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Let M2 be a (connected) surface in Euclidean 3-space E3, and let G: M2—> S2(l) c E3

be its Gauss map. Then, according to a theorem of E. A. Ruh and J. Vilms [3], M2 is a
surface of constant mean curvature if and only if, as a map from M2 to 52(1), G is
harmonic, or equivalently, if and only if

AG = ||dG||2G (1.1)

where A is the Laplace operator on M2 corresponding to the induced metric on M2 from
E3 and where G is seen as a map from M2 to E3. A special case of (1.1) is given by

AG = AG, (AeR) (1.2)

i.e., the case where the Gauss map G:M2^ E3 is an eigenfunction of the Laplacian A on
M2.

On the other hand, F. Dillen, J. Pas and L. Verstraelen [2] recently proved that
among the surfaces of revolution in £3, the only ones whose Gauss map satisfies the
condition

AG = AG, (AeR3 x 3) (1.3)

are the planes, the spheres and the circular cylinders.
We observe that from the surfaces of revolution in E3 which satisfy (1.3) the planes

and the circular cylinders are ruled surfaces. On the other hand, for the helicoid
X(s, t) = (t cos s, t sin s, as), a =£ 0 the Guass map is given by

G ~\F+7(~ars in5'acoss' ~f)-
Then it is easy to show that the Laplacian AG of the Gauss map G can be expressed as
follows

2a2 ,
AG=2_a25/2(-asins, acoss, -t)

which clearly doesn't satisfy condition (1.3).
A question which arises now is: What are the ruled surfaces satisfying condition (1.3)?
In particular, we will prove the following:

THEOREM. Among the ruled surfaces in E3, the only ones whose Gauss map satisfies
(1.3) are the planes and the circular cylinders.

We first study cylindrical surfaces M2. Let X(s, t) = a(s) + tfi be the position vector
of M2 in E3 where a{s) is the plane curve a = {ax, a2,0) parameterized by arc-length and
/3 is the constant vector /3 = (0,0,1). We have the following lemma.

LEMMA. The only cylindrical surfaces whose Gauss map satisfies (1.3) are the planes
and the circular cylinders.

t This work was done while the first author was a visiting scholar at Michigan State University.
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Proof. The Gauss map of M2 is G = a' x /? = (a2, -a\, 0) and the Laplacian of G is
AG = (-a1^, a1", 0). Thus from the condition (1.3) we have

(ii) ar',"=A21a2-A22a';

where A = [A,-,-] is a constant matrix. Since \a'\ = 1 we can put

ari = cos0, a-2 = sin0 (2.2)

where 0 = 6(s). Then from (2.1)(i), (ii) we obtain

0" cos 0 - 0'2 sin 0 = - A n sin 0 + A12 cos 0

0" sin 0 + 0'2cos 0 = -A21 sin 0 + A22 cos 0

which give

0'2 = -(A12 + A2,)sin 0 cos 0 + A,, sin2 0 + A22 cos2 0

0" = (A22 - A,,)sin 0 cos 0 + A12 cos2 0 - A21 sin
2 0.

Taking the derivative of (2.3) and using (2.4) we obtain

0'[4(A22 - A,,)sin 0 cos 0 + (3AJ2 + A21)cos2 0 - (A12 + 3A21)sin
2 0] = 0

If 0' = 0, the Gauss map G is constant and hence M2 is a plane. So, suppose
Since sin2 0, cos2 0 and sin 0 cos 0 are linearly independent functions of 6 = 6(s), we
obtain from (2.5).

"•11 "" A22) J A 1 2 ^ A21 ~ "» A12 ' J A 2 1 ~ u -

(2.3)

(2.4)

1 1
Thus A12 = A21 = 0. Substitution into (2.3) then gives 0 = —, where — = Au = A22 = const.

Now from (2.1)(i) and (ii) we conclude that the curve a is the circle

a = (r sin(rs + c) + d,, —r cos(rs + c) + d2,0) (2.6)

where c, du and d2 are constants. Also from (2.1)(iii) we obtain A31 = A32 = 0.

REMARK. The matrix A = [A,y] in the condition (1.3) when A/2 is the circular cylinder
on the circle (2.6) is given by

A =

-; 0 A

0 7
0 0

13

A33

where A,3, i = 1,2,3 are arbitrary constants.

Proof of the theorem. We suppose that M2 is a non-cylindrical ruled surface in E3.
The surface A/2 can be expressed in terms of a directrix curve a(s) and a unit vector field
/S(s) pointing along the rulings as
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Moreover, we can choose the parameter s to be arc length along the spherical curve
P(s). Thus for the curves a, [5 we have

</8, /8> = 1, </8', )8'> = 1, <or', /3> = 0. (2.7)

If we define a function q by

where u = {a', ft') and v = (<*', a'), then the Gauss map of the surface is given by

It is easy to shwo that the Laplacian A of M can be expressed as (see [1])

A = 2 2^ 2 • (2-10)
dt q 3s 2 3s q 3s 2 dt q dt

For convenience we put

where

" 2 ' 3 ) ~ a X ^ (2.12)

We now compute the Laplacian of the functions G,. We have

^ = q-3f2[Big - (A, + tB,){t + «)] = ^"3/2C,

- H lv~,~ - At)q - 3(fl,<7 - {A, + tB,)(t + u))(t + u)] = q 5 /2A
at

3G
— ! = in-^n/A'. + tB'i)q - {Af + tBi)(2u't + v')] = \q Et

"+tB'[)q + (A't + tB'i){2u't + v')- (A/ + tBt){2u"t + v")]q
as

- 2
2[2(Al + tB\)q - (A, + tBt)(2u't + v')](2u't + v')}

Thus, from the above relations and (2.10),

AG/ = —q IJj — 2q r,- + ~^q (zw t + v )£,,• — q (t + M)C,-.

Now if we put A = [A,y] from (1.3) and (2.11) we have

3
,3-AqDi - 2Fi + (2u't + u')£- - Aq{t + u)Q = 4 J ^{A, + tBj)q\ i = 1, 2, 3. (2.13)

We consider the powers of t in equation (2.13). From the coefficient of t7 we have

2 M y = 0, * = 1,2,3. (2.14)
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Considering the coefficients of the other powers of t and using (2.14) we obtain for any

B'!=0 (2.16)

A, - B,u - 3Blu' + A'l- B,u" = 0 (2.17)

-SA,u + 4fi,u2 + AB(v - %A1u + 6A',u' + 12B',uu' + 3fl,V

+ 2AiU" + Btv" + ABtuu" - 8B,u a = 0 (2.18)

12B,uv - 12Atu
2 - 4A't'v + 3A'tv' + Ap" - 8A'!u2 + YlA\uu'

+ dB'iu'v + 6Bluv' + AAjiiu" + 2BiUv" + 2fl,w"u

-SAiu'2-8Biu'v' = 0 (2.19)

AB,u2v + 4B/V2 - 8A/U3 - 8A"uv + 6A-uv' + Z4,-MU" + dA'iU'v

+ W'iW' + 2AiU"v + Btvv" - 8Atu'v' - 2Biv'2 = 0 (2.20)

2BiUV2 + 2Atv
2 - 4AiU2v - 2A'lv2 + 3i4,-uu' + Apv" - 2Aiv'2 = 0. (2.21)

We remark that detA = 0, for if we assume d e t A # 0 , then from (2.14), B, = 0,
i = 1, 2, 3. Thus, from (2.12) we have B' x /3 = 0, contradicting (2.7).

From (2.16) and (2.12) we have /?' x /3 = cs + d, where c and d are constant vectors. So
1 = ||)8' x /3 | | 2= {c,c)s2 + 2(c,d)s+ (d,d), from which we conclude that ( c , c ) = 0 ,
(d, d) = 1, or equivalently /3' x /3 = d, where d is a constant unit vector. Since /3 is a
spherical curve, this implies that 6 is a great circle. Let /3 =
(sin 6 cos <p, sin 0 sin q>, cos 0), where 6 = 6(s) and (p = const. From /S'x/3 = d we
conclude that 6'2 = 1 and so

P'xB = (Bu B2, B3) = (sin <p, - cos q», 0).

Now, from (2.17) we have At - Btu + (A, - B,u)" = 0. If we put At - B,u = w,, i = 1,2,3,
then w, + w"=0 and (a-' - uB') x /3 = w where w = (w,, w2, w3). So ||ar' -uB'\\2 =
{w,w), or

U = U
2 + H;2 (2.22)

where w2= (w, w).

Since A3 = vv3 and vv3 = — w3, we have from (2.18)

3W3U' + H'3M" = 0. (2.23)

By using (2.23), from (2.19) we find that

-4w3w2 + 4w3u + 3»v3u' + w3v" - 8w3u'2 = 0. (2.24)

Using (2.22), (2.23) and (2.24), equations (2.20) and (2.21) can be written as

»V3(W2)'M' = 0 (2.25)
2 2 = 0. (2.26)
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Now, using the equations (2.22)—(2.26) we will prove that w = 0. Suppose, for the
moment, that w3=£0. From (2.25) we have (>v2)'w' = 0. If u ' = 0, from (2.26) we have
v' = 0 and hence from (2.24) u2 = v. Thus (2.22) implies w = 0, a contradiction. Thus
u'=£0 and so (M>2)' = 0 . From (2.22) v'= 2uu' and from (2.26) v = u2. Again (2.22)
implies w = 0, a contradiction. So, we have w3 = 0. This means that the vector w lies in
the xy plane. But w = a' x /3 - u/J' x /3 and the vector /3' x /3 lies in the xy plane. So
<*' X p lies in the jcy plane. This means that the vectors a' X /3 and /3' x /3 are parallel. If
we put a-' x j8 = (U/S' x /3 , then (a-' - ;U/3') x )8 = 0 or ar' = ///3'. So ju = (a-',/3') = u and
a ' = w/3', namely »v = 0.

Now we conclude that q = (t + u)2 and the Gauss map is constant, which means that
M2 is a plane.
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