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(Received 25 June, 1991)

Let M? be a (connected) surface in Euclidean 3-space E®, and let G : M>— §%(1) < E®
be its Gauss map. Then, according to a theorem of E. A. Ruh and J. Vilms [3], M? is a
surface of constant mean curvature if and only if, as a map from M? to $*(1), G is
harmonic, or equivalently, if and only if

AG = ||dG|*G (1.1)

where A is the Laplace operator on M? corresponding to the induced metric on M? from
E?® and where G is seen as a map from M? to E>. A special case of (1.1) is given by

AG=1G, (LeR) (1.2)

i.e., the case where the Gauss map G : M>*— E? is an eigenfunction of the Laplacian A on
M>,

On the other hand, F. Dillen, J. Pas and L. Verstraelen [2] recently proved that
among the surfaces of revolution in E>, the only ones whose Gauss map satisfies the
condition

AG=AG, (AeR*?) (1.3)

are the planes, the spheres and the circular cylinders.

We observe that from the surfaces of revolution in E* which satisfy (1.3) the planes
and the circular cylinders are ruled surfaces. On the other hand, for the helicoid
X(s,t)=(tcoss,tsins, as), « #0 the Guass map is given by

1
G =———(—asins, acoss, —t).
Vt7+af2( )

Then it is easy to show that the Laplacian AG of the Gauss map G can be expressed as
follows
207 ,
(F_—W (-—a sins, & COS s, —t)
which clearly doesn’t satisfy condition (1.3).
A question which arises now is: What are the ruled surfaces satisfying condition (1.3)?
In particular, we will prove the following:

AG =

THEOREM. Among the ruled surfaces in E, the only ones whose Gauss map satisfies
(1.3) are the planes and the circular cylinders.

We first study cylindrical surfaces M>. Let X (s, t) = a(s) + ¢ be the position vector
of M?in E® where a(s) is the plane curve @ = (@, &, 0) parameterized by arc-length and
B is the constant vector 8 = (0,0, 1). We have the following lemma.

LEMMA. The only cylindrical surfaces whose Gauss map satisfies (1.3) are the planes
and the circular cylinders.

t This work was done while the first author was a visiting scholar at Michigan State University.
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Proof. The Gauss map of M is G = &' X § = (&3, —a}, 0) and the Laplacian of G is
AG = (—a4, a1, 0). Thus from the condition (1.3) we have

(1) —a3=Aho; — Apa
(ii) ay'= Ay, — Apa;
(lll) O = A3laé i 132(1’;

where A =[A;] is a constant matrix. Since |a'| =1 we can put
ay=cos 6, a;=sinf (2.2)
where 8 = 6(s). Then from (2.1)(i), (ii) we obtain
0"cos @ — 8'°sin @ = —A,, sin 6 + A,,cos 0
0"sin 8+ 62cos @ = —A,, sin 6 + A, cos 0
which give
0= —(Ayp + Ay)sin 6 cos 8 + A, sin® 0 + A, cos® 8 (2.3)
0" = (Ay — Aqy)sin 6 cos 0 + Ay, cos® 6 — Ay, sin® 6. (2.4)
Taking the derivative of (2.3) and using (2.4) we obtain
6'[4(Az2 — Ay)sin 6 cos 6 + (BA1, + Ayy)c0s® B — (A3 + 34y )sin® 6] = 0

If ' =0, the Gauss map G is constant and hence M? is a plane. So, suppose 6'+0.
Since sin® 8, cos” 6 and sin 6 cos 0 are linearly independent functions of 6 = 6(s), we
obtain from (2.5).

A =22,34+ 25 =0,A,+ 34, =0.

Thus A,, = A,; = 0. Substitution into (2.3) then gives 8'*= }2, where ;15= A = Ay = const.
Now from (2.1)(i) and (ii) we conclude that the curve « is the circle

a=(rsin(rs +c)+d,, —rcos(rs +c)+d,,0) (2.6)
where ¢, d,, and d, are constants. Also from (2.1)(iii) we obtain A3, = A3, =0.

Remark. The matrix A =[A;] in the condition (1.3) when M? is the circular cylinder
on the circle (2.6) is given by

1

F 0 A’l 3
A= 1

0 ﬁ Az3

0 0 Ay

where A3, i =1, 2,3 are arbitrary constants.

Proof of the theorem. We suppose that M? is a non-cylindrical ruled surface in E>.
The surface M? can be expressed in terms of a directrix curve a(s) and a unit vector field
B(s) pointing along the rulings as

X(s,t)= a(s) + tB(s).
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Moreover, we can choose the parameter s to be arc length along the spherical curve
B(s). Thus for the curves «, 8 we have

(B,B)=1,(B'.B')=1,(a’, B) =0. 2.7
If we define a function g by
g=|la' +tp'||*=1*+2ut +v (2.8)
where u = (a’, ') and v = (a’, a’), then the Gauss map of the surface is given by
G =q "*((a' +1B") X B).
It is easy to shwo that the Laplacian A of M can be expressed as (see [1])

& 18 18913 18913
S-St S5t . (2.10)
ot qds° 239sq°3s 23tqot

For convenience we put
G =(G,,G,, G3)=q (A, +1B,, Ay + B, A, + IB;) (2.11)
where
(A, Az, Az)=a' X B
(By, By, B3)=B' X B.
We now compute the Laplacian of the functions G;. We have

aG;
?t' = q_m[Biq —(A; +B;)(t + u)] = q_3/2Ci

&G,
o
3G,

Os
&G;

2

2.12)

=g *[(Biu — A))q — 3(Big — (A; + tB;)(t + u))(t + u)] = ¢~>*D;

=197 [2(A] +tB])q — (A; +tB)Qu't + v')]| = 3 *?E,

3q7{[2(A} + tB))q + (A] +tB))(2u't + v') — (A; + tB)(u"t + v")]q

—3[2(A; +tB])q — (A; +tB)(2u't + v")]2u't + v')}
=4,
Thus, from the above relations and (2.10),
AG;=—-q~ D, —1q7"?F, + iq7"*Qu't + v")E; — ¢"*(t + u)C,.
Now if we put A = [4;] from (1.3) and (2.11) we have

3
~4gD; - 2F + Qu't +v')E; — 4q(t + u)C;=4 > Ay(A; +1B))q>, i=1,2,3 (2.13)
j=1
We consider the powers of ¢ in equation (2.13). From the coefficient of ¢’ we have

3
> AB=0, i=1,2,3. (2.14)
j=1
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Considering the coefficients of the other powers of ¢ and using (2.14) we obtain for any

i=1,2,3
3
> A =0 (2.15)
j=1
B/=0 (2.16)
A;—Bu—3Blu'+ Al— Bu"=0 (2.17)

—8A;u +4Bu*+ 4B,y —8A/u + 6A[u’ + 12Bjuu’ + 3B/v’
+2Au" + B" + 4Buu” — 8Bu* =0 (2.18)
12Buv — 12A,u* — 4Ajv + 3A[v' + Av" — 8Au* + 12A uu’
+6B/u'v+6B/uv’ + 4A,uu” + 2B,uv” + 2B,u"v
—8Au*-8Bu'v'=0 (2.19)
4B;uv + 4Bv* — 8A;u” — 8Ajuv + 6A[uv’ + 2A;uv” + 6A/u’v
+3B/vv’' +2Au"v + Byv" —8Au'v' —2Bv'? =0 (2.20)
2B.uv® + 2A,v% — 4A,uv — 2A0* + 3AJvv' + A" — 24,0 =0. (2.21)

We remark that det A=0, for if we assume det A#0, then from (2.14), B;=0,
i=1,2,3. Thus, from (2.12) we have ' X B =0, contradicting (2.7).

From (2.16) and (2.12) we have B’ X 8 =cs + d, where ¢ and d are constant vectors. So
1=|1B' x B|I*={c,c)s*+2(c,d)s + (d,d), from which we conclude that {c,c) =0,
(d,d) =1, or equivalently 8’ X B=d, where d is a constant unit vector. Since B is a
spherical curve, this implies that B is a great circle. Let f=

(sin @ cos @, sin 8 sin @, cos §), where 6=0(s) and @ =const. From B’'XB8=d we
conclude that 8'2=1 and so

B’ x B =(B,, By, B3) = (sin @, —cos ¢, 0).
Now, from (2.17) we have A, — Bu + (A, — Bu)"=0. If we put A,— Bu=w,, i=1,2,3,
then w; + W;I=O and (a" - uﬁ') X B =w where w= (wla Wy, W3). So ”a,I "uBI”2=
(w,w), or
v=u’+w? (2.22)

where w?= (w, w).
Since A; = w; and w3 = —w;, we have from (2.18)

3wau’ + wiu" =0. (2.23)
By using (2.23), from (2.19) we find that
—4wsu® + 4wy + 3wiu’ + wav" — 8wyu'? = 0. (2.24)
Using (2.22), (2.23) and (2.24), equations (2.20) and (2.21) can be written as
wi(w?)'u' =0 (2.25)
dwsu'*v — wyu'? =0. (2.26)
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Now, using the equations (2.22)—(2.26) we will prove that w =0. Suppose, for the
moment, that w;#0. From (2.25) we have (w®)'u’=0. If u’ =0, from (2.26) we have
v'=0 and hence from (2.24) u®>=v. Thus (2.22) implies w =0, a contradiction. Thus
u'#0 and so (w?)’'=0. From (2.22) v'=2uu’ and from (2.26) v =u’ Again (2.22)
implies w =0, a contradiction. So, we have w; =0. This means that the vector w lies in
the xy plane. But w=a' X 8 —uf’ X 8 and the vector B’ X 8 lies in the xy plane. So
a' X B lies in the xy plane. This means that the vectors &’ X 8 and B’ X 8 are parallel. If
we put ' X B=puB’' x B, then (&' —up')xpf=0o0r a'=up’. So p=(a’, ') =u and
a' =uf’, namely w =0.

Now we conclude that g = (¢ + u)* and the Gauss map is constant, which means that
M? is a plane.
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