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By a topological semiring I mean a Hausdorff space together with two con-
tinuous associative operations, addition and multiplication, such that the multi-
plication distributes across the addition from both sides.

In the study of semirings it seems natural to ask what can be concluded about
one operation in terms of information about the other and about the topology.
In this note I shall point out a class of semirings whose multiplicative and topo-
logical structures form a commonly occurring product-like semigroup. I then
prove a theorem about the additive structure, the possibilities for which I suspect
will eventually turn out to be very limited.

DEFINITION. Let J be an /-semigroup, i.e., a semigroup homeomorphic with
an arc (which will be identified with the interval [0, 1 ]) in which 0 is a zero and
1 is an identity element. The structure of such semigroups (here written multi-
plicatively) is completely determined in [1]. Let G be a compact group and H
a closed normal subgroup of it. On the product semigroup GxJ define the closed
congruence a by (g,x)a(h,y) if (l)x = yandg = hor(2)x = y = 0andgh~ieH.

A semiring whose topological and multiplicative structures are given by the semi-
group GxJ/a will be called an L-semiring. According to theorem C of [1], a
semigroup with identity on a compact manifold with connected regular boundary
B such that B is a subsemigroup is such a semigroup. Perhaps the simplest example
of this type of semigroup is the unit complex disk.

EXAMPLE. Let (G, •) be a finite group and let 0 not be in G. Extend the multi-
plication on G to G u {0} so that it becomes a group with zero. Define + on
G u {0} by

x+y = J for all x and v i n G u {0}.

Let (J, •) be the ordinary unit interval and define + on J by x+y = min {x, y}
for all x and y in /. Now (G u {0}) xJ is a semiring under coordinatewise ad-
dition and multiplication. Also A = (Gx {0}) u ({0} xH) is both an additive
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and multiplicative ideal of (G u {0}) x / . Now

(ffu

(Gx{0})u({0}x/)

is an L-semiring in which each element is an additive idempotent. If we replace J
in the above example by the one point compactification of [1, oo) under ordinary
real addition and multiplication then the same procedure yields an L-semiring
in which there is exactly one additive idempotent, a zero.

THEOREM. In an L-semiring each additive subgroup is trivial.

PROOF. Let S be an L-semiring with multiplicative and topological structures
given by G, H and J as in the definition. We shall identify elements of S with the
corresponding equivalence classes in (G x J)ja. Clearly the set of additive idem-
potents, £ [ + ], is the multiplicative ideal and thus of the form (6x [0,a])/cc,
where ae J = [0, 1 ].

It will be convenient to know that a is a multiplicative idempotent. Suppose
this were not so. Then 0 < a. Let

b = inf {JC|JC e J, x2 = x, and a < x}.

Clearly {x\x eJ,x2 = x, and a < x} is closed and thus contains b. Therefore
b2 = b and, since a2 # a, we have a < b. Let gy denote the unit of G and
a(ng, nj), which will be identified with the positive integer «, represent the «-fold
sum of a(gt, 1). Now

na{gl, b) = <x(ng, nj)ct(g1, b) = a.(nggy, rtjb)

and rijb :g b for all positive integers n. If, for each n, njb — b then

{n<x(gltb)\n* 1} c (Gx [b, 1 ])/a

which is closed. Consequently r[+](oc(g1, b)) <= (Gx [b, l])/a which misses
(G x [0, a])/a. (By F[+](s) we mean {s, 2s, 3s, • • •}* where s is any element of a
semiring S and * denotes the closure in the topology of S. A discussion of such
semigroups can be found in [2].) Thus we have a compact additive semigroup not
intersecting £ [ + ] . This leads us to the existence of an additive idempotent not
in E [ + ] which is a contradiction. Thus there exists a positive integer m such that
mjb < b. Because a < b, there is also an element c of J such that cb = a so
<x(gY, c)a(gt, b) = u.(gx, a). Now, if m}b < a then

nija = nij(bc) = (ntjb)c ^ ntjb < a,

i.e., nija < a. On the other hand,

ix(mgg1, nija) = ct(mg, m>)a.{gx, a) = m a ( j , , a) = a(gt, a)
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since a ( ^ 1 , a ) e £ [ + ] . Thus w,a = a. This is a contradiction so that nijb •£ a,
i.e., a ^ /Wj/>. But b2 = b and a < ft gives us that te = a. Now

a(Wj^,, ntjba) = a(w9, w;)a(^i, Z>a) = ma(^ , to) = ma(j , , a) = a{gu a)

since a(#!a)e £ [ + ] . Thus nijba = a. This implies that there is an idempotent
of J in the interval [a, mjb]. But recall that nijb < b and b is the minimal idem-
potent of [a, 1 ]. This gives us a contradiction so a2 = a.

Let a(p, q) be in E[+ ] such that q # 0 and suppose a(r, 5) e if [+ ](«(/>, ?)),
the maximal additive subgroup containing <x(p, #), such that <x(r, 5) # a(/?, q).
Note that since a group contains only one idempotent, s > a 5: q guaranteeing
that qs = q. Thus a(g1, q)a(r, s) = a(r, q) so oe(r, q) e a(g-1, ?)//[+ ](a(/>, #)).
Furthermore a(r, r̂) e £ [ + ] because q ^ a. However because multiplicative
translations are additive homomorphisms, oc(g1, q)H[+](a(p,q)) is a group
whose identity element is a ^ , q)a.(p, q) which equals oc(p, q2). Therefore
a(r, q) = <x(/>, q2) which gives us ^ = q2 and, since q J= 0, r = p. Now for any
a(/7, x) in H[+](<x(p, q)) and for any x* such that q <> x* ^ x, there exists
JC** ^ x* such that ;C**JC = x*. Thus a ^ , x**)a(/7, x) = a{p, x*). Clearly

which is a group having identity x(gl, x**)d(p, q). But q2 = q and q ^ x** so
x**̂ r = q giving us a(^t, x**)a(p, q) = a(/>, q). Thus

and so a(p, x*) e H [+ ](cn(p, q)). Since H[+ ](cc(p, q)) is closed, we have shown
that, for some element t of/, H[+ ](ix(p, q)) = ({/»} x [q, t])/a, i.e., / / [+ ](oc(p, q)
is homeomorphic to a closed interval. This cannot happen if the interval is non-
trivial (since a non-trivial closed interval is not homogeneous) so we must conclude
that H[+](a(p,q))= {«(p,q)}.

Since E[+ ] is a multiplicative ideal and (Gx {0})/a is the minimal multipli-
cative ideal, we see that <x(d,0)e E[+] for any d in G. Suppose a(h*, k*)e
H[+](ot(d,O)) where a(h*,k*) # <x(d,O). Then

aid-'h*^*) = z(d-\ l)a(A*,Jk*)

which is in x(d~l, \)H[+ ](oc(d, 0)). But this set is an additive group with identity
cc(d~1, 1 )a.(d, 0) which equals a ^ , 0). Therefore it is contained in H [ + ](a(^!, 0)).
Thus a(d-1h*,k*)e H[+](oL(guO)). Furthermore, because a.(h*,k*) # a(d, 0)
we have a(d'xh*, k*) # a{gt, 0), i.e., H[+ ](a(^!, 0)) is non trivial. If a(A, A:) e

«(/(, 0) = a(ffl, 0)a(A, k) e a(ffl ,0)H[+ ^(g,, 0))

which is an additive group having unit a(g1, 0). Thus a(h, 0) 6 H[+ ](<*(#!, 0)).
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On the other hand a(h, 0)e E[+ ] so oc(h, 0) = <x(gl, 0). Therefore he Hand we
have shown that H[+](a(g1,0) c (Hx [0, l])/a. Let

A = {x\ there is a y in G so that aQ>, x)eH[+ }{o.(gy, 0))}

and k = sup 4̂. Since A is closed, £eyi, i.e., there is an h such that <x(K, £)e
H[+](oc(gi,O)). Clearly H[+](a(glt0)) <=: (Hx[0,k])/a. If a(«,i;)e(#x
[0, £])/a then v ^ Jcso there is a w in / such that v = w/c. Thus

a(«, v) = a(uh~lh, wlc) = a(«/i~1, w)<x(h, E)

which is an element of the additive group a(uJi~l, w)H[+ ](a(^i, 0)). Now

because uft~1gl is in H. Therefore the additive idempotent cc(g1, 0)e a.{uJi~l,
w)H[+](a(gt,0)) so this additive group is contained in //[+](oe(^1, 0)). This
implies ai(u,v)eH[+](ix(gl,0)). We have now shown that //[+](a(^1, 0)) =
(Hx [0, £])/a. But, according to [3], #[+](a(#i> °) is totally disconnected.
Therefore fc = 0 and / / [+ ](a(^!, 0)) = {a(^'1,0)} which contradicts our as-
sumption and concludes the proof.

An interesting special case of L-semirings is that in which the group G is
trivial. In this situation, that is in a semiring which is multiplicatively an I-
semigroup, we have much more information about the addition. If the addition
is commutative then the interval is the union of three subintervals (disjoint except
at the endpoints) each of which is a subsemiring. Of these x+y = min {x, y}
in one interval and x+y = max {x, y} in another. The third interval has only
one additive idempotent which is at one end and which is an additive zero. This
last type of semiring has not yet been fully studied.

A description of this special case can be found in [4] for commutative ad-
ditions. A more complicated description including the additively non-commutative
case appears in [5] and [6].
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