A Determinantal Expaasion for a Class of Definite Integral
Part 2.

By L. R. SHENTON.

(Received 24th April 1950, Read 3rd June 1950.
Revised MS. received 18th August 1953.)

A. Introduction.
In a previous paper (Shenton, 1953) we have given an expansion

for integrals of the form J‘A(_x)lﬂﬁ)

C ()
be expressed as a determinantal quotient or Schweinsian series. In
the present paper we state more general terms under which the ex-
pansion holds and consider the case when the limits of integration
are infinite and the weight function of the form A4 (z)e ~%or A(z) e~ #*°,

w (z) dz. This expansion may

® - azx 8 —1
In particular we give expansions forf e—c% dz, the Psi function,
0
e~ 3z2
and] C @ dz, where C (z) is a positive polynomial.

We take this opportunity to remark that the method in this and
the previous paper is closely related to the expansion of certain
definite integrals as continued fractions. Indeed Tchebycheff (1859)
uses an interpolation formula to give an expansion of a function in
terms of orthogonal functions, these functions appearing as the
denominators of the convergents of a continued fraction. As
examples he gives

1 S ! du 1 1
z ( ==

1
1@ —u) v/ (1 —u?) — 2z — 2z

1 % e Ry 1 1 2 3

— - o 2 2 =

v 2w g_w z—u AZ — A — A — Ax — Vv (2k),
Pe—kdy 1 12 22

jo 2 —u kx—1—kr—3—kx—5—"

The general method of expressing & definite integral as a continued
fraction (i.e. a determinantal quotient of continuants) has been to
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convert the integral into an infinite series, convergent or divergent,
and to express this series as a continued fraction. With this
procedure orthogonal polynomials appear in certain cases (Wall,
1945, pp. 192-202). _

Romanovsky (1927) has treated Tchebychefi’s method of inter-
polation and suggested that the interpolatory function might be used
for points outside the range and for the case when the function is
defined at an infinite number of points. The method we use is an
extension of this and leads to a generalised type of continued fraction.
Questions of convergence can be settled by an appeal to Parseval’s
theorem in the theory of orthogonal functions.

B. Parseval’s Theorem.

We shall consider the formal expansion

J'b A (xlB (xﬂ_(x) dz = E I Qo) Yo1rV1es « =+ Vs -l,al . ‘ Bo, Yo1s Y125 « +« VYs-15 & {

T C@) 2 A, 1A, (0
0 ag a . a,
Bo Yoo Yo1 .. Yos
= — lim By Y10 Yu X Y1e (2)
8> ® ’
Bs Y80 Vsl .. Yss
‘ b A (z)
where [ _ I 0, (x) w (x f dx, 3
s, =), () ()13(9&) (3)
b
Ve o=V or = j 8, (2) 6, (x) C (2) w (z) da, - (4)
By =] Yoo Y115 +o0r Vs | 5
and p, (z) = o () 0, (x) ces 6, (z)
Yoo Yo1 .o Yos
Y10 Y1 s Yis =V (A1 4y),
Ys-1,0 Ys—-1,1 Ys-18

with 8, (x) an arbitrary polynomial of precise degree s. The set of
polynomials {p, (x)} is an orthonormal system with respect to the
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weight function C (z) w (x). In (2) we have introduced the notation

2, a, as ]

- s g, by, €, |
bo b, by [ b1, co
Co o Cy

and so on for other orders. If A(z), B(z) and C(x) are polynomials
of degrees !, m and n respectively, then there is the formal expansion

P A(@)Bx)w(x) ,
(a C (x) dz =
» k1‘+ n z a,Ps (xl)’ pr+1(x2)’ < Prin— (xn) . z b)\p)\(xl)apr-;-l(xz)’ . 'pr+n—1(xn)
{—-)” > A =0 L A=0
r=0

k, I Pr (@), Prr1(T2)y o Prgon—_1(@) .| Pr 41 (%), pr+2(zz): . Py 4 n(2n) |
where {p, (z)} is an orthonormal set with respect to w(xz) on (e, b),
k, being the highest coefficient in p,(x), C(z) has the roots z;, j=1, 2,..,n

1

(assumed distinct), and A (x) = I a;p,(z), B(z) = X byps().
A=0 A=0
In the expression Zr] a, p; (x) it is to be understood that a, = 0if A > [,
A=0

and similarly in é b,p; (%), b, = 0if A > m.
A=0

We now consider the expansions (1), (2) and (6) in relation to
Parseval’s theorem, which may be stated as follows :

P. 1. Finite Range.l! Let

(i) w(x) be a non-negative and measurable weight function such that
j- b
(ii) f(x) v/ w(z) be of the class L?(a, 6),

(iii) {p, (%)} v/ w (x) be an orthonormal system with p, (x) a polynomial
in x of precise degree s.

b
w (z) dx>0 and .[ z"w (x) dx exists forn =0, 1,...,
a

b )
Then j FOIRICE R FA

a r =

. b
where J f (@) p, (2) w(z)dz =f,.

Similarly J—b f (x) g (\) w ((E) dx = u%ofr 9

provided g (z) v/ w (x) also belpngs to L? (a, b).

1 Szego, G., Orthogt.mal Polynomials (1939), p. 39.
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P. 2. Range 0 to . Thetheorem holds if the conditions of P. 1 are
satisfied with the weight function w(x) =e *x°w(x),a> — 1, where
(@) w (z) is a non-negative Lounded measurable function, or (b) w(z) ts
a non-negative polynomial of given degree.

P. 3. Range — » to w. Thetheorem holdsif the conditions of P. 1
are satisfied with w (z) = e~ 7* w (x), where w (z) satisfies (a) or (b) of P. 2.
The statements in P. 2 and P. 3 when w () = 1 have been given
by Szegs (loc. cit., pp. 104-106) who extended a method due to
J. v. Neumann for a weight function of the form e — 2 (see Courant,
R. and Hilbert, D., Methoden der Mathematischen Physik, Vol. 1
(Berlin 1931), pp. 81-2). Following v. Neumann and Szego, we can
deduce P. 2 from P. 1 provided it can be shown that if m is a non-
negative integer there exists for every ¢>0 a polynomial p,_; (z)
such that
S2=j e~ % x“ﬂ)(m){e“’"”—pn_l(x)}z dx < e. (7)

0

P. 2 (a) follows withw (z) = 1, and P. 3 (a) may be deduced from this.
P. 2 (b) may be proved by an extension of the Neumann-Szegd
method. We require the following properties of the Laguerre
polynomials:

n! L, (x) =e*x < > e~ Tgr+n n=0,1, ..., (8)
© a- 1

J-o e~ "2 L, (%) Lm(x) (n ;1_' o) 8. ms n, m=0,1, ..., (9)

(1—w)* szL, (2) =exp {—wa/(l—w)}, |w|<l, (10)

a a+r - r a+r a r
Ln (x)=L,,+ (x) —<1> nfl(x) +< > n.—.f_-g(x) . . (ll)
Suppose now that

w(x) = at bx + ca?, a==0
S(lal+ b+ cl)(l+2?)
=k (1 + 2?).
Then
- 2
Székj e“"(x“+x"+2)<e‘"’”—pn_1(x)> dz.
0 \
n-1
Take p,_1(z) = (1 —w)**! I o L] (2), w=m{(m+ 1) (12)
. 8=0
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so that
st < kr’

0o

e 7 ao [(1 — w1 T ot L (x):rdx

+kj:e”z°+2[(l—w)°+l "]a+2(x)—(l—w)ﬂ+1 W (2—w)L2 F ¥(z)

n—1

L+ —wrSe L @] s (13)

after using (10) and (11), the rearrangement of terms being justified
since (10) is absolutely convergent. Hence

(n + a+ 2)! ( F(l,n+a+1;n+1; w?
n—2)1 |\nn—1)(n+a+2)(ntatl)
F(l ntat+3intlie?), 1
n(n-—1) (n+a+2)(n+a+l)
b (2= |
(n—1)(n+a+2)
with the usual notation for the hypergeometric series. Term-by-term

Szék(l _w)Za+2 2n

+(1—

integration is justified since! | L, (x) | < e*(n + a)!/n!, x =0,
80 that Z w” +* L (z) L, (x) converges uniformly for z in (0, 4A)»

4>0 ﬁxed and by Schwarz’s inequality

) j wtte s | L (@) | .| L] (a) |dx S z

r.8="n

’!(L;H)'<s+a)'}

r+8
2.0 Lt

converges.2 Since w < 1it is seen that, for €e> 0,7 = n(e a) exists

so that S2 < e. A similar proof applies to w () of any given degree.
P. 3 (b) follows from this (see Szegd, loc. cit., p. 105 (3)).

C. Illustrative Examples.

L dz
C.1. Let I (p, =j LI
BD=] (4o rgvT-a)
where 224 2px4+qg>0for —1 =<2 1.

The conditions of P. 1 are satisfied with
w(z) = (2 + 2 px+ q) /v (1 — 2*) and f(x) = 1/(2*+2 px + ¢). Hence
using (2) with
Ax) =B (z) =1, C () = 2? + 2pz + q, w(x) =1/ (1 — %),
we have 3 with .

0,(z) = v/ (2/m) cos s, cos'¢ =z, s=1,2,...

bo (z) = v/ (1/=)

1 Uspensky, J. V., Ann. Math. (2), 28, 608.

2 Bromwich, T. J. I’A., Introduction to the theory of infinite series (London, 1926),
p- 500, B.

3 See Szego, loc. cit., pp. 30-32.

https://doi.org/10.1017/50013091500021441 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500021441

A DETERMINANTAL EXPANSION FOR A CLASS OF DEFINITE INTEGRAL 83

the values
Ve =¢+4,
Vee+1 =D,
Va2 = é'
Yer=0,
a,= B, =0,

ap= fo =2/ (2/7)

so that after slight simplification

2
_I(p)Q) = -
™

m=9+1
Yo=PpPV 2
Yoz = 1/24/ 2

Similarly, if ¢ — p?==0, then from

§=20,2,3...,
s=12 ..,
s=12 ...,
r>s8-4+2
840
0 1 0 0 0
1 3¢+% » 0
0 » q+i ’y ’
0 1 P g+3% »p
0 0 1 p  q¢+43.
the expansion providing an increasing sequence.
(x + p)dx

1 dz
J’—l'\/(l _xz)

we have

2 (q—p0) 1{p,q) =
b1

1
2
(q 20)14—‘[_1(%2

2 4 1
p |da+% p
1 p qg+1%
0 1 P
0 0 I

+2pz + q) v (1 — %)

0 0

T 0.
P 3+ ..
qg+3 D ..

r q9+% ..

and this gives a decreasing- sequence for I (p, q) if g > p2,
An alternative expansion follows from (6) with
x?+2 pr+ ¢g=(x—cosf,) (r—cos 0,), where 0, and 6, are complex, 6, =44, :

-

27 (cos s 0; — cos s 0,)2

I(P: q)= :EI

| cos(s — 1) 0, cosst, | .| cosst,,cos(s+ 1)46,
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The expansions (14)-(16) represent simple generalisations of the
continued fraction development

L do 1 3t y
- =_ 2z £ 2 1
WLJW—wMMI—ﬁ)‘zvz—z—z—‘ {z]>
= X sec(s—1)fsecsd  with cos § = 2z,
g =1
1 — 2 1 _
Similar results hold forj Li_(.l__ﬁ)_d_x,g ,,1_ 1 -2z,
1@+ 2px + g’ )12+ 2px gV L+ o

and for C (z) a polynomial of higher degree than the second.
C. 2. We next consider

8-

® ,—ax b —1
L. a) = | T TAT _py 8 (s4a)~tas>0b>1, (17)
0 1 —e™® $8=0
and 6 (b @:=jw%j@@{jl&n=1wm §(~)%&+M‘%a>mb>0.(l&
' 0o Lee 50

With w (z) = (L — e~ %)/x, which is non-negative, measurable and
bounded (£ 1), w (z) =e~®@z?~%(1 —e~ %), and f(x) =a/(1 —e~9)
so that f (x) v/ w () belongs to L? (0, « ), the conditions of P. 2. (a) are
satisfied. In (2) we take w () =e 22’ % O(x)=(1 —e~?)/a,
A(z)=B(x) =1,0,(x)=ua", so that a, =B, =T (r+b—1)a ~*"7,
= —T(@r+s+b—2)Aa?>~ 7" where Aa"= (a + 1) —a”

yr.e
Thus
D —-1)gl-? T(b)g -2
{(b,a) = 0 P=Det T
[‘(b—l)a,l"’ F(b—2)Aa‘“b I'b~1)Aal-?
T (b)a—" I'(b—1)Aal-s T(b)Aa—>

In the special case b0 =2, I'(6b — 2) Aa®-? must be replaced by

—log (1 +1/a).

Similarly
0 T'(B)a—? T(b+1)a-b-1
PR I e s T
6(b,a)=— Po+1)a- o~ T(b+1)ya—t~t T (b+2)ya~-t=2 @ >0,
- . .,b>0,
- (20)

where y a” = a’” + (a + 1)
Again, using 0 (b,a) =T (b) a=®~ 6(b,a + 1), we find that
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r'(b)a-> I () (a+1)- [ (b4+1)(at1)-0-1
6(b,a) =
) =1r @)@+ 1) TovErn- Fe+Dv@tD =" . | 450
TO+D@+1) 1 Porl)yat+ )2 Te+r)y@tr) =2 . .| po0
’ (21)
i

The expansions (19) and (20) are positive non-decreasing sequences
while (21) is a positive non-increasing sequence. As a numerical
illustration we take b =2, a=1 in (20) and (21) for which

28(2, 1) = Xn"2 For the first three approximations we have
1

(20) (21)
8/5 =16 43/26 = 1-654
152/93 = 1-634 8774/5332 = 1-6455
33168/20187 = 1-64304 11534061/7011798 = 1-644950.

Thus 1-64304 < Z n —2 < 1-644950, the correct value being 1-644934,
Similarly from (19) we find for £n-2

1/w =1-44 (w=1n2)
(4w — 1)/3w — 1) =1-6421
(104 w—42)/ (T4 w — 33) = 1-64475
(16272 w — 7790)/(11178w — 5627) = 1-644928,
so that the fourth approximation is in error by 0-000,006. We note

in passing that continued fractions for S (a+ §)~ " in the particular
8=0

cases b=2 and b =3 have been given by Stieltjes (1890) and
rediscovered, although by a different method, by Rogers (1905). For

example,
o 1 a a p4
-2 1 2 = ——
3 (@ + ) a—t4+a—l+a—3+ 7" T ErEprony

With a = 1 in this, the eleventh and twelfth convergents to Xn —2 are
1-65245 and 1-63856, indicating a slower rate of convergence than

(19)-(21).
C. 3. The Psi function and related integrals.
We have
‘I’(t):lnt—jn e-“(—e—z —l> dzx, t>0.
0 ef—1 =z
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Take w (z) = e~ w (x), where w (z) = (1 — e ) (x—~1+e~%/[2%is
a non-negative bounded measurable function (its value for x = 0 being
taken as 3). Put f(x) = z/(1 — e~ 2), so that f (x) v/ w(x) belongs to
L? (0, »). Then the conditions of P.2 (a) are satisfied. In (2), with
A(x) =B (x) =1,

C(z) = (1—e ~%)/z, w(z)=(x— 1+ ~%) e ~ */z3, we have, taking 6,=2",

ar=.37=j0 e~y =2 (x— 1+ e~ %dx,

)’r,s=73,r=7u=j e“" 2t =3 (x — 1+e~?) (1 —e~%)dx, u=r-+s
0
=0,1,2,..
ao=—1+(1+t)In1+t-1)
Thus a1=t_1—1n(l+t‘1)

om (5

Similarly
[ Yoo=vo=—3%+3t(2+1) In t—(1+12) (2+¢) In (1 +¢) 4§ (2+1)*In(2+1)

Yao=Ywn=v1=—(1+1 Int+(3+ 2¢)In(1 + t)—(2+1) In(2 4-¢)
Yor=v11= Yo =vs =1nt —2In (1 + ¢} +In (2 4 ¢) + 1/t (1 + ¢)

= d Y
Yr = <_-d_t> Yo-

Hence ¥ (t) = % InT (2)

= Int o (1'0 (1”0
ao Yo Yo Yo
ta'y ) Y70 "o , >0,
a’y ¥"o "o val (22)

in which superscripts denote derivatives.

sequence.
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In (2) we take 4 (x) =B (x)=1, C(x)= (1 —e~%)/z;
w(z)= (e @ —e 2 —ze~%) /2% t = 1-5, the restriction on ¢ being
necessary to ensure w (z) = 0. With 0, = 2" we find

@
a,=B,=J’O (e7% —e-2—ze~¥) x7~2dx,

and in particular
a,=1——2In2+ Int, a;=1In2 —¢-1,
Similarly
Vg = 78.r='}’u;= Jm0 (e=7—2e~% - ¢—3% — ge—2' fge ~ T+ V)ygu—3dg
where u=ro+s=0,],...,

and in particular
wf=m=%+4m2—gm3+a+uhuh+0—HM

yo=vn=y1=—4In2+4+3In3 +Int—In(14¢)
yoo=yn=7ve=2In2—In3 —1/t(1 +1¢).

As a numerical example put ¢ = 1 in (22), so that

0 -386204  -306853  -500000 . .
386204 284872  -169899 212318 . .
306853 | 160899 212318  -416667

-500000 ' 212318 416667 1-138889 .

|

from which we have the first three approximations to Euler’s constant
C = 0:577216, namely, -52383, -57651, .57718. Similarly, from the
expansion corresponding to (23) we have

0 -306853 193147 250000 . .
\I, (2) = 1 N
-306853 | -238376 -117783 -121015 . .
°193147 |-117783 -121015 -194444
‘250000 | -121015 -194444 ‘435185

\
/
|
'
+
!
I
!
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so that using the recurrence relation ¥ (1 4-t) = ¥ (1) + ¢~ we have
C < -60500, -57754, -57723. Hence -57718 < C < -57723. e

A similar type of integral appears for
J@)=InT(¢)—(t—3)Int—%In2,

© 1 1 e~ &
[t eir) T o

for which Stieltjes (1894) has given a continued fraction. With
w(x)=e " w(z), where w(z)={x—2+ (x+2)e "% (1 —e~%)/zx*
and f(z) =z/(1— e~ %), 8o that w () is non-negative, bounded and
measurable, and f(x)+/ w (x) belongs to L*0, ), the conditions of
P. 2 (a) are satisfied. It may be verified that

‘ 0 u® ut u?
2J () = |
Py V0 ot V2
. ut vt v2 v . .
t> 24
! u? v? V3 T . 1 0. (24)
|

where u's<~i‘l-> {z+é~t +1)In (1 +z-1)f

d
d\" | _ (3t 4 2t%) 2(1+1)8
fi—)l S It In(1+47)

240)2(1 42t 2
_ +)6(+ ) n (240 + (1+t)}
<] r 2 .
C. 4. Integrals of the form l. ‘é((i))] e~ 1% dg, C(z)>0.
As an illustration we consider in particular
1 = e~ ¥ dx o
Glab)=—0s] T rtamtb b>a® (25)
The conditions of P.3 (b) are satisfied with w (z) = 1 =127 p(x)
v/ (27)

where w(x) = 22 4 2az + b, f(%) = g(x) = 1/w, so that f(z) v/ w(x)
belongs to L2 — o, w). In(2),take 4 (z) = B(z) =1, C(z) = w(=),

r
w(x) =\/(z % e-¥" and 6, (x) = H, (z) = ¥ <——diz> e~ t#*,  Then
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a,=8=1, r=20
= 0, r=1,2, ..

1 ® 2
Y=gz ) (@) + 20 Hy @) + b+ 1) H, () H, () e~ 17'd

=®b4+2r+1)r, r=s
'=2ar! , ’r=8+1
=7 , r=g-42
=0 , r>8 4+ 2
and so
0 1 0 0 0
Glab)=—1 1 Ip4+1 (2011 2 0
0 [(2a)1!  (b+3)1! (2a)2! 3! .
o |2 (2c)2! (b4 5)2! (20)3! . .| (26)
0|0 3! (2a)3!  (b+7)3!.

which gives a non-decreasing sequence. Similarly, using

(b—a?) G (a, b) =1 — \/({zn)j_w(zjf);:x :_ dz (27)
we derive the non-increasing s.equence
1 a 1 0 0
(b—a2) Ga,b)=| a |b+1 (2¢)1! 21 0
1 [(2a)l! (b4-3)11 (2a)2! 31 . .| (28)
012! (2a) 2! (b + 5)2! (2a)3!
0|0 31 (2a) 3! (b+17) 3! .

The series expansions derived from (6) corresponding to (26) and (28)
are respectively

- s\{H, 1 (a) — H, .1 ()} _ % SlE
G (e, b)= 85:0 |—H_,7(¢i), H;+1(.8)'-|Hs+l(°')' H,+2(B) l_'EoF‘FH—l
and (29)
l 1 o a’+Hl(a') H3+1(a) 2
G(a, b)-— —_T;I—z_—_‘—' 2: S! Q+H1(B) H.w-&-l(B)

b—a* £=0
ng(a); Hn+1(ﬁ)|°lﬂt+1(a)» ut+2(,d”

2
I _ _1‘2 S st G, . (3¢,
b—a* b6—a®,lo FyF,,
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where a, 8 are the roots of x24 2ax + b= 0. The values of E,,
F, and @, are readily ecalculated from the recurrence relation
H, ,()=z2H,(x) —sH ,_;(x). Since
Gf+(b —'aa) E‘2= - 4(b — a’)H,+1(a) Ha+1 (ﬁ)» (31)

it will be seen that the difference between the (s + 1)** approxima-
tions arising from (29) and (30) is s! Fy/ (b— a?) F,. This may be used
to assess the rate of convergence and also as a computational check.

It is interesting to observe that, when a =0, (26) and (28) reduce
to simple continuant quotients and give the even and odd part of the
continued fraction

1 1 2 3 4

TO T b+ 140+

By an equivalence transformation we have the Laplace (1805)
continued fraction for the incomplete normal integral, namely

G (0, b) b>0.

o 1 Toe¥dy (T e
_tt 1 2 3 4 t>0.
P+ttt t+t4+ 7
TERM TERM OF
s . OF p 30) z
0 -500000 -5000 1-166667 1-1667
1 -071429 5714 -214286 -9524
2 075630 -6471 .070028 8824
3 .042596 -6897 .035062 -8473
4 015594 7052 034370 -8129
5 -023337 7286 -007269 -8057
6 003307 7319 017955 7877
7 012806 7447 001422 7863
8 -000568 7453 -009729 7765
9 ‘007125 . 7524 -000181 ‘7764
10 000038 #1524 005401 - 7710
11 .004019 1564 000000 7710
12 .000010 ‘71565 .003051 7679
13 002293 - 7588 000036 7679
14 000063 7588 001743 7661
15 001318 7601 -0600087 7660
16 000104 7602 -001004 7650
17 000762 7610 000115 7649
18 - +000120 7611 000580 7643
19 000441 -7616 000122 7642
20 000119 7617 000335 .7639
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As a numerical illustration we take 2a = b = 1, and by comparison
with the incomplete normal integral continued fraction development
(Burgess, 1895) we expect rather slow convergence. Evaluating
s! Fy/(b — a%) F, for s = 20 we find that it is approximately 0-0027, so
that we have only two-figure accuracy. In the table we give the terms
and partial sums for the series (29) and (30), the identity (31) being
used as a check.

We conclude then that 7617 < @ (0-5, 1-0) < -7639, the correct
value being -7628, 2634. The oscillatory nature of the terms is note-
worthy, and this would be an awkward feature if we could not
construct an enveloping sequence.

We intend to discuss later various forms for the numerators and
denominators of the expansions considered here, including recurrence
'relations, noting the relation to the theory of continued fractions.

I am greatly indebted to the referees for a number of useful
comments and criticisms, and to IlIr W. Ledermann for some
criticisms of Part 1.
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