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Abstract

We study birth–death processes on the nonnegative integers, where {1, 2, . . . } is an
irreducible class and 0 an absorbing state, with the additional feature that a transition
to state 0 may occur from any state. We give a condition for absorption (extinction) to be
certain and obtain the eventual absorption probabilities when absorption is not certain.
We also study the rate of convergence, as t → ∞, of the probability of absorption at
time t , and relate it to the common rate of convergence of the transition probabilities that
do not involve state 0. Finally, we derive upper and lower bounds for the probability of
absorption at time t by applying a technique that involves the logarithmic norm of an
appropriately defined operator.
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1. Introduction

We are concerned with a temporally homogeneous continuous-time Markov chain X :=
{X(t), t ≥ 0} taking values in the set S := {0} ∪ C, where C := {1, 2, . . . } is an irreducible
class and 0 an absorbing state. The q-matrix Q := (qij , i, j ∈ S) of the chain is given by

qi,i+1 = λi, qi+1,i = µi+1, qi0 = γi, qii = −(λi + µi + γi), i > 0;
qij = 0, |i − j | > 1; and q0j = 0, j ≥ 0, (1)

where λi > 0, µi+1 > 0, and γi ≥ 0 for i > 0, and µ1 = 0. Following, for example, [17],
we will refer to a process of this type as a birth–death process with killing. The parameters
λi and µi are the birth rate and death rate, respectively, in state i ∈ C, while γi is the rate
of absorption, or killing rate, from i into the absorbing state 0. Since, in state 1, ‘death’ and
‘killing’ have the same effect, the assumption that µ1 = 0 is no restriction of generality. Note
that Q will be conservative overC if and only if γi = 0 for all i ∈ C. However, we will assume
in what follows that γi > 0 for at least one state i ∈ C, so that 0 is accessible from C. We write
Pi (·) := P{· | X(0) = i}.

Received 29 April 2004; revision received 1 September 2004.
∗ Postal address: Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands. Email address: e.a.vandoorn@utwente.nl
∗∗ Postal address: Vologda State Pedagogical University, S. Orlova 6, Vologda, Russia.
Email address: zai@uni-vologda.ac.ru

185

https://doi.org/10.1239/jap/1110381380 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381380


186 E. A. VAN DOORN AND A. I. ZEIFMAN

We will assume that the process X is nonexplosive (Q is regular) or, equivalently (see
[4, Theorem 7]), that

∞∑
n=1

1

λnπn

n∑
i=1

(1 + γi)πi = ∞, (2)

where

π1 := 1, πi := λ1λ2 · · · λi−1

µ2µ3 · · ·µi , i > 1. (3)

Hence, the transition function P (·) := {pij (·), i, j ∈ S}, where

pij (t) := Pi (X(t) = j), i, j ∈ S, t ≥ 0,

is the unique Q-function (transition function with q-matrix Q), is honest and satisfies the
system

P ′(t) = QP (t) = P (t)Q, t ≥ 0,

of backward and forward equations (see, for example, [1]). Here, a prime denotes elementwise
differentiation.

By T we denote the killing time, that is, the (possibly defective) random variable representing
the time at which absorption in state 0 occurs. In the terminology of population modelling, T
is the extinction time or persistence time. In what follows we will be mainly interested in the
functions

τi(t) := Pi (T ≤ t), i ∈ C, t ≥ 0,

and their limits
τi := lim

t→∞ τi(t), i ∈ C.
We will refer to τi(t) and τi as the extinction probability at time t and the eventual extinction
probability, respectively, when the initial state is i. Note that τi(t) = pi0(t).

After collecting some preliminary results in the next section, we will obtain a necessary
and sufficient condition for certain extinction and an explicit expression for the eventual
extinction probability in Section 3. In Section 4, we address the problem of obtaining the
rate of convergence of τi(t) to its limit. In a pure birth–death process (γi = 0 for i > 1) this
rate equals the common rate of convergence of the transition probabilities pij (t), i, j ∈ C, but
this is not true, in general, in the present setting. We give a sufficient condition for equality
of the rates of convergence. We also indicate how, if the rates are equal, results for pure
birth–death processes may be invoked in the present setting. In Section 5, we derive bounds
for the extinction probability τi(t) by applying the method developed by the second author in
[27]–[29] to the model at hand, and indicate how the results may be generalized to inhomoge-
neous processes. We conclude with an example, in Section 6.

Apart from their intrinsic interest, our results are instructive because they are indicative of
the phenomena that occur once one has wandered off the beaten track of the pure birth–death
process.

2. Preliminaries

It is well known (see, for example, [1, Theorem 5.1.9]) that, under our assumptions regarding
the Markov chain X, there exist strictly positive constants cij (with cii = 1) and a parameter
α ≥ 0 such that

pij (t) ≤ cij e−αt , i, j ∈ C, t ≥ 0, (4)
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and

α = − lim
t→∞

1

t
logpij (t), i, j ∈ C. (5)

The parameter α is known as the decay parameter of X in C. It follows easily from (4) and (5)
that α is also the rate of convergence to 0 of the transition probabilities pij (t), in the sense that

α = inf

{
x ≥ 0 :

∫ ∞

0
extpij (t) dt = ∞

}
, i, j ∈ C. (6)

The rate of convergence of the extinction probabilities τi(t) to their limits τi will be denoted
by α0, that is,

α0 := inf

{
x ≥ 0 :

∫ ∞

0
ext (τi − τi(t)) dt = ∞

}
, i ∈ C.

It can be easily shown, by an irreducibility argument, that α0 is independent of i.
The transition rates of X determine polynomials Rn through the recurrence relation

λnRn+1(x) = (λn + µn + γn − x)Rn(x)− µnRn−1(x), n > 1,

λ1R2(x) = λ1 + γ1 − x, R1(x) = 1.
(7)

Generalizing Karlin and McGregor’s [16] classic result, it is shown in [26] that the transition
probabilities pij (t), i, j ∈ C, may be represented in the form

pij (t) = πj

∫ ∞

0
e−xtRi(x)Rj (x)ψ(dx), t ≥ 0, (8)

where ψ is a Borel measure of total mass 1 on [0,∞) with respect to which the polynomials
Rn are orthogonal. (The crux of the argument in [26] is that to each q-matrix of type (1),
we can associate a unique q-matrix of type (1) that is conservative over C and such that the
corresponding transition functions are similar in the sense of [21].) It can easily be shown, from
[26, Theorem 4] and our Lemma 1 below, that, under our assumption (2), the orthogonalizing
measure for {Rn} is in fact unique. Since the transition probabilities pij (t), i, j ∈ C, tend to 0
as t tends to infinity (recall our assumption that γi > 0 for at least one state i), the integral
representation (8) tells us that the measure ψ cannot have a point mass at 0. It now follows
readily from (6) and (8) that

α = min supp(ψ), (9)

which generalizes an earlier result for birth–death processes (see, for example, [25, Theo-
rem 3.1]).

Since orthogonal polynomials have no zeros outside the support of their orthogonalizing
measure, while the smallest point of the support is a limit point of zeros (see, for example,
[7, Section II.4]), (9) implies that

Rn(x) > 0 for all n ≥ 1 ⇔ x ≤ α. (10)

It will also be useful to observe that

λnπn(Rn+1(x)− Rn(x)) =
n∑
j=1

(γj − x)πjRj (x), n ≥ 1,
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whence

Rn(x) = 1 +
n−1∑
k=1

1

λkπk

k∑
j=1

(γj − x)πjRj (x), n > 1.

It follows, in particular, that the quantities rn := Rn(0) satisfy

r1 = 1 and rn = 1 +
n−1∑
k=1

1

λkπk

k∑
j=1

γjπj rj , n > 1. (11)

We let

r∞ := lim
n→∞ rn = 1 +

∞∑
k=1

1

λkπk

k∑
j=1

γjπj rj , (12)

and note the following lemma.

Lemma 1. We have r∞ = ∞ if and only if

∞∑
k=1

1

λkπk

k∑
j=1

γjπj = ∞. (13)

Proof. The sufficiency is obvious because rn ≥ 1. So, let us define

βk := 1

λkπk

k∑
j=1

γjπj , k ≥ 1,

and assume that
∑
k≥1 βk converges. Since rn is increasing in n, we have

rn+1 = rn + 1

λnπn

n∑
j=1

γjπj rj ≤ rn(1 + βn), n ≥ 1,

so that

rn+1 ≤
n∏
k=1

(1 + βk), n ≥ 1.

However,
∏
k≥1(1+βk) and

∑
k≥1 βk converge together, so we must have r∞ < ∞, as required.

We conclude this section with representations for the extinction and eventual extinction
probabilities. Indeed, the forward equations tell us that

p′
i0(t) =

∑
j∈C

γjpij (t), i ∈ C, t ≥ 0.

It follows that

τi(t) = pi0(t) =
∑
j∈C

γj

∫ t

0
pij (u) du, i ∈ C, t ≥ 0, (14)
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which, upon the substitution of (8) and the interchange of integrals, leads to

τi(t) =
∑
j∈C

γjπj

∫ ∞

0
(1 − e−xt )Ri(x)Rj (x)

ψ(dx)

x
, i ∈ C, t ≥ 0.

Letting t → ∞ subsequently yields, by monotone convergence,

τi =
∑
j∈C

γjπj

∫ ∞

0
Ri(x)Rj (x)

ψ(dx)

x
, i ∈ C, (15)

so that

τi(t) = τi −
∑
j∈C

γjπj

∫ ∞

0
e−xtRi(x)Rj (x)

ψ(dx)

x
, i ∈ C, t ≥ 0. (16)

Expression (15) will be evaluated in the next section, and τi(t) will be studied in Sections 4
and 5.

3. Eventual extinction probability

We note that, by conditioning on the first event in X (or using the recurrence relation (7) in
(15)), the eventual extinction probabilities τi are readily seen to satisfy the recurrence

(λi + µi + γi)τi = λiτi+1 + µiτi−1 + γi, i > 1,

(λ1 + γ1)τ1 = λ1τ2 + γ1.

In view of (7), it follows that τi may be expressed in terms of τ1 and ri := Ri(0) as

1 − τi = (1 − τ1)ri, i ∈ C. (17)

Since {τi, i ∈ C} constitutes the smallest nonnegative solution of (17) (cf. [10, p. 403]) we must
have τi = 1−ri/r∞, with the interpretation that τi = 1 whenever r∞ = ∞. This result may also
be obtained from Lemma 3.1 of Brockwell [3], who studied eventual extinction probabilities
in a more general setting (see also [1, Section 9.2]). Considering Lemma 1, we have at our
disposal, in the present setting, a simpler criterion for certain extinction. We summarize our
conclusions in the following theorem.

Theorem 1. If (13) is satisfied then τi = 1 for all i ∈ C. Otherwise, the eventual extinction
probabilities satisfy

τi = 1 − ri

r∞
< 1, i ∈ C,

with ri and r∞ given by (11) and (12), respectively.

In view of this result, the condition (2) for nonexplosiveness may be rephrased as follows.
A necessary and sufficient condition for nonexplosiveness of X is that either eventual extinction
is certain or ∞∑

n=1

1

λnπn

n∑
i=1

πi = ∞.

As might be expected, the latter is precisely the condition for nonexplosiveness of X∗ :=
[X | T = ∞], the (pure birth–death) process one gets by setting γi = 0 for all i ∈ C (see
[1, Section 8.1]).
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4. Rate of convergence

In addition to the accessibility of state 0, we will assume in this section that absorption at 0
is certain; that is, eventual extinction is certain and, hence, (13) is satisfied. Pakes [22, p. 122]
has observed (see also [9]) that the latter assumption is no restriction because, if τi < 1, we can
work with the (Markov) process X̄ := [X | T < ∞], which has transition rates q̄ij = qij τj /τi
and transition probabilities p̄ij (t) = pij (t)τj /τi . Here, τ0 := 1 and τi > 0 because of our
accessibility assumption. It follows that

τ̄i (t) := p̄i0(t) = pi0(t)/τi = τi(t)/τi → 1 as t → ∞, for i ∈ C.
We note from (16) that ξi(t) := 1 − τi(t) = Pi (T > t), the survival probability at time t ,

can be represented in the form

ξi(t) =
∑
j∈C

γjπj

∫ ∞

0
e−xtRi(x)Rj (x)

ψ(dx)

x
, i ∈ C, t ≥ 0. (18)

In view of (9) (recall that ψ does not have a point mass at 0), it is therefore tempting to believe
that α0 = α, but this is not true in general. Since 1 ≥ ξi(t) ≥ pii(t) we do know, however, that

0 ≤ α0 ≤ α. (19)

This was observed by Kingman [20, Theorem 8] and, more recently, by Jacka and Roberts
[15, Equation (3.1.4)], whose example with strict inequalities in (19) is encompassed in the
setting that is described next.

Suppose that the killing rates satisfy γi ≥ γ > 0 for all i ∈ C. Then we may look upon
the process X as a birth–death process with killing, X̃ say, with rates λ̃i := λi, µ̃i := µi , and
γ̃i := γi − γ , which is subject to an additional killing event taking place at rate γ . Evidently,
absorption of X at 0 is certain. By conditioning on the time of the additional killing event, we
have pij (t) = e−γ t p̃ij (t), i, j ∈ C, and, hence,

α(X) = γ + α(X̃),

where the argument of α indicates the relevant process. By conditioning again, we also obtain

ξi(t) = e−γ t (1 − τ̃i (t)) = e−γ t (1 − τ̃i )+ e−γ t (τ̃i − τ̃i (t)), i ∈ C, t ≥ 0,

where τ̃i (t) is the extinction probability at time t of the process X̃ and τ̃i is its limit as t → ∞.
Hence,

α0(X) =
{
γ if τ̃1 < 1,

γ + α0(X̃) if τ̃1 = 1.

It follows that strict inequalities apply in (19) when τ̃1 < 1 and α(X̃) > 0. We note, in addition,
that the calculation of α0(X) is reduced to the calculation of α0(X̃) if τ̃1 = 1.

It has been shown in [15] (in a more general setting and implicitly assuming certain absorp-
tion) that we have α0 = α if only finitely many of the γi are positive, which is obvious from
the representation (18). The following theorem is a more general result.

Theorem 2. If α > 0 and eventual extinction is certain, then we have∑
j∈C

γjπjRj (α) = α
∑
j∈C

πjRj (α), (20)

and α0 = α whenever either sum in (20) converges.
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Proof. Recalling that Rj (α) > 0 and using an argument similar to that in the proof of
[24, Theorem 4.1], it is not difficult to show, using (8), that, if α > 0,

qj := lim
t→∞

pij (t)∑
k∈C pik(t)

= πjRj (α)∑
k∈C πkRk(α)

, j ∈ C, (21)

which is to be interpreted as 0 if the sum diverges. On the other hand, since extinction is certain,
we have

∑
j∈C pij (t) = ξi(t) and, hence, we may use the representation (18) to calculate qj

in a similar fashion, yielding

qj = lim
t→∞

pij (t)

ξi(t)
= απjRj (α)∑

k∈C γkπkRk(α)
, j ∈ C, (22)

which is again to be interpreted as 0 if the sum diverges. Since the two limits must be
equal, (20) must hold. Moreover, if either sum in (20) converges then qj > 0 (and (21)
tells us that {qj , j ∈ C} in fact constitutes a proper distribution). Evidently (see also
[15, Theorem 3.3.2(ii)]), the latter is a sufficient condition for α0 = α.

Remark 1. Theorem 2 generalizes part of the lemma in [11] (see also [24, Theorem 3.2]),
which concerns pure birth–death processes. When γi > 0 for infinitely many states i, the
situation differs essentially from the pure birth–death setting in that we may simultaneously
have both α > 0 and divergence of the series in (20). If either series in (20) converges then
the quantities qj of (21) (or (22)) constitute a quasi-stationary distribution (see, for example,
[22]). In this case, we also have

α0 = α = − lim
t→∞

1

t
log Pi (T > t)

(see [22, Lemma 2.1]).

If α0 = α then the problem of determining α0 can be reduced to that of finding the decay
parameter in a pure birth–death process, for which many results are available (see [5], [6], [12],
[18], [19], [23], [25], and [27]–[29]). Indeed, define X̃ := {X̃(t), t ≥ 0} to be the birth–death
process on C with birth and death rates

λ̃i := λi
ri+1

ri
and µ̃i+1 := µi+1

ri

ri+1
, i ∈ C, (23)

respectively, where ri := Ri(0) as before. Letting µ̃1 = µ1 = 0, it is easy to see, from (23)
and (7), that

λ̃i µ̃i+1 = λiµi+1 and λ̃i + µ̃i = λi + µi + γi, i ∈ C.

By [26, Theorem 1], this implies that there are constants σij > 0 such that

pij (t) = σij p̃ij (t), i, j ∈ C, t ≥ 0,

with p̃ij (t) denoting the transition probabilities of X̃. (In the terminology of [21], the processes
X and X̃ are similar). Consequently, X and X̃ have the same decay parameter.
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5. Bounds for the survival probability

To obtain bounds for ξi(t), we choose the approach used in [27]–[29] for pure birth–death
processes (see also [13] or [14] for an exposition of this method). Application of the technique
requires the elements of the q-matrix Q to be bounded so, in what follows, we assume that

sup
i

{λi + µi + γi} < ∞.

We let A := (qij , i, j ∈ C), the matrix that remains after removing the first row and column
from Q, and define

xi (t) := (pi1(t), pi2(t), . . . )

, i ∈ C, t ≥ 0,

where superscript ‘
’ denotes transpose. Further, let D := diag(d1, d2, . . . ), with d1, d2, . . .

denoting positive parameters, and let zi (t) := Dxi (t). The forward equations for P (·) then
tell us that

z′
i (t) = DAD−1zi (t), i ∈ C, t ≥ 0.

If the parameters di are such that DAD−1 can be interpreted as a bounded linear operator on
a normed space, then the theory expounded, for example, in [29] and [13] reveals that, for all
i ∈ C and t ≥ 0,

exp{−tθ∗(d)}‖zi (0)‖ ≤ ‖zi (t)‖ ≤ exp{tg(DAD−1)}‖zi (0)‖. (24)

Here,

θ∗(d) := sup
i∈C

{
λi + µi + γi − λi

di+1

di
− µi

di−1

di

}
, (25)

with d := (d1, d2, . . . ) and d0 := 0, and

g(DAD−1) := lim
h↓0

‖I + hDAD−1‖ − 1

h
,

where I is the identity matrix, is the logarithmic norm of the operator DAD−1. Moreover,
choosing ‖ · ‖ = ‖ · ‖1, the �1-norm, we have

−g(DAD−1) = θ(d) := inf
i∈C

{
λi + µi + γi − λi

di+1

di
− µi

di−1

di

}
. (26)

Hence, (24) translates into

die
−θ∗t ≤

∑
j∈C

djpij (t) ≤ die
−θt , i ∈ C, t ≥ 0, (27)

where θ := θ(d) and θ∗ := θ∗(d). As an aside, we note that θ(d) = θ∗(d) = x if and only
if di = cRi(x) for some constant c, as can easily be seen from the recurrence relation (7).
It follows, in particular, that∑

j∈C
Rj (x)pij (t) = Ri(x)e

−xt , i ∈ C, t ≥ 0,

from which the representation (8) may be derived (cf. [16, Section I.2]).
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Since
ξi(t) := Pi (T > t) =

∑
j∈C

pij (t),

the inequalities (27) immediately give us the following bounds for the survival probability ξi(t).

Theorem 3. (i) Let dj ≥ 1 for all j ∈ C and θ := θ(d) as in (26). Then,

ξi(t) ≤ die
−θt , i ∈ C, t ≥ 0. (28)

(ii) Let dj ≤ 1 for all j ∈ C and θ∗ := θ∗(d) as in (25). Then

ξi(t) ≥ die
−θ∗t , i ∈ C, t ≥ 0. (29)

Note that eventual extinction must be certain when dj ≥ 1 for all j ≥ 1 and θ(d) > 0.

Corollary 1. If the constants µ ≥ 0 and a ≥ 0 are such that

µ < µj+1 and a ≤ µ+ γj − λjµ

µj+1 − µ
, j = 1, 2, . . . ,

then

ξi(t) ≤ e−at
i∏

j=1

µj+1

µj+1 − µ
, i ∈ C, t ≥ 0.

Proof. Choosing d1 = 1 and dj+1/dj = µj+1/(µj+1 − µ) for j ≥ 1, we have dj ≥ 1 and

θ(d) = inf
j∈C

{
µ+ γj − λjµ

µj+1 − µ

}
,

so that the conditions of Theorem 3(i) are satisfied. Substitution into (28) gives the result.

Taking µ = 0, it follows, in particular, that ξi(t) ≤ e−at if a ≤ inf{γj }, as we observed by
a different argument in the previous section.

If α, the decay parameter of X in C, is known, then the following corollary might be useful.
Recall that Rj (α) > 0, by (10).

Corollary 2. If 0 ≤ Rmin < Rj(α) < Rmax ≤ ∞ for all j , then

Ri(α)

Rmax
e−αt < ξi(t) <

Ri(α)

Rmin
e−αt , i ∈ C, t ≥ 0,

where the left-hand side should be interpreted as 0 ifRmax = ∞ and the right-hand side should
be interpreted as infinity if Rmin = 0.

Proof. We have already noted that letting dj = cRj (x) for some constant c gives us θ(d) =
θ∗(d) = x. Hence, if Rj (α) > Rmin > 0 for all j , then the conditions of Theorem 3(i) are
satisfied if we choose a = α and dj = Rj (α)/Rmin, and substitution in (28) gives the upper
bound. On the other hand, ifRj (α) < Rmax < ∞ for all j , then the conditions of Theorem 3(ii)
are satisfied if we choose a = α and dj = Rj (α)/Rmax, and substitution in (29) gives the lower
bound.
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Under certain circumstances, (27) may lead to other bounds for ξi(t). For example, suppose
that γi > 0 for all i ∈ C and choose di = γi in (26) and (27), so that

γie
−θ∗t ≤

∑
j∈C

γjpij (t) ≤ γie
−θt , i ∈ C, t ≥ 0,

where θ := θ(γ ), θ∗ := θ∗(γ ), and γ := (γ1, γ2, . . . ). If θ > 0 we obtain, in view of (14),

1 − γi

θ
(1 − e−θt ) ≤ ξi(t) ≤ 1 − γi

θ∗ (1 − e−θ∗t ), i ∈ C, t ≥ 0.

At the other extreme, suppose that γi = 0 for i > 1; that is, we are dealing with a pure birth–
death process. Now choose di ≤ d1 (for all i) in (26) and (27), and suppose that θ := θ(d) > 0.
Then we have

γ1pi1(t) ≤ γ1

d1

∑
j∈C

djpij (t) ≤ γ1
di

d1
e−θt , i ∈ C, t ≥ 0,

by (27) and, hence, by (14),

ξi(t) ≥ 1 − γ1

θ

di

d1
(1 − e−θt ), i ∈ C, t ≥ 0.

We conclude this section by noting that the result (27) can easily be generalized to inhomoge-
neous processes. Specifically, let X be a birth–death process with killing with time-dependent
birth rates λi(t), death ratesµi(t), and killing rates γi(t). Then, under appropriate boundedness
conditions and for all i ∈ C and t ≥ 0,

di exp

{
−

∫ t

0
θ∗(d, u) du

}
≤

∑
j∈C

djpij (t) ≤ di exp

{
−

∫ t

0
θ(d, u) du

}
,

where

θ(d, t) := inf
i∈C

{
λi(t)+ µi(t)+ γi(t)− λi(t)

di+1

di
− µi(t)

di−1

di

}
, t ≥ 0,

and

θ∗(d, t) := sup
i∈C

{
λi(t)+ µi(t)+ γi(t)− λi(t)

di+1

di
− µi(t)

di−1

di

}
, t ≥ 0.

The corresponding generalizations of Theorem 4 and Corollary 1 are straightforward.

6. Example

Interesting cases arise if γi > 0 for infinitely many states i, while γi is not constant for
all i. We will analyse a simple example satisfying these conditions, namely the process with
transition rates

λi = λ, µi = µ 1{i>1}, and γi = γ 1{i>1}, i ∈ C, (30)
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for some constants λ > 0, µ > 0, and γ > 0, where 1E denotes the indicator function of an
event E. It is easily seen that (13) is satisfied, so that extinction is certain. The polynomials
Rn of (7) satisfy the recurrence relation

λRn+1(x) = (λ+ µ+ γ − x)Rn(x)− µRn−1(x), n > 1,

λR2(x) = λ− x, R1(x) = 1,

which, by the transformation

Sn(x) := (−1)n
(
λ

µ

)n/2
Rn+1(λ+ µ+ γ + 2x

√
λµ), n ≥ 0, (31)

reduces to
Sn(x) = 2xSn−1(x)− Sn−2(x), n > 1,

S1(x) = 2x + η, S0(x) = 1,

where
η := µ+ γ√

λµ
.

The polynomials Sn can be represented as

Sn(x) = Un(x)+ ηUn−1(x), n ≥ 1, (32)

where Un(x) denote the Chebyshev polynomials of the second kind. The latter satisfy the
recurrence

Un(x) = 2xUn−1(x)− Un−2(x), n > 1,

U1(x) = 2x, U0(x) = 1,

and may be represented as

Un(x) = zn+1 − z−(n+1)

z− z−1 , n ≥ 0, where x = 1
2 (z+ z−1). (33)

It will be useful to observe that

Un(x) = (−1)nUn(−x) and Un(1) = n+ 1. (34)

By appropriately transforming the orthogonalizing measure for {Sn(x)} given in [7, p. 205],
we can conclude that the polynomials Rn are orthogonal with respect to a measure consisting
of a positive density on the interval

(λ+ µ+ γ − 2
√
λµ, λ+ µ+ γ + 2

√
λµ)

and, if µ+ γ > (λµ)1/2, a point mass at λγ/(µ+ γ ). Thus, since

λγ

µ+ γ
= λ+ µ+ γ − √

λµ(η + η−1),

it follows from (9) that

α = λ+ µ+ γ −
{

2
√
λµ if µ+ γ ≤ √

λµ,√
λµ(η + η−1) if µ+ γ ≥ √

λµ.
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We next wish to determine the value of α0. To this end, we will not try to employ (18), but
rather argue as follows. LetEa denote an exponentially distributed random variable with mean
a−1, andB a random variable representing the busy period in an M/M/1 queueing system with
arrival rate λ and service rate µ. (If λ > µ the distribution of B is defective.) A little reflection
then shows that, if the initial state is 1, the extinction time T may be represented as

T = Eλ + Eγ 1{Eγ≤B} +(B + T ∗) 1{Eγ>B},

where T ∗ is a random variable that is independent of T but has the same distribution. It follows
that

τ̃ (s) := E[e−sT ]
= E[e−sT 1{Eγ≤B} +e−sT 1{Eγ>B}]
= E[e−sEλ(e−sEγ 1{Eγ≤B} +e−s(B+T ∗) 1{Eγ>B})]
= λ

λ+ s
(E[e−sEγ 1{Eγ≤B}] + τ̃ (s)E[e−sB 1{Eγ>B}]),

so that
(λ+ s − λE[e−sB 1{Eγ>B}])τ̃ (s) = λE[e−sEγ 1{Eγ≤B}]. (35)

A little algebra reveals that

E[e−sEγ 1{Eγ≤B}] = γ

γ + s
(1 − B̃(γ + s))

and
E[e−sB 1{Eγ>B}] = B̃(γ + s),

where B̃(s) := E[e−sB ]. Substitution of these results into (35) gives us

τ̃ (s) = γ (λ− λB̃(γ + s))

(γ + s)(λ+ s − λB̃(γ + s))
. (36)

It is well known (see, for instance, [8, Equation (II.2.31)]) that

B̃(s) = 1

2λ
(λ+ µ+ s −

√
(λ+ µ+ s)2 − 4λµ ),

which, upon substitution into (36) and some algebra, leads to

τ̃ (s) = γ (s2 + (λ+ µ+ γ )s + 2λγ − s
√
(λ+ µ+ γ + s)2 − 4λµ)

2(γ + s)(λγ + (µ+ γ )s)
.

By inverting this expression, we can obtain an explicit formula for τ1(t), the extinction time
distribution when the initial state is 1. At this point, however, we are interested only in α0, the
rate of convergence of τ1(t), which, up to a minus sign, equals the singularity of τ̃ (s) that is
closest to the imaginary axis. Since the largest branch point at −γ − (λ1/2 − µ1/2)2 is always
smaller than the pole at −γ , it follows that α0 = γ or α0 = λγ/(µ + γ ) if λ ≥ µ + γ or
λ ≤ µ+ γ , respectively.
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We collect all our results in the following theorem.

Theorem 4. The process with transition rates (30) has rates of convergence α0 and α given by

α0 = α = λγ

µ+ γ
if λ ≤ µ+ γ,

α0 = γ < α = λγ

µ+ γ
if

√
λµ ≤ µ+ γ < λ,

α0 = γ < α = γ + (
√
λ− √

µ)2 if µ+ γ <
√
λµ.

Observe that our findings are in accordance with the intuitive result that α0 must tend to 0
as γ tends to 0.

It is interesting to establish how much of the information in Theorem 4 may be obtained
from Theorem 2. To this end, we note that, by (3) and (30), πn+1 = (λ/µ)n, n ≥ 0, so that, by
(31),

πn+1Rn+1(x) = (−1)n
(
λ

µ

)n/2
Sn

(
x − λ− µ− γ

2
√
λµ

)
, n ≥ 0.

Hence, after some algebra, it follows from (32), (33), and (34) that, for n ≥ 0,

πn+1Rn+1(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1 + (1 − η)n)

(
λ

µ

)n/2
if µ+ γ ≤ √

λµ,(
λ

µ+ γ

)n
if µ+ γ ≥ √

λµ.

(37)

Since (λµ)1/2 < µ+γ if λ < µ+γ , while λ > µ if λ ≥ µ+γ , we conclude that the series in
(20) converge if and only if λ < µ+ γ . Hence, Theorem 2 tells us that α0 = α if λ < µ+ γ .
In the opposite case, Theorem 2 does not help us.

By extending the method by which we have calculated τ̃ (s), we can obtain the Laplace–
Stieltjes transform of the extinction time distribution when the initial state is any state i ∈ C

other than 1. By inversion, we can therefore calculate τi(t) and, hence, ξi(t), at least in principle.
However, the procedure is cumbersome, so it is of interest to apply the methodology of Section 5
to the present example. For instance, choosing d1 = 1 and

dj+1 =
(

µ

µ+ γ

)j
, j ≥ 1,

in (25) gives us θ∗ = λγ/(µ+ γ ) and, hence, by Theorem 3(ii),

ξi(t) ≥
(

µ

µ+ γ

)i−1

exp

{ −λγ t
µ+ γ

}
, i ∈ C, t ≥ 0. (38)

This is also the bound produced by Corollary 2 when µ + γ ≥ (λµ)1/2. In the case that
µ+ γ < (λµ)1/2, Corollary 2 yields a lower bound that improves upon (38) for t sufficiently
large.

As an aside, we finally note that ours is yet another example, along with those of [22] and
[2], showing that asymptotic remoteness, that is,

lim
i→∞pi0(t) = 0, t ≥ 0, (39)
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is not necessary for the existence of a quasi-stationary distribution. Indeed, it is obvious that
(39) is not satisfied in the present setting, while, in view of (37) and Remark 1, a quasi-stationary
distribution does exist when λ < µ+ γ .
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