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ALGEBRAIC RIEMANN MANIFOLDS
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Introduction

In the present paper, we are concerned with the problem to know

whether two algebraic Riemann manifolds are isometric or not, where we

mean Riemann manifolds of class CΩ (real algebraic smoothness or Nash

category) simply by algebraic Riemann manifolds.

For this purpose we introduce notions of minimal differential poly-

nomials and singular base points, both of which are isometry invariants.

With the aid of these invariants, we give the following isometry theorem

for algebraic Riemann manifolds:

MAIN THEOREM. Let M, M be connected, simply connected, complete,

CΩ Riemann manifolds of dimension n ^ 2. Assume that the minimal

differential polynomials of M, M coincide. Let p e M, pe M, and assume

that p, p are not singular base points. If there exists a linear isometry

I: TP(M) -• TP(M) which preserves the curvatures of M, M and their first

An — 5 covarίant differentials, then M and M are isometric by an isometry

h : M-+M satisfying h(p) — p, (h*)p = I.

With this theorem we obtain a characterization of homogeneous

Riemann manifolds:

THEOREM 3.4. Let M be a connected, simply-connected, complete, Cω

Riemann manifolds of dimension n^2. Assume that M is infinίtesimally

homogeneous of order 3n — 5 in the sense that for any points p, q of M

there exists a linear isometry I: TP(M) -> Tq(M) which preserves the curva-

ture and its first 3n —- 5 covariant differentials. Then M is homogeneous.

This theorem improves a result of Singer [10], which states that if

M is infinitesimally homogeneous of order n{n~~ ' 9 then M is homo-
A

geneous.
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Contrary to the C°° or Cω case, there exist CΩ Riemann manifolds

which admit no CΩ function except constants. We give a criterion for

the existence of sufficiently many CΩ functions:

THEOREM 4.2. Let M be a compact CΩ Riemann manifold. Assume

that for any distinct points p, q of M there exists no isometry h, h(p) = q,

of a neighborhood of p onto a neighborhood of q. Then there exist CΩ

functions fu -,fN on M such that (fu -,fN): M—>RN is an embedding

(in the differential topological sense).

We also extend the Myers-Steenrod isometry theorem to the CΩ case

as follows:

COROLLARY 4.4. Under the hypothesis of Theorem 4.2, an isometry

between two CΩ Riemann manifolds M, M, if any, is of class CΩ.

We illustrate here minimal differential polynomials and singular base

points. Roughly speaking, the minimal polynomial of M is a polynomial

ΦM = ^M(?O? >£r) such that for any geodesic ϊ — ϊ(t) on M and any

Jacobi field J along ϊ, the function ξ(t) •= j\\J(i)\\2 satisfies the differential

equation φM(ξ, ξ', , ξ(r)) = 0. A singular base point of M is a point q

such that on the "fibre" over q, the differential equation φM(ξ, , ξ(r)) = 0

can not be written in a normal form.

Then we are led to an intuitive proof of Proposition 2.1 and therefore

of Main Theorem, as follows: Using the geodesic coordinates around p, p

and the given linear mapping /, we can construct the (local) diffeomorphism

h. We have to prove that h is isometric. To do this, let ϊ = exp tX be

a geodesic starting at p in M, and let 7 = exp tI(X) be the corresponding

geodesic in M. We prove that for fixed τ, /**: Triτ)M—> Tf(τ)M is isometric.

Fix V € THτ)M and consider the Jacobi field J along γ such that J(0) = 0,

J(T) = V. Let J be the Jacobi field along 7 such that J(0) = 0, J(τ) =

h*V. The assumption φM = φM implies that the functions ξ(i) = j\\J(t)\\2,

ζ(t) = i\\J(t)\\2 satisfy the same differential equation. Moreover, the

existence of the linear mapping / ensures that ξ (t), ξ(t) satisfy the same

initial condition. Hence, by the uniqueness theorem for solutions of

differential equations we can conclude that ξ(t) = ξ(t) and hence ||V|| =

||/fc#V||, as desired. More accurately, we apply the uniqueness theorem

to perturvations on ξ, ξ under the assumption of the nonsingularity of

p, p and then we conclude that ξ = f from the continuous dependence

on initial conditions.
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Our approach to the equivalence problem of Riemann manifolds sheds

modern light on the classical argument of E. Cartan. In fact, by intro-

ducing the notion of minimal differential polynomial we regard the con-

dition for the existence of isometries as an initial condition of the

differential equation and hence we can reduce the proof of the isometry

theorem to the uniqueness theorem for solutions of differential equations.

This clarifies Cartan's argument in his isometry theorem.

Finally, I would like to thank Professor Shikata for his valuable

suggestions for improving the exposition.

§ 1. Minimal differential polynomials and singular base points

We begin by recalling the notion of class C°. Let U be an open

subset of the ^-dimensional real vector space Rn. A function f:U-+R

is said to be of class CΩ if / is of class Cω (i.e. real analytic) and if for

each connected component Uo of U, there is a non-zero polynomial P —

P(xu - , xn+i) in n+1 variables with real coefficients such that P(xu , xn,

f(xίy - -, xj) = 0 on Uo. After the definition of function of class CΩ, we

have the notion of manifold of class CΩ in the usual way (cf. [8], [9]).

The vector space Rn has the natural CΩ structure such that polynomial

functions on Rn are of class CΩ. We always equip Rn with this CΩ

structure, unless otherwise specified.

Furthermore, we can define tensor fields of class CΩ (on CΩ manifolds)

in the obvious way. Especially, a Riemann manifold of class CΩ (or simply

a CΩ Riemann manifold) is a manifold of class CΩ with a CΩ Riemann

metric.

To introduce the notion of minimal differential polynomial we recall

some definitions. First, R [f 0, , ξr] denotes the ring of polynomials in

variables f0, •••,£,. with real coefficients. Let PeR[ξ09 ••-,£>]. Suppose

that P is written as

P = €„...„&. •£? + Σ cβ 0...β r£Γ •£?', cpo...,r ^ 0 , pr ^ 1,
(qυ, '>Qr)<(P0>"',Pr)

where (g0, , qr) < (p0, , pr) means that qt < pt for the largest integer

i (0 <Ξ i ^ r) such that pt Φ qt. Then we call r the order of P. If cPQ...Pr

= 1, then we shall say that P is monίc.

Next, let ϊ = ϊ(t) be a geodesic in a Riemann manifold. Denote by

t(t) the vector tangent to ϊ at ϊ(t). For a vector field Y along ΐ, we

denote by Y'(t) the covariant derivative FHt)Y of Y in the direction of
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ΐ(t). We denote by < , > the Riemann metric, and by || || the norm of

tangent vectors.

DEFINITION 1.1. Let M be a connected C°° Riemann manifold of

dimension n ^ 2. Let φ e R [ξOf , ξr] be an irreducible, monic polynomial

with order r. We shall say that φ is the minimal differential polynomial

of M if the following conditions are satisfied:

( i ) For any geodesic T with ||f(ί)|| = 1 and for any Jacobi field J

along γ with (f(t), J(t)} = 0, the function £(*) = i(J(t), J(t)) satisfies the

differential equation

φ(ξ{t),ξ'(t),- ,ξir)(ί)) = O,

where ξ^(t) = (dηdV)ξ(t).
(ii) If an irreducible, monic polynomial ψ e R[ξQ, - ,ξs] with order

s, satisfies ψ(ξ(t), , ξ{s)(t)) = 0 for every f(Z) as in (i), then we have

s — r and φ = ψ, or we have s > r.

From the definition we see that the minimal differential polynomial,

if it exists, is uniquely determined.

DEFINITION 1.2. Suppose that M has a minimal differential polynomial

0(f o> * > f r) of order r. We shall say that p e M is a singular base point

of 0 if for any unit tangent vector X at p and any Jacobi field J along

γ(t) = exp^Z with <?(*), */(*)> = 0, we have

where f (ί) =

LEMMA 1.3. Let M be α connected CΩ Riemann manifold of dimension

n^2. Then there exists the minimal differential polynomial φ of M. The

order of φ is equal to or less than An — 3. The set of singular base point

of φ is closed and nowhere dense in M.

To prove Lemma 1.3 we need a lemma.

LEMMA 1.4. Let M be a C°° Riemann manifold of dimension n^>2.

Let G(M) be the C°° submanifold of the Whitney sum T{M)®T{M)®T(M)y

defined by

G(M) - {(X, y, Z) e T(M) Θ T(M) ® T(M)\(X, X} = 1,
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For a point p of M, let GP(M) be the fibre over p, i.e. the set of triples

(X, Y, Z) in G(M) whose base point is p. For (X, Y, Z) e G(M), denote by

Jχ,γ,z the Jacobί field along exptX with Jx,γ,z(0) = Y, Jχ,Y,z(0) = Z.

For each non-negative integer k, define a C°° function gk: G(M)->R by the

formula

gt(X, Y, Z) = ξ<fc>(0)

where f(fc)(O) is the k-th derivative at t — 0 of the function ξ(i) = \(Jx,YtZ{t),

Jχ,γ,z(t)).

Then the functions gk have the following properties:

( i ) For any geodesic ΐ with \\ϊ(t)\\ = 1 and any Jacobί field J along

γ with <j(t), J(t)} = 0, the k-th derivatives f(fc)(ί) of the function ξ(t) =

j(J(i), J(t)} are given by the formulas

ξik)(t) = g*(Ϋ(t), J(t\ J\t)).

(ii) For each point p of M, the restrictions gk\Gp(M): GP(M)->R are

expressed as restrictions of some polynomial functions TP(M)®TP(M)®TP(M)

—>R. Hence in particular, gk\Gp(M) &rz CΩ functions on the CΩ manifold

GP{M).

(iii) If M is a CΩ Rίemann manifold, then gk are CΩ functions on the

CΩ manifold G(M).

(iv) Let M be another C°° Rίemann manifold of dimension n, and

define g%: G(M) -• R, k = 0,1, , in the same way as above. Let p e M,

pe M, and let k be fixed. Assume that there exists a linear ίsometry

I: TP(M) —> TP(M) such that for any non-negative integer l<Lk — 2, the

l-th covariant differentials VLR, VιR of the curvature tensors R, R of M, M

are preserved by J, i.e. the relation

((FιR)(X, Y;Zi; ;ZdV, Wy = {(FιR)(X, Ϋ Z^ -;Zι)V9 W}

holds for any X, Y, V, W9Zl9-'9Zte TP(M), where X = I(X), . , Zt = I(Zt\

and F°R = R, F°R = R. Then we have

for any (X, Y, Z) e GP(M).

Proof. Part (i) is an immediate consequence of the fact that

Ji(t),j(t),j'(t)(s) = J(t + s). To prove the rest, let (X, Y, Z)e G(M) and put

ΐ = exp tX, J = JXtTtZ. Then for the function ξ(t) = jr(J(t), J(t)) of t, it
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is clear that ξ'(t) = (J'(t),J(t)}. Since J"(t) = R(ϊ(t),J(t))f(t), omitting

the parameter t for simplicity, we have

Using the covariant differential VR of R and the symmetry property of

the operator R(ϊ, *)f we have

γ, j; ΐ)r, J> + 4(R(r, J>)γ, J).

Generally, for k ̂  4 the function f(fc)(ί) can be expressed as

where Aλ(R, , Fk2R) are certain tensor fields on M, of type (0, k + 2)?

obtained by contractions of tensor products of R, , Fk2R, and Bμ(R, ,

Ffc-3i2), CV(J?, , Ffc"4jR) are also tensor fields of the same sort. Note that

the tensor fields Aλ, Bμ, Cv are defined independent of the choice of

(X, y, Z) e G(M). Putting t = 0 shows that gk) k = 0,1, , are expressed

as

, Y, z) = KY, Y>,

gi{x, Y, z) = (Y,zy,
g2(x, Y, z) = (R(x, Y)x, Y> + <z, zy,

, Y, z) = <(ΓB)(X, y; x)x, y> + 4<β(X, z)x, Y> ,

and for k 2: 4

A(X, 7, Z) = Σ A>(R, .-., Γ«

+ ΣBμ(R,- -,F'c-3R)(X,-- ,X,Y,Z)
μ

+ Σ CXR, . ., r-4i?)(x,..., x, z, z).

From these formulas we verify at once our assertions (ii), (iii), (iv).

Proof of Lemma 1.3. Let gk:G(M)-+R be the CΩ functions defined

in Lemma 1.4. Clearly, G(M) is connected (n ̂  2), and g0, ̂  are alge-

braically independent over i?. Since the dimension of G(M) is An — 3,
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some point of G(M) but dg0 Λ Λ dgr = 0 on G(M). Then we can find

an irreducible polynomial P e R [ξ0, , ξr] such that degfr P ^ 1 and

P(£o, -',gr) = 0 on G(M). Dividing P by the "leading coefficient", if P

is not monic, we get the desired polynomial φ. Indeed, it is clear that

the order of φ is r <I An — 3. To verify that φ satisfies condition (i) of

Definition 1.1, let J be a Jacobi field along a geodesic ϊ with \\7(t)\\ = 1,

such that <?(*), J(t)} = 0. Then (ΐ(t), J(t), J\t)) e G{M) for any t. Hence

we have

), J(t), J'(t))> , gr(f ω , J(ί), </'(*))) - o

and thus, by (i) of Lemma 1.4, we have the required relation

Next, as for condition (ii) in Definition 1.1, it is clear that such a poly-

nomial ψ satisfies ψ(g0) -,gs) = 0 on G(M). Since g0, ,gr_i are

algebraically independent over R, we have r ^ s. If r = s, then the

irreducibilities of φ, ψ imply that φ — ψ. The former part of our assertion

is proved.

It remains to study the set S of singular base points of φ. We shall

prove that its complement Sc is open and dense in M. From Lemma 1.4

we know that a point p of M is a singular base point of φ if and only if

-^-(go(X, Y,Z),..., gr(X, Y, Z)) = 0 for any (X, Y, Z) e GP(M).

Hence the complement Sc coincides with the image π(Σc) of the set

Σc = \(X, Y, Z) e G(M) ^(gQ{X, Y,Z), .., gr(X, Y, Z)) Φ o) by the pro-
3 ? r dώjection π:G(M)-+M. Since —?—- is a non-zero polynomial and φ is

minimal in the sense of condition (ii) of Definition 1.1, we observe that

the CΩ function -^-(g0, , gr): G(M)-+R is not a zero function. There-

fore the set Σc is open and dense in G(M), and hence its image π(Σc) is

also open and dense in M, as desired. Lemma 1.3 is proved.

From Lemma 1.4 we have also:

LEMMA 1.5. Assume that a connected C°° Riemann manifold M has a

minimal differential polynomial φ(ξQ, - , f r ) of order r. Let p e M, and

let GP(M), gk be as in Lemma 1.4. Denote by Σp the set of triples (X, Y, Z)

e GP(M) such that
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• J ^ - c * . < * Y , Z ) , - , gr(χ, Y, z » = o .

Then p is a singular base point of φ if and only if Σp = GP(M). If p is

not a singular base point of φ and if a triple (X, Y, Z) lies in Σp, then

there exists a sequence {(Xi9 Yt, Z<)} in GP{M) such that (Xi9 Yt, Z<) e Σp for

any i and (X, Y, Z) = l i m ^ (Xi9 Yi9 Z<).

Proof. The former part is an immediate consequence of the definition

of singular base point. To verify the latter part, we note that Σp is an

algebraic set in GP(M), by (ii) of Lemma 1.4. Hence if p is not a singular

base point of φ, then in particular Σp is closed and nowhere dense in

GP(M). This proves our assertion.

§ 2. The isometry theorems

We can now state the local isometry theorem.

PROPOSITION 2.1. Let M9 M be connected, CΩ Rίemann manifolds of

dimension n^2. Assume that M, M have the same minimal differential

polynomial φ. Let r be the order of φ. Let p e M9 pe M, and assume that

both p, p are not singular base points of φ. Assume that there exists a

linear isometry I: TP(M) —> TP(M) which preserves the curvatures R, R of

M, M and their first r — 2 covariant differentials, i.e. satisfies the relations

((FkR)(X, Y; Zι; Zk)V, W} - <(Ffcϊ?)(X, Ϋ; Zx\ Zk), V, W} ,

0 ^ k< r - 2,

for any X9Y9 >9Zke TP(M), where X = I(X), , Zk = I(Zk). Then there

exists a Cω isometry h of a neighborhood of p onto a neighborhood of p

such that h(p) — p, and the induced mapping (h*)p at p coincides with I.

By a standard argument on simply-connectedness (see, for example,

[5, Vol. I, p. 256]), we get immediately the following global result.

THEOREM 2.2. Let M, M be connected, simply connected, complete,

CΩ Riemann manifolds of dimension n^2. Assume that the minimal

differential polynomials of M, M coincide. Let p e M, pe M, and assume

that both p, p are not singular base points. If there exists a linear isometry

I: TP(M) -> TP(M) which preserves the curvatures of M, M and their first

r — 2 covariant differentials, where r is the order of the minimal differential
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h(p) = p and (h*)p = I.

Combining Lemma 1.3 and Theorem 2.2, we obtain

MAIN THEOREM. Under the hypotheses of Theorem 2.2, if there exists
a linear ίsometry I: TP(M) —• TP(M) which preserves the curvatures of M, M
and their first An — 5 covarίant differentials, then M and M are isometric
by an ίsometry h satisfying h(p) — p, (h*)p = I.

We can not expect that the isometry h in the above proposition or
theorems is of class CΩ. In § 4, however, we shall prove that under a
reasonable assumption, h is of class CΩ.

Proof of Proposition 2.1. Define a Cω diffeomorphism h of a neighbor-
hood U(p) of p onto a neighborhood U(p) of p by the formula

/ι(exp tX) = exp ίJ(X)

for xe TP(M)9 \\X\\ — 1 and for small \t\. To prove that h is an isometry,
let qe U(p), Ve Tq(M), and write q = expτX with Xe ΓP(M), ||X|| = 1,
τβR. We have to prove <F, F> = (h*V, h*V). To do this, we may

exp tX) = 0, because h* maps clearly the unitassume that ( V,

d
tangent vector

dt
exp tX to the unit tangent vector

dt
exp tI(X), and

maps the orthogonal complement of
dt

exp ίX to that of d_
dt

exp tI(X)

(cf. [4, p. 8], [5, Vol. I, p. 165]). Let J be the Jacobi field along exp tX
such that J(0) = 0, J(τ) = V and hence < J7(0), X} = 0. Recalling the fact
that a Jacobi field is the infinitesimal variation of a family of geodesies,
we observe that

9s exp +

3s

3s

Λ(exp ί(X + sJ'(0)))

exp ί(/(Z) + 8l(J'(0)))

where J is the Jacobi field along exp tI(X) such that J(0) = 0, J'(0) =
/(JXO)). We contend that < J(t), Jiff) = <J(ί), J(ί)>. Putting ί = r will
prove < V, V> = <λ*V;λ*V>.
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We consider the functions £(*) = \<J(t), J(ί)>, ξ(t) = i<J(ί), J(t)>. To

prove £ = I we note that £, f satisfy the same differential equation

and the same initial conditions

ξ w(o) = p)(0) , * = 0,l, . . . , r

(by (iv) of Lemma 1.4). Hence if the condition _M-(£(0), , f (r)(0)) =£ 0

is satisfied, then by uniqueness theorem of solutions of differential equ-

ations we conclude that ξ(t) — ξ(t) for small \t\, and hence ξ(t) = ξ(t)

for any t, because £, f are of class Cω.

In the case -^-(£(0), , f (π(0)) = 0 we proceed as follows. With the

notation in Lemma 1.5 we see that the condition —5— (ξ(0), , f (r)(0)) = 0

is equivalent to the condition (X, 0, J'(0)) e J^. Then by the latter part of

Lemma 1.5 we find a sequence {(Xi9 Yu Zt)} in GP(M) such that (Xu Yi9 Zt)

e Σp for any i and (X, 0, J'(0)) = lim? :_ (Xiy Yu Zt). It is clear that the

corresponding sequence {(/(XJ, /(Y*), /(Z,))} in GP(M) also satisfies

(I(Xi), I(Yi), I(ZJ) & Σp for any ί because of Lemma 1.4, (iv), and that

(J(X), 0, J'(0)) - lim,_ (/(XJ, 1(7,), I(Z,)). For each ί, we let J{ (resp. J,)

the Jacobi field along exp tXt with Jf(0) = Y,, c/,(0) = Zt (resp. along

exp tI(Xi) with J,(0) = /(YJ, Ĵ (O) = /(Z^)), and consider the two functions

ξ.(t) = i<J,(ί), J4(ί)>, f<(0 = ϊ(Ji(t\Ji{t)). Then for each i, by the same

reason as before we get £,(£) = f ^(ί). On the other and, by continuity of

solutions on initial conditions we observe that for each t9

J(t) = lim Jt(t), J(t) =

and hence

= Jim £«(*), £(ί)

Thus we conclude that £ (t) — ξ(f). Our proposition is proved.

§ 3. Homogeneous Riemann manifolds

The proof of Proposition 2.1 shows

PROPOSITION 3.1. Let M, M be connected, Cω Riemann manifolds of

dimension n^:2. Assume that M, M have minimal differential polynomials
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φ, φ and that pe M, pe M are not singular base points of φ, φ, respectively.

If φ and φ coincide, and if there exists a linear isometry I: TP(M) -> TP(M)

which preserves the curvatures of M, M and their first r — 2 covariant

differentials, where r is the order of φ = φ, then there exists a Cω isometry

h of a neighborhood of p onto a neighborhood of p such that h(p) = p

and (h*)p = I.

The proof of Lemma 1.3 also shows

LEMMA 3.2. // a connected Cω Riemann manifold M of dimension n^>2

has a minimal differential polynomial φ, then the set of singular base points

of φ is closed and nowhere dense in M.

The following proposition implies that locally homogeneous, connected

C°° Riemann manifolds have minimal differential polynomials.

PROPOSITION 3.3. Let M be a connected, C°° Riemann manifold of

dimension n^2. Assume that for any two points p, q of M, there exists

a linear isometry I: TV(M) —> Tq(M) which preserves the curvature and its

first Sn — 5 covariant differentials. Then M has a minimal differential

polynomial φ. The order of φ is equal to or less than Sn — 3, and φ has

no singular base point.

Proof. Fix pe M, and consider the CΩ function gk Gp(M) : GP(M) -> R as

in (ii) of Lemma 1.4. Since the dimension of GP(M) is 3n — 3, there

exists an integer r, 2 <: r <: Sn — 3, such that go\Gpuιn> ' ' > gr-\\avw are

algebraically independent (over R), but go\Gp(M), , gr\σput) are algebraically

dependent. Then we have an irreducible, monic polynomial φ e R[ξ0, , ξr]

such that deg ίr φ ̂ > 1 and φ(g0, , gr) = 0 on GP(M). We contend that

Φ(go, - - 9 gr) = 0 on G(M). This will prove that φ is the minimal differ-

ential polynomial of M. To prove our contention, let qe M. It suffices

to verify that φ(gQ, , gr) = 0 on Gq(M). This is an immediate con-

sequence of the existence of the isometry / : TP(M) -> Tq(M) preserving

the covariant differentials VkR, k — 0, , Sn — 5, of the curvature R, and

(iv) of Lemma 1.4. Clearly, there is no singular base point of φ. Propo-

sition 3.3 is proved.

Combining Propositions 3.1 and 3.2 and using simply-connectedness

as before, we have at once the following characterization of homogeneous

Riemann manifolds.
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THEOREM 3.4. Let M be a connected, simply connected, complete, Cω

Riemann manifold of dimension n^2. Assume that M is ίnfinίtesimally

homogeneous of order 3ra — 5 in the sense that for any p, q e M, there exists

a linear ίsometry I: TP(M) —> Tq(M) which preserves the curvature and its

first 3n — 5 covariant differentials. Then M is homogeneous, i.e. for any

p, q € M, there exists a Cω ίsometry h of M onto M itself such that h(p) = q.

Remark 3.5. We mention the difference between Singer [10] and ours.

Singer develops his argument on the bundle of orthonormal frames and

hence he can discuss the Lie algebra structure of Killing vector fields.

(Nomizu gives more algebraic treatment in [7].) On the other hand, we

consider G(M), the bundle of "Jacobi fields", in order to deal with the

minimal differential polynomial. We can not discuss directly the structure

of Killing vector fields, but we rather wish that we could characterize

homogeneous Riemann manifolds and determine the structures of Killing

vector fields by the knowledge of their minimal differential polynomials.

§ 4. Embeddability of algebraic Riemann manifolds

We shall prove the following "embeddability by general scalar curva-

tures" :

PROPOSITION 4.1. Let M be a compact Riemann manifold of class Cω.

Assume that M is nowhere homogeneous in the sense that for any distinct

points p, q of M, there exists no Cω isometry h, h(p) = q, of a neighborhood

of p onto a neighborhood of q. Then there exist Cω functions fu , fN,

with sufficiently large N, such that

( i ) each ft is a general scalar curvature, i.e. ft is expressed as a

linear combination with constant coefficients of contractions of the curvature

tensor and its covariant differentials up to some order, and

(ii) the mapping (f19 ,fN): M-+RN is an embedding (not isometric)

of M.

From this proposition we have at once

THEOREM 4.2. Let M be a compact Riemann manifold of class CΩ.

Assume that M, viewed as a Cω Riemann manifold, is nowhere homogeneous.

Then M admits a CΩ embedding in some vector space RN.

EXAMPLE 4.3. There exist CΩ Riemann manifolds without any non-

constant CΩ function. Indeed, let Tn

θ be an 7i-dimensional torus with the

https://doi.org/10.1017/S0027763000001550 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001550


ALGEBRAIC RIEMANN MANIFOLDS 99

CΩ structure and the CΩ Riemann metric such that the covering mapping

π: Rn -> Γi = Rn\Zn is of class CΩ and locally isometric, where Rn is

equipped with the Euclidean metric. The argument in Palais [8, p. 63]

shows that Tn

θ has no non-constant CΩ function. Furthermore, using this

fact, we know that every CΩ tensor field on Tn

θ is parallel and any CΩ

diffeomorphism of Tn

θ is affine.

As another consequence of Proposition 4.1 we obtain

COROLLARY 4.4. Let M, M be compact Riemann manifolds of class CΩ.

Assume that M, viewed as a Cω Riemann manifold, is nowhere homo-

geneous, and assume that there exists a Cω isometry h of M onto M. Then

h is of class CΩ, and hence M, M are CΩ isometric.

Proof. By Proposition 4.1 we note that every point of M has a

coordinate neighborhood with local coordinate system consisting of general

scalar curvatures. Since isometries preserve general scalar curvatures,

our corollary is now obvious.

We note that there exist CΩ Riemann manifolds M, M which are C°

and hence O isometric ([5, p. 169]), but are never CΩ diffeomorphic.

Indeed, let Ί\ be the one-dimensional CΩ Riemann manifold in Example

4.3, and let S1 - {(x,y)\x2 + y2 = (l/2τr)2} be the CΩ submanifold of the

Euclidean space J?2, with the induced metric. Clearly, T\ and S1 are iso-

metric, but not CΩ diffeomorphic.

In order to prove Proposition 4.1, it is convenient to introduce the

notion of natural functions on Riemann manifolds.

Let V be an Euclidean vector space of dimension n and let O(V) be

the group of orthogonal transformations of V. Fix a non-negative integer

m. We consider the real vector space

<̂  = ©(<g>fc+4V)*

the direct sum of the dual vector spaces (®fc+4 V)* of the (k + 4)-th tensor

powers of V. The group O(V) acts on M (on the right) as follows. Let

aeO(V). First, for Se(® s V)*, define Sαe((x)sV)* by the formula

Sα(Xχ <g) • (x) xs) = S(axx ® (x) axs).

Then, for R = (i?0, R» --, Rm) eί%, Rke (®fc+4V)*, we define Ra e M to be
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We denote by R[l%]oiV) the algebra of O(V)-invariant polynomial functions

φ:ί%-^R, i.e. polynomial functions φ such that φ(Ra) — φ(R) for all

Re@ and aeO(V).

Now, let M be a C°° Riemann manifold of dimension 72, and f:M-^R

a C°° function. We shall say that / is a natural function if there exists

an O(V)-invariant polynomial function φeR[&]0{V) such that

for all xeM, where R{

x

k\ k = 0, , m, denote the £-th covariant differ-

entials (PkR)x e (®u+JίTx(M))* of the Riemann curvature tensor R, and each

tangent space TX(M) is identified with V by a linear isometry. Clearly,

if M is a Riemann manifold of class Cω (resp. CΩ), then natural functions

on M are of class Cω (resp. CΩ). If M is locally homogeneous, then con-

stant functions are the only natural functions on M.

Next, let us recall some notions in Kobayashi-Nomizu [5, Vol. I]. Let

M be a C°° Riemann manifold of dimension n. Let π : O(M) —> M be the

bundle of orthonormal frames over M. For u e O(M) and an orthogonal

matrix a 6 Q(?i), the right action of O(n) on O(M) defines the orthonormal

frame Rau = wα. Each Aeo(7z), the Lie algebra of O(n), defines the

fundamental vector field A* and each ξ e Rn defines the standard horizontal

vector field B(ξ).

In our proof, for a tensor field S of type (0, s), we shall consider

instead of S itself the functions ga: O(M) -> J? defined by the formulas

ga(u) - S(Xσi, , Z J , M = (Jζ, , Xn) € O(M),

where a = (αr1? - - -, as) are s-tuples of positive integers <̂  n. It is easy

to verify that the functions ga satisfy the following formulas.

LEMMA 4.5.

( i ) R*ga - _ Σ . <• '<gή ..is for each a = (αj) e O(n\ where Rtga:

0(M)->R is defined by (R*ga)(u) = ga(ua).

(ii) A * A = ΣAl\giia%...a, + + E ^ A x . — x * . /or βαcΛ A = (AJ)

(iii) B ( f ) Λ - Σ f'ία i for each ξ = (f*) e 2Γ,

β;f(α) = (FS)(Xai, , Xαs; Z,), M = (Xu ., Xn).

In order to prove Proposition 4.1 we need another lemma.

LEMMA 4.6. Let M be a Cω Riemann manifold of dimension n, and
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R its curvature tensor, viewed as tensor field of type (0,4). For each

(k + 4)-tuple a = (au , ak+i) with au , ak+i e {1, , n}, we define

fa: O(M)->R by the formula

fa(u) = (PkR)(Xai, , Xai; Xa5; XakJ , u = (X1? . , Xn) e 0(M).

Assume that M is nowhere homogeneous as in Proposition 4.1. Let u e

0(M), and let D e TU(O(M)) be a non-zero tangent vector. Then, there

exists a non-negative integer m and an (m-\-4)-tuple β = (j3t, , βm+i) with

βu '' Ί βm+ie{h - -,n] such that the derivative D(fβ) at u of the function

fβ does not vanish.

Proof. The tangent vector D can be expressed as

D - A* + B(ξ)u

with some Aeo(n) and ξeRn, because the fundamental vector fields and

the standard horizontal vector fields give an absolute parallelism in 0{M).

Let ut be the integral curve for the vector field A* + B(ξ) such that

u = u0. Note that for each a = (al9 , ak+i) the function fa{ut) of t is of

class Cω and satisfies

for any Z ^ 1. Furthermore, using the formulas (ii), (iii) of Lemma 4.5, we

see that the function (A* + B{ξ))ι~ιfa is expressed as a linear combination

(with constant coefficients) of the functions fβ, where β are m-tuples

of integers in {1, , ή\, k + 4 <̂  m <̂  k + 4 + I — 1. We contend that

there exists a = (aϊ9 , αfc+0 with some k, and an integer I ^ 1 such that

(Ά-V /β(Mί) ^ o. This will show that D(fβ) Φ 0 for some β = ί^, , j3m),
\ dt /t=o
k + 4^m^k+l + 3.

To prove our contention, suppose that for any a — (au , α:fc+4) and

any integer Z :> 1, we had ( ) fa(ut) = 0. Then for any a and any ί,
\dί /ί=o

we would have /α(^«) = fa(u0), and hence by Theorem 7.2 of [5, Vol. I], for

each t we would have a Cω isometry of a neighborhood of π(w0) onto a

neighborhood of π(Wf). This contradicts the nowhere-homogeneity of M.

Lemma 4.6 is proved.

Proof of Proposition 4.1. We have to investigate more closely the

functions fa of Lemma 4.6. For a non-negative integer k, we denote by
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/fc+4 the set of all (^ + 4)-tuples a = (au , ak+i) such that α̂ , , ak+ie
{1, , n}. Let m be a non-negative integer. Put / = Uo^m^+4 and let
{Ra}aei be a family of Ra — R, indexed by I. To define a right action of
O(n) on the vector space Y[aeIRa, we introduce the following notation.
For a = (α*) e O(n) and or = (au , α:fc+4) € 7fc+4, β •= (ft, , ft+4) e 7ί+4, we
put

αj = 0 if k Φ I,

is — aπaH'' 'aβjc+* n ft — i .

For α = (α}) e O(n) and x = (xa)aeI e γ\aeI Ra, we define RΘax e ]]aeI Ra by
the formulas

(R®ax)a = Σaβ*Xβ-
βei

We can now prove our proposition. Consider the mapping

/ : O(M) -+Y\R«

defined by

f(u) = (fa(ύ))aei >

w h e r e fa(u) = (FkR)(Xai, , XakJ, u = (Xl9..., Xn) a s i n L e m m a 4.6. B y
Lemma 4.5, (i), we see that the mapping/: O(M)-> Π«e/^« is equivariant,
i.e. /o Ra = RΘa of for any a e O(ή). We contend that if m is large enough,
then / is an embedding. Indeed, using Lemma 4.6 and the compactness
of O(M) we see that / is an immersion for large m. Repeating a similar
argument and taking larger m we can make / injective. Our contention
is proved.

To get our desired embedding of M we use the action of O(ή) on
O(M) and the integrations on the orbits. To be more precise, let p e M
and consider the fibre π~\p) C O(M) over p. The image f{π~x{p))ciχ\aeI Ra

is a compact submanifold of codimension, say d. Let v be its tubular
neighborhood. By means of the action of O(n) we have a submersion
X:v^Rd such that

X(RΘax) = X(x)

for any x e v and any a e O(n). By the Weierstrass approximation theorem
we get a polynomial mapping

Φ: ftRa-+Rd

a6l
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such that Φ is enclose to X in a neighborhood of f(π~\p)). Integrating
each component of Φ over O(ή) in the usual way, we obtain a polynomial
mapping

having the following properties.
( i ) Φ is O(τι)-invariant, i.e. Φ o R^a = φ for any a e O(n),
(ii) Φ is a submersion in a neighborhood of f(π'\p)),

and hence
(iii) for any x£f(π~\p)), the normal space to f(π~λ(p)) at x is iso-

morphic to T$(x)(Rd) by the induced mapping Φ*. Thus the composite
mapping Φof:0(M)-+Rd gives a well-defined mapping

such that Foπ — Φ of. It is easy to see that F gives rise to an embedding
in a neighborhood of p, and that each component of F is a natural
function.

In this way, for each point pf of M we can construct a mapping
F': M -> Rd such that components of ί7' are natural functions, and F'
gives rise to an embedding in a neighborhood of p\ Hence, by the
compactness of M we get an immersion

F = (JP, F', •): Aί-^Λ* Θ -®Rd

(direct sum taken sufficiently many times).

By a similar argument as above we can make F injective further. On
the other hand, by the fundamental theorem of invariant theory for O(n)
we see that every natural function on M is expressed as a linear combi-
nation of contractions of R and its covariant differentials (see, for ex-
ample, [1], [2]). Therefore, F gives the desired embedding.
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