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PRINCIPAL TRAIN ALGEBRAS OF RANK 3 AND
DIMENSIONS 5

by R. COSTA*

(Received 13th March 1988)

A commutative algebra A over the field F, endowed with a non-zero homorphism (o:A-*F is principal train if
it satisfies the identity x' + y1(o{x)x''> +—f-yr_,co(x)r"1x = 0 where y1 , . . . ,y r_1 are fixed elements in F. We
present in this paper, after the introduction of the concept of "type" of A, some results concerning the
classification in the case r = 3. In particular we describe all these algebras of dimension g 5.

1980 Mathematics subject classification (1985 Revision): 17A01.

1. Introduction

Let F be an infinite field of characteristic not 2 and A a finite-dimensional,
non-associative algebra over F. The principal powers of xeA are defined by x* = x and
x' = xl~lx for i ^ 2 . If a>:A-*F is a non-zero homomorphism, the ordered pair {A,a>) is
called a baric algebra and co its weight function. {A,u>) is a principal train algebra (train
algebra, for short) if we have identically in A:

xr + y,co(x)xr"1 + ----|-7r_1C(j(x)r"1x = 0 (1)

where y, , . . . , yr _ t are fixed elements in F. The equation like (1) with minimum degree is
the rank equation of A, r is the rank of A and the roots of the algebraic equation
xr + y 1 x r ~ 1 + - + y r - 1 x = 0, in some extension field of F, are the train roots of A. Most
algebras appearing in the algebraic formalism of Genetics are in this class (see [8,
chapter 3, 3,4]).

The following properties of a train algebra are immediate:

(a) l + v 1 + - + y r _ 1 = O ;

(b) All x e A such that co(x) = 1 satisfy the same equation;

(c) The kernel B of co is an ideal of codimension 1 satisfying the identity x r =0 . Also
it is true that a> is the only non-zero homomorphism from A to F. We say that B
is the kernel of A.

In this paper we deal only with train algebras of rank 3.

•Sponsored by Conselho National de Desenvolvimento Cientifico e Tecnologico (CNP) of Brazil. Proc.
203041/87-9-MA

61

https://doi.org/10.1017/S0013091500028881 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028881
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Every baric algebra with an idempotent of weight 1 can be obtained in the following
way. Suppose B is an arbitrary commutative finite-dimensional algebra over F. Take the
direct sum B' of F and B and define a multiplification in B' by

(ot,a)(P,b)=(aP,ab + T(<ib + pa)y, ocJeF; a,bsB (2)

where r.B-*B is an arbitrary F-linear mapping. Then oo:B-*F given by co(a,a) = a is a
non-zero homomorphism, (B,(o) is a baric algebra and (1,0) is an idempotent of weight
1. Two different T'S may give rise to isomorphic algebras. Note that (l,0)(0,a)=(0,T(a)).
If B satisfies the identity a3 = 0, it is easy to see that B' satisfies the rank equation

x3-(l+y)co(x)x2+yco(x)2x=0 (I)

if and only if the following identities hold:

2r(a)a + T(a2)=(l + y)a2; aeB (3)

2T2 - (1 + 2y)r + yl=0 (/ = identity operator), (4)

Note that any % satisfying (3) is determined by its values on a generating system of the
algebra B. It also follows from (3) by induction that the powers B' defined by B1 = B
and Bi = B'~1B {i^2) are invariant under T. The same holds for the ideal An(B) of
absolute divisors of zero in B.

2. Invariants

In this paragraph we will assume that y # 1/2 in equation (1'). By (4), if we have a
train algebra B' of rank 3, constructed as explained above, the proper values of T will be
1/2 and/or y. Decompose B = BV®B2 where Bt = ker(r-(l/2)/), B2 = ker(T-XI). The
linearized form of (3) gives the following relations:

B1B1<=B2 (5)

B1B2^Bl (6)

B2B2 = 0. (7)

To show this, note that if xi,x2eBi, T(X1X2)=(1 +y)xiX2—T{X1)X2 — xiz(x2) = yxix2 so
(5). (6) is similar. For (7), if xux2eB2, T(X1X2) = ( 1 — y)xlx2 so x1x2 = 0 because 1— y is
not a proper value. Take now x = <xxl + fix2, <x,fieF, xl&Bu x2eB2. Then x 3 = 0 implies
0 = a/32(x1x2)x2 + a2/Sx1(x1x2). Each component must be zero so:

(x,x2)x2 = 0 (8)

x,(x1x2) = 0 (9)
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and the linearized forms

(x1x2)y2+{x1y2)x2 = 0 (8')

0. (9')

Suppose conversely that the algebra B is given. If a linear mapping T.B->B satisfies
(4) and B! = ker(T-(l/2)/) and B2 = ker(T-y/) satisfy the above relations (5),...,(9),
then B', defined by (2), satisfies (1').

Idempotents in B' must have weight 1 because B is nil. ( l ,a)eB' is idempotent if and
only if 2z(a) = a — a2. Decomposing a = at +a2, a.eB,, we are led to the equations

[a2 + 2ya2 = a2

so idempotents have the form (l,al+(l—2y)~1a2), aleBl.

Proposition 1. The function a1eB1-»(l,a1+(l— 2y)~laff is a bijection between the
subspace B, and the set of idempotents of B'. In particular, the dimension of Bx is
independent of the operator i used to construct B'. The same holds for the dimension of B2.

Definition. The type of B' is the ordered pair of non-negative integers
(l+dimB1,dimB2).

Algebras having the extreme types are very simple, in any dimension. If the type is
(l,n), we take any basis {cl,...,cn} of B and call co = (l,0). The table is: CQ = CO, coCj = yCj
(i=l, . . . ,n) and c,c, = 0 (i,j=l,...,n). If the type is (n+1,0), we have a similar table
with y replaced by 1/2. This algebra satisfies in fact the equation x2 =co(x)x.

Proposition 2. If B' has type (2,n—1), there is a basis {co,x1,...,xH} of B' such that
its multiplication table is:

2 i / . ~ * 2

where e=0 or 1, other products are zero.

Proof. Start with Bj = <ct> and B2 = <c2,...,cn>. By (5), (6) and (7), clcJ = XJcl

(j = 2,...,n), cfk = 0 (j,k = 2,...,n), c]eB2. But by (8), 0={c1cJ)cJ=X]cl so A, = 0. If
c] = 0, we are done. Otherwise replace some Cj{2^j£n) by c\ where possible, permute
so that c\ becomes the first vector. This is the case e= 1.

Other numerical invariants of train algebras B' of rank 3 are the dimensions of the
ideals B' of B'. In fact, B1 is invariant under T by (3) so it is an ideal in B'. We have
B2 = BiB 2 ©Bj , B3={(BiB2)B2 + B3

l)®(BlB2)Bl and so on. For some k, B* = 0 ([1,
Theorem 1]). Etherington introduced in [3] the concepts of "nil products" and "nil
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squares" and also the ideal generated by all the nil squares. In our context, this ideal
will be J = BlB2 @ B2. In fact, the sum BtB2 + B2 is direct by (6) and the relations

B2 © BiB2

x2(u1u2 + v2) = x2(u1u2) e B2Bi

if XLUJEBJ and x2,u2,v2eB2, show that J is an ideal of B. As J is obviously invariant
under T, it is an ideal of B'. If J' is the ideal generated by all nil squares x2—a>(x)x, for
xeB', then J ' c J . In fact, if x=(a,a), where a = u1+u2, M.GB,, then x2—ax = 2u1w2 +
(K? + (2y— l)aM2)eJ. Let us show that BJ}2 and B2 are contained in J'. For the second
inclusion, if u2eB2, take x = (l,u2)eff, then x2—x = (ly — \)u2, u2eJ'. If utu2 is a
generator of BXB2 take X = ( 1 , « I + M 2 ) . Then x2—x — (uf +(2y — I)u2) = 2ulu2 and so
BlB2cJ'. Hence J = J' and the dimension of J is a numerical invariant of B'.

Remark. B'=>B^J=>B2=>B3=>-- (see [4, p. 140]). The only relation to be proved is
J^B. In fact, if J = B then it would follow that B2 = B3, contrary to Abraham's
Theorem 1 of [1].

Remark. Train algebras of rank 3, with y = 0, are Bernstein algebras satisfying two
additional conditions (see [8, Theorem 9.12] or [4, Theorem XII]). The ideal J
coincides, in this case, with the ideal appearing in [8, equation 9.56].

We describe now train algebras of a given type having the smallest possible ideal J,
that is J = B2. Consider the set of all triples (B1,B2,4') where Bt and B2 are arbitrary
finite dimensional vector spaces over the field F and «/':B1xB1^B2 is an arbitrary
symmetric bilinear function.

Two triples (Bl,B2,i//) and (CltC2>4>) are equivalent if and only if there exist bijective
linear mappings v:Bl-^Cl and fx:B2->C2 such that the diagram commutes:

>ii

B j x B j —• B 2

I V X V I ) t

Ctxd^ C2

This is clearly an equivalence relation. Given now {Bx,B2,\li) we construct a train
algebra in the following way. Take in the vector space B = Bt® B2 the multiplication

(u1,Vi)(u2,v2) = (0,^{uuu2)); ul,u2eBl; vuv2eB2

Then (u,v)3 = 0 for all (u,v)eB. Now T:B->B given by x(u, v)={(l/2)u,yv) satisfies (3) and
(4) so B' is a train algebra of rank 3, of type (1+dimB1,dimB2) and also J = B2.
Denote this algebra by [_Bl,B2,^i']. If (BUB2,ip) and (C1,C2,(f>) are equivalent the
corresponding algebras will be isomorphic, lF@v®fi being an isomorphism. On the
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other hand every train algebra of rank 3 with J = B2 is obtained in this way, by taking
i//: B, x B1^B2 as the product already existing. Moreover two isomorphic train algebras
B' and C must come from equivalent triples. To see this, consider their kernels B t © B2

and Ci © C2. Then B2 (resp. C2) is formed by absolute divisors of zero in B (resp. C).
An isomorphism from B to C must therefore take B2 to C2. The result follows by
passage to quotients. We summarize these results in:

Proposition 3. (a) The train algebras [B^B^i^] and [C1,C2,<^] are isomorphic if and
only if the triples (Bl,B2,\j/) and (C1,C2,<p) are equivalent.

(b) Every train algebra of rank 3 with minimum J is isomorphic to some [B1,B2>^]-

As a particular case, when the type of B' is (r+ l,r), the classification of train algebras
with minimum J is equivalent to the classification of commutative algebras of dimension
r. In another particular case, when the type is (n, 1) and dim 7 = 1, the problem reduces
to the classification of bilinear forms in spaces of dimension n — 1.

Proposition 4. If B' has type (n, 1) then dim J^\{n +1).

Proof. Start with Bj = <c1,.. . ,cn_1> and B2 = (tcn). Then J is generated by
{cn,clcn,...,cn_1cn}. If dimJ = l+fc (/c^O) there are exactly k linearly independent
vectors in the set {c1cn,...,cn^1cn}. We may suppose they are c1cn,...,ckcn. The set
{cjc,,,..., ckcn, cu c2,..., cn} which generates B, must contain a basis of the form
{cjcn,..., ckcn, c,,,..., cin_k_l,cn}. These vectors give a new generating system of J,
namely {chcn,..., cin^k_icn, cn} because (cfcn)cn = 0 (i=\,...,k). Then / c + l = d i m J ^ n — k
and so

Proposition 5. For every train algebra B' of rank 3, J2 is an ideal. If the type of B' is
(n,i)thenJ2 = 0.

Proof. Clearly J2 is invariant under T. AS J2 = (B1B2)B2®(B1B2)
2, the following

relations show that J2 is an ideal in B:

x1((ui«2)t;2)=-(u1u2)(x,i;2)6(B1B2) 2

for x,,Ui, p,-e B,(i= 1,2).
The second assertion: if B, = <c1). . . ,cn_1> and B2 = (cn}, then J is linearly generated

by c{cm...,cB_ ,cB and cB. The product of any two of these elements is 0 by (8).
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3. Train algebras of dimension ^ 5

The invariants type, dim J and dimB2 classify train algebras of rank 3 (always
up to dimension 5 or reduce this problem to the classification of other algebraic objects.
Etherington proved that every train algebra of rank 3 is special triangular, a gap in his
proof was filled by Abraham [1]. Algebras in this paragraph are expressed by means of
a canonical basis. Almost all computational details are omitted, to save space.

(I) dimB'= 2. The possible types are (2,0) and (1,1), already discussed, see Proposi-
tion 2 and the discussion preceding it.

(II) dimB'= 3. The non-extreme type (2,1) is covered by Proposition 2, yielding two
non-isomorphic algebras.

(III) dimB'= 4. The only type to be considered is (3,1). The ideal J may have
dimension 1 or 2, because J # B.

(a) dim J = 1. The algebras have already been described by Proposition 3. Every
essentially distinct bilinear form in a F-vector space of dimension 2 gives an algebra
here and conversely.

(b) dim J = 2. The answer is given by the following:

Proposition 6.
that dim J = 2.

There is only one, up to isomorphisms, train algebra of type (3,1) such

Proof. If B1 = (c1,c2y and B2 = (c3} then J is generated by {c3,CxC3,c2c3}. One of
and c2c3 is non-zero, the other is a scalar multiple of it. By symmetry we may

suppose c1c3¥
i0 and c2c3 = kclc3, IceF. The set {clc3,c1,c2,c3} generates B so it must

contain a basis of the form {c1c3,1,c3}. There are two possibilities:

(a) {c1c3,cl,c3} is a basis of B. The multiplication table of B, according to (8) is (on
the left):

0
0

Co

* 1
x2

* 3

Co

c \xx

0

x2

yx2

x3
0

* 3

i x 3

0
0
0

Calling xt =c1 ; x2 = c3 and x3 = c1c3, B' is given by the above (on the right) table,

(b) {clc3,c2,c3} is a basis of B. The multiplication table is:

C1C3

C1C3
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But here J is generated by c3 and kciC3 so necessarily /c#0 because dimJ = 2. From
0 = cl = kkciC3 we get A = 0. Taking now the basis {k~lclc3)k~lc2,k~lc3} we get the
same table but with 1 in place of k. Introducing now xf as in case (a) we get B' exactly
as in case (a).

(IV) dim B' = 5. There are two non-trivial types to consider : (4,1) and (3,2).

(A) Algebras of type (4,1)

By Proposition 4,1 ^ dim J :§ 2.

A.I. dimJ = l. The algebras have already been described in Proposition 3. They
correspond to essentially distinct bilinear forms in spaces of dimension 3 over the field
F.

A.2. dimJ = 2. Take B1 = <c1,c2,c3> and B2 = <c4>
 s o J wm< o e generated by

{c4,clci,c2c^,c3cA}. One of the last 3 vectors must be non-zero and the other 2 must be
scalar multiples of it. By symmetry, we may suppose that CiC4#0 and c2c4 = fe2

cic4.
c3c4 = k3c1c4, with k2,k3eF. The set {c1cA,cl,c2,c3,c^} must contain a basis of the form
{c1c4,?,?,c4}. Let us examine the three possibilities.

A.2.1. is a basis of B. The multiplication table:

0
0

0
0
0

c4

(In fact, c\ = fic4 but Q = c\ = nclc4 so /i = 0;
(mCi +nc2)3 = 0 implies v = A = O, an easy calculation.)

Calling nowfc2 = fe, x 1 = c 1 , x 2 = c 2 ,x 3 = c4 and xA =

0

= lc4 and c\ = vc4 but for all m,neF,

the table of B' is:

Co

* i

x2

x3

x4

Co

Co

* 1

1 V

2*1
0

x2

0
0

* 3

?*3

* 4

fex4
0

* 4

-x
0
0
0
0

A.2.2. {cjC4,C2,c3,c4} is a basis of B, whose table is:
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c3

CiC4

0

c2

0

c3

0

vc4

c4

0

o3 '4

where the following relations hold: Xk2 = vk3 = Xk3 + 2fik2 = vk2 + 2^k3 = 0, a consequence
of the identity x3 = 0. We see that J is generated by the set {cA.,k2clc4.,kiclc^} so
necessarily k2¥=0 or k3^0. By symmetry we may study only one case, say fc2#0. This
implies that in the above table A = ^ = v=0. Introducing now the vectors xl = k2~

1c2,
x2 = c3, x3 = k2

1cA and xA = k2
1 c±cA we get the same table for B' obtained in case

A.2.1.

A.2.3. {c1c4,c1,C3,c4} is a basis of B. This is similar to A.2.1, because the roles of c2

and c3 can be interchanged. We summarize the facts:

Proposition 7. Train algebras of type (4,1) such that dim J — 2 form a one-parameter
family, given by the above table of A.2.1.

(B) Algebras of type (3,2)

We have 2 g d i m J ^ 3 because J # B .

B.I. dimJ = 2. These algebras have already been described in Proposition 3. Every
essentially distinct commutative algebra of dimension 2 gives an algebra here. The
classification of such bidimensional algebras is a problem of its own interest, see for
example [2] and [6].

B.2. dim J = 3. Take B1 = <c1,c2> and B2 = (c3,cA). Then as J is generated by {c3, cA,
c1c3,clc4, c2c3, c2c^} one of the last 4 vectors is non-zero and the remaining 3 are
scalar multiples of it. Again by symmetry we may suppose that cxc3^0 and clcA =
klclc3, c2c3 = k2clc3, c2c4 = /c3c1C3, fc,-eF. The set {clc3,cl,c2,c3,cA} generates B so it
must contain a basis of the form {clc3,1,c3,c4}. There are two possibilities:

B.2.1. {c1c3,cl,c3,cA) is a basis of B. The multiplication table is:

CiC3

c,
c3
c4

C1C3

0

Cl

0
n(cA — ki

c3

0
c3) ctc3

0

c4

0
klclc3
0
0

(In general. Ci=Ac3 + /ic4 but 0 = cJ=(A + /ifc1)c1c3 implies k= ~nkx)
The ideal B2 is generated, as a vector space, by ctc3, klclc3 and n(c4 — kxc3) so

l<dimB2<2.
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B.2.1.1. dimB2 = l. This means that n=Q. Calling
w e get the t able of B'\

= k, x1 = c1, x2 = c3, x3 = c4 and

Co
xl

x2
x3
x4

c0 xx

c 0 l*i

0

*2

yx2
x4
0

*3

7*3
kx4
0
0

x4

2*4

0
0
0
0

B.2.1.2. dimB2 = 2. In this case fi¥=0. We look now for the new basis x1=pi 1cl,
2 = /i"1c3, x3 = /i"1(c4 — kic3), x4 = fi~lc1c3. The table of B' will be, for some fc#0:

Co
x,
x2
x3
x4

Co

Co

*i x2

lxi yx2
x3 kx4

0

^3

yx3
0
0
0

x4

1*4
0
0
0
0

B.2.2. {c!C3,c2,c3,cA} is a basis of B. The table is:

ClC3

c3
c4

CxC3

0

c2

0
Xc3 +

c3

0
HC4 k2cxc3

0

C4

0
k3ctc3
0
0

with ?.k2 + t*k3 = 0, coming from c2 = 0. From this table we have J generated by c3, c4,
k2clc3 and k3ctc3 so necessarily fc2#0 or k3^0. By symmetry we may study only the
case /c2#0. This means that c | = /i(c4—(k3/k2)c3). The ideal B2 is generated as a vector
space by the vectors k2CiC3, k3clc3 and /i(c4 — (k3/k2)c3) so l f£d imB 2 ^2 .

B.2.2.1. dimB2=l. This means n = 0. Calling k3-k, x1 = k2
lc2, x2 = k2

1c3, x3=c4,
^4 = ^2 'ciC3, we get for B' the same table already obtained in case B.2.1.1.

B.2.2.2. dimB2 = 2. This means / i / 0 . Using now the basis of B xl=n~ic2,
x2 = /i"1c3, x3 = ii~i(cA — (k3/k2)c3) and x4 = /x"2c1c3, we get the same table already
obtained in case B.2.1.2.

This ends the classification for the case where the type is (3,2). We have obtained one
one-parameter family of algebras when dim J = 3 and dim B2 = 1 and another one-
parameter family when dim J = 3 and dim B2 = 2. The invariant dim An(B) can be used
to give a little bit more information about isomorphisms between algebras in the same
family in the case dim B2 = 1.

Added in proof: some improvement of this classification will appear in a forthcoming
paper by the author in Linear Algebra and its Applications.
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