a baric algebra and (1,0) is an idempotent of weight
1. Two different 7’s may give rise to isomorphic algebras. Note that (1,0)(0,a) =(0, z(a)).
If B satisfies the identity a®>=0, it is easy to see that B’ satisfies the rank equation

x3 —(1 +)o(x)x? + yo(x)*x =0 1)

if and only if the following identities hold:
2t(a)a+t(a®)=(1+y)a®;, aeB (3)
272 —(1+2y)t+yI=0 (I =identity operator), )

Note that any 7 satisfying (3) is determined by its values on a generating system of the
algebra B. It also follows from (3) by induction that the powers B’ defined by B'=B
and B'=B'"!'B (i22) are invariant under 7. The same holds for the ideal An(B) of
absolute divisors of zero in B.

2. Invariants

In this paragraph we will assume that y#1/2 in equation (1). By (4), if we have a
train algebra B’ of rank 3, constructed as explained above, the proper values of T will be
1/2 and/or y. Decompose B=B; @ B, where B, =ker(1—(1/2)I), B,=ker(t—A4l). The
linearized form of (3) gives the following relations:

B,B,cB, &)
BB, < B, (6)
B,B,=0. )

To show this, note that if x,,x,€ B, 7(x;x;)=(1 +7)x,x;—7(x;)x3 — x,7(x;) =VXx; X, SO
(5). (6) is similar. For (7), if x;,x,€ B;, 1(x;x;)=(1—y)x;x, 50 x,;x,=0 because 1—7y is
not a proper value. Take now x =ax, + fx,, «, Be F, x, € B, x, € B,. Then x*=0 implies
0=aB?(x,x,)x, +aBx,(x,x,). Each component must be zero so:

(x1%3)x; =0 )]
x1(x;x3)=0 . )
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and the linearized forms
(x1X3)y2 +(x1y2)x, =0 (8)

x1(y1x2) + y1{x,1x,)=0. 9)

Suppose conversely that the algebra B is given. If a linear mapping 1: B— B satisfies
(4) and B,=ker(t—(1/2)I) and B,=ker(r—7yI) satisfy the above relations (5),...,(9),
then B, defined by (2), satisfies (1°).

Idempotents in B’ must have weight 1 because B is nil. (1,a)e B’ is idempotent if and
only if 2t(a)=a—a?* Decomposing a=a, +a,, a;€ B;, we are led to the equations

alaz =0
a+2ya,=a,
so idempotents have the form (1,a, +(1 —2y)"'ad), a, €B,.

Proposition 1. The function a, € B,—(1,a,+(1—2y)"'a?) is a bijection between the
subspace B, and the set of idempotents of B'. In particular, the dimension of B, is
independent of the operator T used to construct B'. The same holds for the dimension of B,.

Definition. The type of B’ is the ordered pair of non-negative integers
(1+dimB,,dim B,).

Algebras having the extreme types are very simple, in any dimension. If the type is
(1,n), we take any basis {c,,...,c,} of B and call c,=(1,0). The table is: ¢} =c,, coc;=7¢;
(i=1,...,n) and ¢,c;=0 (i, j=1,...,n). If the type is (n+1,0), we have a similar table
with y replaced by 1/2. This algebra satisfies in fact the equation x2 =c(x)x.

Proposition 2. If B’ has type (2,n—1), there is a basis {co,X,,...,X,} of B such that
its multiplication table is:

co=co, CoX;=3X1, CoX;=7X;(i=2,...,n), xi=eéxs,
where ¢=0 or 1, other products are zero.

Proof. Start with B,={c,> and B,={c,,...,c,). By (5), (6) and (7), c,¢;=4c,
(j=2,...,m), ¢i=0 (j,k=2,...,n), c}eB,. But by (8), 0=(c,c)c;=4A2%¢c, so 4;=0. If
¢} =0, we are done. Otherwise replace some ¢{2< j<n) by ¢} where possible, permute
so that ¢ becomes the first vector. This is the case e=1.

Other numerical invariants of train algebras B’ of rank 3 are the dimensions of the
ideals B' of B In fact, B' is invariant under t by (3) so it is an ideal in B’. We have
B*=B,B, ® B}, B*=((B,B,)B,+B})®(B,B;)B, and so on. For some k, B*=0 ([1,
Theorem 1]). Etherington introduced in [3] the concepts of “nil products” and “nil
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squares” and also the ideal generated by all the nil squares. In our context, this ideal
will be J=B,B, @ B,. In fact, the sum B, B, + B, is direct by (6) and the relations

xy(uyuy +v,y)=x,(uu;)+x,v,€ B, ® B, B,
Xa(uyu; +v5)=x,(u,uz)€ B, B,

if x,,u; € B, and x,,u,,v,€ B,, show that J is an ideal of B. As J is obviously invariant
under 1, it is an ideal of B'. If J' is the ideal generated by all nil squares x2 —w(x)x, for
xeB, then J'<J. In fact, if x=(a,a), where a=u, +u,, u;€B;, then x> —ax=2u,u, +
(u?+(2y—1)au,)e J. Let us show that BB, and B, are contained in J'. For the second
inclusion, if u,eB,, take x=(l,u,)eB, then x2—x=Qy—1u,, u,eJ’. If uu, is a
generator of BB, take x=(l,u;+u,). Then x?—x—(u?+(2y—1)u,)=2u,u, and so
B,B, = J'. Hence J=J' and the dimension of J is a numerical invariant of B’

Remark. B'>B2J>5B*>5B*>--- (see [4, p. 140]). The only relation to be proved is
J#B. In fact, if J=B then it would follow that B?=B3 contrary to Abraham’s
Theorem 1 of [1].

Remark. Train algebras of rank 3, with y=0, are Bernstein algebras satisfying two
additional conditions (see [8, Theorem 9.12] or [4, Theorem XII]). The ideal J
coincides, in this case, with the ideal appearing in [8, equation 9.56].

We describe now train algebras of a given type having the smallest possible ideal J,
that is J=B,. Consider the set of all triples (B,, B,,¥) where B, and B, are arbitrary
finite dimensional vector spaces over the field F and y:B,x B,—B, is an arbitrary
symmetric bilinear function.

Two triples (B,, B,,¥) and (C,, C,, ¢) are equivalent if and only if there exist bijective
linear mappings v:B; —»C, and u:B,—C, such that the diagram commutes:

v
B,xB, > B,
I
Cl X Cl 7 CZ
This is clearly an equivalence relation. Given now (B4,B,,y) we construct a train
algebra in the following way. Take in the vector space B= B, @ B, the multiplication

(U, 01)(U2,02) =(0,Y(uy,u,)); u;,u,€By; vy,v,€B,

Then (u,v)>=0 for all (u,v)e B. Now 1: B— B given by t(u, v)=((1/2)u, yv) satisfies (3) and
(4) so B’ is a train algebra of rank 3, of type (1+dimB,,dim B,) and also J=B,.
Denote this algebra by [B,,B,,¢]. If (By,B,,¥) and (C,,C,,¢) are equivalent the
corresponding algebras will be isomorphic, 1@ v @ u being an isomorphism. On the
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other hand every train algebra of rank 3 with J=B, is obtained in this way, by taking
y: B, x B, > B, as the product already existing. Moreover two isomorphic train algebras
B’ and C’ must come from equivalent triples. To see this, consider their kernels B, @ B,
and C, ® C,. Then B, (resp. C,) is formed by absolute divisors of zero in B (resp. C).
An isomorphism from B to C must therefore take B, to C,. The result follows by
passage to quotients. We summarize these results in;

Proposition 3. (a) The train algebras [B,, B,,y] and [C,,C,, ¢] are isomorphic if and
only if the triples (B,, B,,y) and (C,,C,, ¢) are equivalent.

(b) Every train algebra of rank 3 with minimum J is isomorphic to some [B,, B,,{].

As a particular case, when the type of B’ is (r+ 1,r), the classification of train algebras
with minimum J is equivalent to the classification of commutative algebras of dimension
r. In another particular case, when the type is (n,1) and dimJ =1, the problem reduces
to the classification of bilinear forms in spaces of dimension n—1.

Proposition 4. If B’ has type (n,1) then dimJ <i(n+1).

Proof. Start with B,={c,,...,c,_;> and B,={c,>. Then J is generated by
{CnsC1CpsevvsCpoyCpn). If dimJ=1+k (k20) there are exactly k linearly independent
vectors in the set {c,c,,...,¢,~,C,}. We may suppose they are cc,,...,cc,. The set
{c1Cps---s CiCny €y, Cas..., C,} Which generates B, must contain a basis of the form
{CiCrr- s CkCpy Ciyyeees Ciy_o_Cny. These vectors give a new generating system of J,
namely {¢;C,,..., ¢i,_,_,Ca» Cn} because (cic,)c,=0 (i=1,...,k). Then k+1=dimJ<n—k
and so dimj<i(n+1).

Proposition 5. For every train algebra B’ of rank 3, J? is an ideal. If the type of B is
(n, 1) then J*=0.

Proof. Clearly J? is invariant under 7. As J*=(B,B,)B, ® (B,B,)?, the following
relations show that J? is an ideal in B:

X1 (g u2)v3) = ~ (ugu2)(X,05) € (B, By)?
x1((uy43)(0,05)) = — (uu2) (x,(v102)) — (v,102) (x4 (4, u,)) € (B, B;) B,
X5((4yu2)2) =((u343)0,)%, € (B, B) B,
x((uyuz)(v10,)) =0
for x;,u;,v;€B; (i=1,2).

The second assertion: if B, ={c,,...,¢,-,» and B,={c,>, then J is linearly generated
by ¢,¢,,...,¢,- ¢, and c,. The product of any two of these elements is 0 by (8).
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3. Train algebras of dimension <5

The invariants type, dimJ and dim B? classify train algebras of rank 3 (always y#%)
up to dimension 5 or reduce this problem to the classification of other algebraic objects.
Etherington proved that every train algebra of rank 3 is special triangular, a gap in his
proof was filled by Abraham [1]. Algebras in this paragraph are expressed by means of
a canonical basis. Almost all computational details are omitted, to save space.

(I) dim B'=2. The possible types are (2,0) and (1,1), already discussed, see Proposi-
tion 2 and the discussion preceding it.

(II) dim B'=3. The non-extreme type (2,1) is covered by Proposition 2, yielding two
non-isomorphic algebras.

(III) dim B'=4. The only type to be considered is (3,1). The ideal J may have
dimension 1 or 2, because J # B.

(a) dimJ=1. The algebras have already been described by Proposition 3. Every
essentially distinct bilinear form in a F-vector space of dimension 2 gives an algebra
here and conversely.

(b) dimJ =2. The answer is given by the following:

Proposition 6. There is only one, up to isomorphisms, train algebra of type (3,1) such
that dimJ =2,

Proof. If B,={c,,c,) and B,={c3)> then J is generated by {cs,c,c3,c,c3}. One of
¢ c3 and c,c5 is non-zero, the other is a scalar multiple of it. By symmetry we may
suppose ¢,c3#0 and c,c3=kc,c3, ke F. The set {c,c3,¢,,¢,,¢3} generates B so it must
contain a basis of the form {c,c3,? ¢;3}. There are two possibilities:

(a) {c,c5,¢4,¢5} is a basis of B. The multiplication table of B, according to (8) is (on
the left):

l c,c3 € C3 Co X1 X3 X3

cies| 0 0 0 c ¢ ix, oyx, ix

1v3 (1] 241 2 273
Cy 0 cyiCy Xy 0 xy O
C3 0 X, 0 0
Xs 0

Calling x, =c,, x,=c¢3 and x3=c,c3, B’ is given by the above (on the right) table.
(b) {c,c3,¢3,c3} is a basis of B. The multiplication table is:

Ci1C3 C2 €3

ciez | O 0 0
c, Acy keycy
C3
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But here J is generated by ¢y and kc,c; so necessarily k%0 because dimJ=2. From
O0=c3=/lkc,c; we get A=0. Taking now the basis {k™'c,c;,k 'cy k™ cy} we get the
same table but with 1 in place of k. Introducing now x; as in case (a) we get B’ exactly
as in case (a).

(IV) dim B’=5. There are two non-trivial types to consider : (4,1) and (3, 2).

(A4) Algebras of type (4,1)
By Proposition 4,1 <dimJ £2.
A.l. dimJ=1. The algebras have already been described in Proposition 3. They

correspond to essentially distinct bilinear forms in spaces of dimension 3 over the field
F.

A.2. dimJ=2. Take B;={c,,c5,¢c3) and B,={c,) so J will be generated by
{C4,€1C4,€2C4,C3¢4}. One of the last 3 vectors must be non-zero and the other 2 must be
scalar multiples of it. By symmetry, we may suppose that c¢;c,#0 and c,c,=k,c ¢4,
€3¢4=kscycq, With ky,ky€ F. The set {c,c4,¢y,¢5,C3,¢4} must contain a basis of the form
{cics,?,7,¢4s}. Let us examine the three possibilities.

A.2.1. {c,c4,¢1,Ca,C4} is a basis of B. The multiplication table:

Ci1€s €3 €3 C4

cica | O 0 0 0
c 0 0 CiC4
c, 0 k,c,cq
Cq 0

(In fact, c2=pc, but 0=c}=puc,c, so u=0; c,c,=4ic, and c3=vc, but for all m,neF,
(mc, +ncy)® =0 implies v=1=0, an easy calculation.)
Calling now k,=k, x;=c¢,, x,=¢,, Xx3=c¢4 and x,=c,c, the table of B’ is:

Co X1 X3 X3 Xa
Co | Co X X yX3 ixg
Xy 0 0 X4 0
X, 0 kx, O
X3 0 0
X4 0

A.2.2. {c,c4,¢;5,C3,¢4) is a basis of B, whose table is:
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€1C4 €3 3 Cy
cicy | O 0 0 0
c,y Ay pcy  kycycy
Csy vey,  kicicy

Ca

where the following relations hold: Ak, =vk,=21k;+2uk,=vk, +2uk,=0, a consequence
of the identity x>=0. We see that J is generated by the set {c,,k,c,cs,ksci¢s} 5O
necessarily k, #0 or k; #0. By symmetry we may study only one case, say k, #0. This
implies that in the above table A=pu=v=0. Introducing now the vectors x,=k5'c,,
X,=c3, x3=k3'cs and x,=k;! c,c, we get the same table for B' obtained in case
A2l

A.2.3. {c1¢4,¢1,C3,¢4} is a basis of B. This is similar to A.2.1, because the roles of ¢,
and ¢, can be interchanged. We summarize the facts:

Proposition 7. Train algebras of type (4,1) such that dimJ =2 form a one-parameter
family, given by the above table of A.2.1.

(B) Algebras of type (3,2)
We have 2 <dim J <3 because J #B.

B.1. dimJ=2. These algebras have already been described in Proposition 3. Every
essentially distinct commutative algebra of dimension 2 gives an algebra here. The
classification of such bidimensional algebras is a problem of its own interest, see for
example [2] and [6].

B.2.dim J=3. Take B, ={c,,c,) and B,={c;,c,). Then as J is generated by {c,, c,,
€1€3,C1Cq, C2C3, C2C4) one of the last 4 vectors is non-zero and the remaining 3 are
scalar multiples of it. Again by symmetry we may suppose that c,c;#0 and c¢;c,=
kicics, cac3=kjycqca, coca=Kkjcics, ke F. The set {c;c3,¢y,¢,,¢3,¢4}) generates B so it
must contain a basis of the form {c,c3,7,¢;,c,}. There are two possibilities:

B.2.1. {c,c3,¢1,C3,¢4} is a basis of B. The multiplication table is:

l C1C3 €y C3 Ca
cies | 0O 0 0 0
Cy l ulca—kycs3) CiCs kicycy
s 0 0
Cq 0

(In general. ¢? = Ac; + pc, but 0=c} =(4+ uk,)c,c, implies 1= —pk,.)
The ideal B? is generated, as a vector space, by c;c,, k;c,c5 and u(cy,—k,c;) so
1<dimB*<2.
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B.2.1.1. dim B2=1. This means that u=0. Calling k, =k, x,=c,, x,=c¢;3, Xx3=c4 and
X, =c,c; we get the table of B”

C | Co X1 Y2 ¥X3 3Xg
X, 0 X4 kx, 0
X, 0 0 0
X3 0 0
X4 0

B.2.1.2. dim B*=2. In this case p#0. We look now for the new basis x,=u""!

Xa=p "3, Xx3=p" Yca—kyc3), x4=p""c,c3. The table of B’ will be, for some k#0:

Cl’

Co X, X X3 X4
€ | Co Xy YX2  YX3 3Xs
X, b kxy O 0
X, 0 0 0
X3 0 0
X4 0

B.2.2. {c,c3,¢5,C3,¢4} is a basis of B. The table is:

C1C3 €2 Ca Ca
3 1 0 0 0 0
c, Acs+pucy kycicy  kycqcy
€3
Cs 0

with Ak, + uk, =0, coming from ¢3=0. From this table we have J generated by c;, ¢4,
kyc,cy and ke cy so necessarily k,#0 or ky3#0. By symmetry we may study only the
case k, #0. This means that ¢ = pu(c,—(ks/k;)cs). The ideal B? is generated as a vector
space by the vectors k,c s, kyc;c3 and u(c, —(ks/ks)cs) so 1 £dim B2<2.

B.2.2.]1. dim B*=1. This means u=0. Calling ky=k, x,=k;'c,, x,=k; ‘¢35, x3=c,,
x,=k; 'c,c5, we get for B’ the same table already obtained in case B.2.1.1.

B.2.2.2. dimB?*=2. This means u#0. Using now the basis of B x;=pu""c,,
xy=p"'c3, xy=p"Ycy—(ks/k;)c;) and x,=p"%c,c5, we get the same table already
obtained in case B.2.1.2.

This ends the classification for the case where the type is (3,2). We have obtained one
one-parameter family of algebras when dimJ=3 and dimB?=1 and another one-
parameter family when dimJ=3 and dim B2=2. The invariant dim An(B) can be used
to give a little bit more information about isomorphisms between algebras in the same
family in the case dim B2=1.

Added in proof: some improvement of this classification will appear in a forthcoming
paper by the author in Linear Algebra and its Applications.
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