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Abstract
The Pósa–Seymour conjecture determines the minimum degree threshold for forcing the kth power of a
Hamilton cycle in a graph. After numerous partial results, Komlós, Sárközy, and Szemerédi proved the
conjecture for sufficiently large graphs. In this paper, we focus on the analogous problem for digraphs
and for oriented graphs. We asymptotically determine the minimum total degree threshold for forcing the
square of a Hamilton cycle in a digraph. We also give a conjecture on the corresponding threshold for
kth powers of a Hamilton cycle more generally. For oriented graphs, we provide a minimum semi-degree
condition that forces the kth power of a Hamilton cycle; although this minimum semi-degree condition
is not tight, it does provide the correct order of magnitude of the threshold. Turán-type problems for
oriented graphs are also discussed.

Keywords: Powers of Hamilton cycles; directed graphs; regularity lemma; blow-up lemma; absorbing; dependent random
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1. Introduction
A widely studied generalisation of the notion of a Hamilton cycle is that of the kth power of a
Hamilton cycle: the kth power of a Hamilton cycleC is obtained fromC by adding an edge between
every pair of vertices of distance at most k on C. We usually call the 2nd power of a Hamilton
cycle the square of a Hamilton cycle. As well as being natural objects in their own right, finding
the kth power of a Hamilton cycle in a graph G ensures that G contains other well-studied graph
structures. For example, an n-vertex square of a Hamilton cycle contains every possible collection
of vertex-disjoint paths and cycles on n vertices. Further, if k+ 1 divides n, then an n-vertex kth
power of a Hamilton cycle contains aKk+1-factor.1 Powers of Hamilton cycles have also been used
as the ‘building blocks’ for proving several bandwidth theorems; see, for example, [5, 11, 34].

A major branch of extremal graph theory concerns minimum degree conditions that force a
spanning structure in a graph. For example, Dirac’s theorem asserts that every graph G on n≥ 3
vertices and of minimum degree δ(G)≥ n/2 contains a Hamilton cycle. The following famous
conjecture provides a generalisation of Dirac’s theorem to powers of Hamilton cycles.

1AnH-factor in a graph G is a collection of vertex-disjoint copies of a graphH in G that together cover all the vertices in G.

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0963548325100230 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100230
https://orcid.org/0000-0002-7569-7952
https://orcid.org/0000-0001-9767-2863
mailto:a.c.treglown@bham.ac.uk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548325100230&domain=pdf
https://doi.org/10.1017/S0963548325100230


2 L. DeBiasio et al.

Conjecture 1.1 (Pósa and Seymour, see [12, 33]). Let G be a graph on n≥ k≥ 2 vertices. If δ(G)≥
k

k+1n then G contains the kth power of a Hamilton cycle.

Note that the minimum degree condition in Conjecture 1.1 cannot be lowered. Indeed, in
the case when k+ 1 divides n, consider the complete (k+ 1)-partite graph G in which all but
two classes have size n/(k+ 1), one class has size n/(k+ 1)+ 1, and the last class has size
n/(k+ 1)− 1. Then G does not contain a Kk+1-factor and δ(G)= kn/(k+ 1)− 1.

Whilst Pósa’s conjecture (the k= 2 case) was posed in the early 1960s, and Seymour’s conjec-
ture (for arbitrary k) in 1974, it was not until the 1990s that significant progress was made on
the problem. Indeed, after several partial results towards the Pósa–Seymour conjecture (see, e.g.
[14–18, 24, 26]), Komlós, Sárközy, and Szemerédi [27] applied Szemerédi’s regularity lemma to
prove Conjecture 1.1 for sufficiently large graphs. Subsequently, proofs of Pósa’s conjecture for
large graphs have been obtained that avoid the regularity lemma [7, 28].

1.1 Powers of Hamilton cycles in digraphs
It is also natural to study powers of Hamilton cycles in directed graphs. Recall that digraphs are
graphs such that every pair of vertices has at most two edges between them, at most one oriented in
each direction. Oriented graphs are orientations of simple graphs; so there is at most one directed
edge between any pair of vertices. A tournament is an oriented complete graph. Note that oriented
graphs are a subclass of digraphs. In this setting, the kth power of a Hamilton cycleC is the digraph
obtained from C by adding a directed edge from x to y if there is a directed path of length at most
k from x to y on C.

Given a digraph G and x ∈V(G), we write d+
G (x) (or simply d+(x)) for the outdegree of x in

G and d−
G (x) (or simply d−(x)) for the indegree of x in G. The minimum semi-degree δ0(G) of

G is the minimum of all the in- and outdegrees of the vertices in G. The minimum total degree
δ(G) is the minimum number of edges incident to a vertex in G. Ghouila-Houri [21] proved
that every strongly connected n-vertex digraph G with minimum total degree δ(G)≥ n contains
a Hamilton cycle. Note that there are n-vertex digraphs G with δ(G)= �3n/2� − 2 that are not
strongly connected (and thus do not contain a Hamilton cycle), so the strongly connected con-
dition in Ghouila-Houri’s theorem is necessary.2 An immediate consequence of Ghouila-Houri’s
theorem is that having minimum semi-degree δ0(G)≥ n/2 forces a Hamilton cycle, and this is
best possible.

The problem of determining the minimum semi-degree threshold that forces the kth power of
a Hamilton cycle in a digraph was raised in [35]. Indeed, as stated in [35], one would expect a
positive answer to the following question.

Question 1.2. Does every n-vertex digraph G with δ0(G)≥ k
k+1n contain the kth power of a

Hamilton cycle?

By replacing edges with ‘double edges’ in the extremal example of the Pósa–Seymour con-
jecture, one can see that, if true, the minimum semi-degree condition in Question 1.2 would be
tight. Question 1.2 does seem to be rather challenging, and we are unaware of any progress on the
problem.

An aim of this paper is to raise the analogous question for the minimum total degree threshold;
we propose the following conjecture.

2See Proposition 3.1 below for a generalised version of this observation.
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Conjecture 1.3. Let k ∈N and suppose n ∈N is sufficiently large. Write n= (k+ 3)q+ r where
q, r ∈Z and 0≤ r ≤ k+ 2. Every n-vertex digraph G with

δ(G)≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2
⌈(

1− 1
k+3

)
n
⌉

− 3 if r = k+ 2,

2
⌈(

1− 1
k+3

)
n
⌉

− 2 if r = k or r = k+ 1,

2
⌈(

1− 1
k+3

)
n
⌉

− 1 otherwise,

contains the kth power of a Hamilton cycle.

In Section 3, we provide an extremal example that shows, if true, the minimum total degree
condition in Conjecture 1.3 is best possible (see Proposition 3.1). Also note that Ghouila-Houri’s
theorem implies that Conjecture 1.3 holds for k= 1 since an n-vertex digraph G with δ(G)≥
� 3n

2 � − 1 is strongly connected. On this note, one may wonder if it is possible to significantly relax
the minimum total degree condition in Conjecture 1.3 at the expense of introducing some strong
connectivity condition (perhaps of a similar form to the conclusion of the statement of Lemma
5.14). We suspect that this is true and, moreover, further progress on Conjecture 1.3 is likely to
provide insight into precisely what form such a statement should take.

Our first result yields an asymptotic version of Conjecture 1.3 in the case of the square of a
Hamilton cycle (i.e. k= 2).

Theorem 1.4. Given any η > 0, there exists n0 ∈N so that for any n≥ n0, the following holds. If G
is an n-vertex digraph with

δ(G)≥
(
8
5

+ η

)
n,

then G contains the square of a Hamilton cycle.

In Section 8.1, we explain why we believe it challenging to generalise Theorem 1.4 to an asymp-
totic solution of Conjecture 1.3 for all k ∈N. In particular, whilst some of our auxiliary results
for Theorem 1.4 apply to this more general question, the main stumbling block is establishing a
suitable connecting lemma.

1.2 Powers of Hamilton cycles in oriented graphs
There has also been interest in powers of Hamilton cycles in oriented graphs. In this setting, the
emphasis has been on the study of minimum semi-degree results rather than minimum total
degree results; this is natural since if G is an n-vertex transitive tournament, then δ(G)= n− 1
and G does not contain a (power of a) Hamilton cycle.

Answering a question of Thomassen from 1979, Keevash, Kühn, and Osthus [22] proved that
every sufficiently large n-vertex oriented graph with δ0(G)≥ (3n− 4)/8 contains a Hamilton
cycle. Moreover, the minimum semi-degree condition here cannot be lowered.

The second goal of this paper is to study the minimum semi-degree threshold for forcing the
kth power of a Hamilton cycle in an oriented graph.

WhenG is a tournament, thenmuch is known. As discussed in [10], every n-vertex tournament
G with δ0(G)≥ (n− 2)/4 contains a Hamilton cycle, and this degree condition is best possible.
Bollobás and Häggkvist [4] proved that actually one only needs to boost the minimum semi-
degree slightly to force the kth power of a Hamilton cycle: that is, for a fixed k ∈N, δ0(G)≥ (1+
o(1))n/4 ensures the kth power of a Hamilton cycle in an n-vertex tournament G. This result has
recently been significantly refined by Draganić, Munhá Correia, and Sudakov [10], who proved
that one can take δ0(G)≥ n/4+ cn1−1/�k/2	 here, for some constant c= c(k).
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Draganić, Dross, Fox, Girão, Havet, Korándi, Lochet, Munhá Correia, Scott, and Sudakov [9]
proved that every tournament contains the kth power of path of length at least n

24k+6k which is close
to best possible since there are tournaments where the longest kth power of path has length less
than k(k+1)n

2k . They also proved an exact result for square paths; that is, every tournament contains
a square path of length at least �2n/3	 − 1, and this is best possible.

For oriented graphs that are not tournaments, essentially nothing is known about kth powers
of paths and cycles (whether it be short cycles or Hamilton cycles). Until now, it has not even
been proven that a minimum semi-degree of δ0(G)≥ (1− ε)n/2 suffices to force the square of
a Hamilton cycle (for some tiny ε > 0). The next theorem gives such a result. In fact, the result
holds for kth powers of Hamilton cycles more generally, and actually determines the ‘order of
magnitude’ of the function between ε and k.

Theorem 1.5. For any k≥ 2, there exists an n0 ∈N such that the following holds for all n≥ n0.
Suppose G is an n-vertex oriented graph with

δ0(G)≥
(
1
2

− 1
106000k

)
n.

Then G contains the kth power of a Hamilton cycle. Furthermore, for every k≥ 15 and sufficiently
large n ∈N, there is an n-vertex oriented graph Rk with δ0(Rk)> ( 12 − 4

2k/5 )n that does not contain
the kth power of a Hamilton cycle.

The furthermore part of Theorem 1.5 is proven via Proposition 3.3 in Section 3.2. We suspect
that it may be well out of reach to determine (even asymptotically) the minimum semi-degree
threshold for forcing the kth power of a Hamilton cycle. In fact, as indicated above, it has been
a challenge to find the ‘right’ candidate for an extremal example even for the k= 2 case of the
problem. Treglown [35] provided a construction that shows one requires a minimum semi-degree
of at least δ0(G)≥ 5n/12. Later, DeBiasio, cf. [10, Section 1], used a slightly unbalanced blow-
up of the Paley tournament on seven vertices to show that δ0(G)≥ 3n/7− 1 is necessary. We
give another example of an oriented graph with large minimum semi-degree and no square of a
Hamilton cycle, beating all previous known constructions.

Proposition 1.6. Given any n ∈ 11N, there is an n-vertex oriented graph G2 with δ(G2)≥
5n/11− 2 that does not contain the square of a Hamilton cycle.

The paper is organised as follows. In the next section, we give an overview of the proofs
of Theorems 1.4 and 1.5. In particular, each of these proofs relies on its own absorbing, con-
necting, and almost covering lemmas. In Sections 5 and 6, we prove these auxiliary lemmas for
Theorems 1.4 and 1.5, respectively. Prior to this, in Section 3, we provide the extremal example
for Conjecture 1.3 as well as the constructions Rk and G2 from Theorem 1.5 and Proposition 1.6.
In Section 4, we introduce some useful tools including Szemerédi’s regularity lemma. The proofs
of Theorems 1.4 and 1.5 are presented in Section 7. Finally, we give some concluding remarks and
results in Section 8. In particular, in Section 8.2, we discuss the Turán problem for oriented graphs.

Notation. Throughout, N denotes the set of positive integers (i.e. it does not contain 0).
Let G be a digraph. We define |G| := |V(G)| and e(G) := |E(G)|. Given x ∈V(G), we write

N+
G (x) for the out-neighbourhood of x in G and write N−

G (x) for the in-neighbourhood of x
in G. Thus, |N+

G (x)| = d+
G (x) and |N−

G (x)| = d−
G (x). Given Y ⊆V(G) we define N+

G (x, Y) :=
N+
G (x)∩ Y and N−

G (x, Y) :=N−
G (x)∩ Y . Set d+

G (x, Y) := |N+
G (x, Y)| and d−

G (x, Y) := |N−
G (x, Y)|,

and let dG(x, Y) := d+
G (x, Y)+ d−

G (x, Y). We define dG(x) := dG(x,V(G)).
Given two vertices x and y of G, we write xy for the edge directed from x to y. Given subsets

A, B⊆V(G) (not-necessarily disjoint), let EG(A, B) (or simply E(A, B)) be the set of all xy ∈ E(G)
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such that x ∈A and y ∈ B. Let eG(A, B) := |E(A, B)|; we omit the subscriptG here when the digraph
G is clear from the context. Note that eG(A, B)=∑

v∈A d+
G (v, B).

If A, B⊆V(G) are disjoint then we define G[A, B] to be the subdigraph of G where
V(G[A, B])=A∪ B and E(G[A∪ B])= EG(A, B). Given X ⊆V(G), we write G[X] for the sub-
digraph of G induced by X. We write G\X for the subdigraph of G induced by V(G)\X.

We write Ck for the directed cycle on k vertices. Given a digraph G, the kth power of G is the
digraph obtained from G as follows: for each distinct x, y ∈V(G), add the directed edge xy if there
is a directed path of length at most k from x to y in G. For brevity we call the kth power of a
directed path a k-path and the kth power of a directed cycle a k-cycle. We write Ck

� to denote the
k-cycle on � vertices.

Given a (di)graph G and t ∈N, we let G(t) denote the t-blow-up of G. More precisely,
V(G(t)) := {vj : v ∈V(G) and j ∈ [t]} and E(G(t)) := {vmw� : vw ∈ E(G) andm, � ∈ [t]}.

We say that an oriented graph G is semi-regular if for all v ∈V(G), |d+
G (v)− d−

G (v)| ≤ 1.
Given (di)graphs G and H, an H-tiling in G is a collection of vertex-disjoint copies of H in G.

An H-factor in G is a collection of vertex-disjoint copies of H in G that together cover V(G).
Throughout the paper, we omit all floor and ceiling signs whenever these are not crucial. The

constants in the hierarchies used to state our results are chosen from right to left. For example, if
we claim that a result holds whenever 0< a
 b
 c≤ 1, then there are non-decreasing functions
f : (0, 1]→ (0, 1] and g : (0, 1]→ (0, 1] such that the result holds for all 0< a, b, c≤ 1 with b≤ f (c)
and a≤ g(b). Note that a
 b implies that we may assume in the proof that, for example, a< b or
a< b2.

2. Overview of the proofs of Theorems 1.4 and 1.5
The proofs of both Theorems 1.4 and 1.5 are similar and follow the same high-level strategy,
though the details in each case are different. In particular, for both, we use the connecting–
absorbing method, a technique first developed by Rödl, Ruciński, and Szemerédi [32]. Suppose
one wishes to embed the kth power of a Hamilton cycle in an n-vertex digraph G, and let 0< ε 

η 
 1. Then, roughly speaking, an application of this method consists of three main steps:

• Step 1, the absorbing k-path PA. Find a k-path PA in G such that |PA| ≤ ηn. The k-path
PA has the property that given any set L⊆V(G)\V(PA) such that |L| ≤ 2εn, G contains a
k-path P with vertex set V(PA)∪ L, where the first k vertices on P are the same as the first
k vertices on PA; similarly, the last k vertices on P are the same as the last k vertices on PA.

• Step 2, the reservoir set R. Let G′ :=G\V(PA). Find a set R⊆V(G′) such that |R| ≤ εn
and so that R has the following property: given arbitrary disjoint ordered k-sets X, Y ⊆
V(G), there are many short k-paths P in G so that the first k vertices on P are the elements
of X, ordered as in X; the last k vertices on P are the elements of Y , ordered as in Y ; and
V(P)\(X ∪ Y)⊆R.

• Step 3, almost covering with k-paths. Let G′′ :=G′\R. Find a collection P of a bounded
number of vertex-disjoint k-paths inG′′ that together cover all but at most εn of the vertices
in G′′.

These three steps then yield the kth power of a Hamilton cycle in G. Indeed, one can use the
reservoir setR to connect together all of the k-paths in P and PA into a single k-cycle Ck in G that
covers all but at most εn of the vertices from G′′ and some of the vertices fromR. In total at most
2εn vertices in G are not covered by Ck; these can then be absorbed by PA to obtain the kth power
of a Hamilton cycle in G.

As mentioned earlier, the proofs of Theorems 1.4 and 1.5 each rely on their own absorbing,
connecting and almost covering lemmas. The almost covering lemmas are used to complete Step 3.
Roughly speaking, the connecting lemmas ensure that for any disjoint ordered k-sets X, Y ⊆V(G)
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we can findmany short k-paths P inG so that the first k vertices on P are the elements ofX, ordered
as in X, and the last k vertices on P are the elements of Y , ordered as in Y . These connecting
lemmas are then used to construct the reservoir in Step 2.

In fact, the connecting lemmas are also used in Step 1. Indeed, the absorbing lemmas establish
that for every vertex v ∈V(G), there are many short k-paths Pv inGwith the property that one can
insert v into the middle of Pv so that the resulting digraph is still a k-path. By randomly sampling
amongst all such k-paths Pv (for all v ∈V(G)), and then joining the selected k-paths up via the
connecting lemma, one can obtain the absorbing k-path PA from Step 1.

In the case of Theorem 1.5, things are a little more subtle than we have indicated above. Indeed,
we cannot actually achieve Step 2 for arbitrary ordered k-sets X, Y ⊆V(G) since there may be a
choice of X and Y for which the vertices in X do not even have a single common out-neighbour
(or the vertices in Y do not have a common in-neighbour). Thus, we need to argue more carefully
to ensure we only ever connect between ‘well-behaved’ X, Y ⊆V(G).

By applying two results from [8], the proofs of the absorbing and almost covering lemmas
for Theorem 1.4 are not too difficult. The main work for this theorem is proving the connect-
ing lemma. The proof of Theorem 1.5 is a little more involved. In the proofs of the absorbing
and connecting lemmas, we make use of the method of dependent random choice. The proof of
the almost covering lemma is quite non-standard, and we apply the aforementioned result of
Draganić, Munhá Correia, and Sudakov [10] on powers of Hamilton cycles in tournaments of
large minimum semi-degree.

3. The extremal examples
3.1 The extremal example for Conjecture 1.3
The following provides an extremal construction G for Conjecture 1.3.

Proposition 3.1. Let k, q ∈N and r ∈Z such that n= (k+ 3)q+ r where 0≤ r ≤ k+ 2. There
exists an n-vertex digraph G with

δ(G)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2
⌈(

1− 1
k+3

)
n
⌉

− 4 if r = k+ 2,

2
⌈(

1− 1
k+3

)
n
⌉

− 3 if r = k or r = k+ 1,

2
⌈(

1− 1
k+3

)
n
⌉

− 2 otherwise,

that does not contain the kth power of a Hamilton cycle.

Proof. Let k, q ∈N and r ∈Z such that n= (k+ 3)q+ r, where 0≤ r ≤ k+ 2. Define integers
r1, . . . , rk+1 as equally as possible so that 2≥ r1 ≥ r2 ≥ . . . ≥ rk+1 ≥ 0 and r =∑k+1

i=1 ri.
Let G be the n-vertex digraph consisting of k− 1 independent sets V1, . . . ,Vk−1 and two other

classes Vk and Vk+1 so that there are all possible double edges going out of the k− 1 independent
sets; all possible double edges inside of Vk and inside of Vk+1; all possible directed edges from Vk
to Vk+1 (but none from Vk+1 to Vk). Moreover, we choose the classes so that |Vi| = q+ ri for all
i ∈ [k− 1], and |Vi| = 2q+ ri for all i ∈ {k, k+ 1}.

Let v ∈Vi. If i ∈ [k− 1], then dG(v)= 2((k+ 2)q+ r)− 2ri = 2�(1− 1
k+3 )n	 − 2ri. If i ∈

{k, k+ 1}, then dG(v)= 2((k+ 2)q+ r)− rj − 2= 2�(1− 1
k+3 )n	 − rj − 2 where j∈{k, k+ 1}\{i}.

Therefore, δ(G) is as in the statement of the proposition.
Suppose for a contradiction that there is a kth power of a Hamilton cycle C in G. Notice that

every transitive tournament on k+ 1 vertices in G contains at least two vertices from Vk ∪Vk+1.
By following the same ordering of vertices in Vk ∪Vk+1 appearing in C, we deduce that C[Vk ∪
Vk+1], and therefore G[Vk ∪Vk+1], contains a Hamilton cycle. However, G[Vk ∪Vk+1] is not
strongly connected, a contradiction. �
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V1 V2

V3

Figure 1. The oriented graph G2 does not contain a square of Hamilton cycle.

3.2 The extremal example for Theorem 1.5
Let �Tk be the transitive tournament on k vertices and let �r(k) be the smallest n ∈N such that
every n-vertex tournament contains a copy of �Tk. Let �tr(k) be the smallest n ∈ kN such that every
n-vertex tournament has a �Tk-factor.

It is known that �r(3)= 4, �r(4)= 8, �r(5)= 14, �r(6)= 28, and �√2k−1� < �r(k)≤ 2k−1. Also
�tr(3)= 6, �tr(4)= 16, and �r(k)≤ �tr(k)< 4k (see [6, Section 5] for a comment about an improve-
ment to this upper bound). We highlight that in all examples where �r(k+ 1) is known, the lower
bound example is a regular tournament. In particular, this is used in the proof of the following
result.

Proposition 3.2. Let 2≤ k≤ 5. Given any n ∈N divisible by 3�r(k+ 1)− 1, there exists an n-vertex
oriented graph Gk with

δ0(Gk)≥
(
1− 1

3�r(k+ 1)− 1

)
n
2

− 2

that does not contain the kth power of a Hamilton cycle.

Proof. Set m :=�r(k+ 1)− 1 and let n= (3m+ 2)t for some t ∈N. Consider the n-vertex ori-
ented graph Gk defined as follows (see also Figure 1 for k= 2). The vertex set of Gk consists
of sets V1,V2,V3 where either (i) |V1| =mt and |V2| = |V3| = (m+ 1)t or (ii) |V1| =mt − 1,
|V2| = (m+ 1)t + 1 and |V3| = (m+ 1)t. We choose the sizes of theVi such that |V1| is not divisi-
ble by k. Add all edges directed fromV1 toV2, fromV2 toV3, and fromV3 toV1. BothGk[V2] and
Gk[V3] are semi-regular tournaments. Finally, let Gk[V1] be the t-blow-up of the regular tourna-
ment on m vertices that contains no copy of �Tk+1 (where one vertex is deleted if |V1| =mt − 1).
It is easy to check that the desired minimum semi-degree condition holds.

Consider any kth power of a cycle C in Gk. Notice that any copy of �Tk+1 in Gk must contain
vertices from at most two of the classes V1, V2, and V3. This implies that every time C enters V1
(from V3), it must traverse at least k vertices before leaving V1 (and entering V2). In fact, since
Gk[V1] does not contain a copy of �Tk+1, precisely k vertices in V1 are covered in each such step.
Thus, the number of vertices in V1 covered by C is a multiple of k. Therefore, C cannot contain all
of V1 since |V1| is not divisible by k. �

Note that Proposition 3.2 immediately implies Proposition 1.6.
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Next, we prove the following general result, which immediately yields the furthermore part of
Theorem 1.5. We will make use of the probabilistic construction of Erdős and Moser [13] (which
proves that �r(k+ 1)> �√2k�), combined with an additional calculation to show that a random
tournament on T vertices has minimum semi-degree very close to T/2.

Proposition 3.3. For every k≥ 15 and sufficiently large n ∈N, there is an n-vertex oriented graph
Rk with

δ0(Rk)>
(
1
2

− 4
2k/5

)
n

that does not contain a copy of �Tk+1 and thus a kth power of a Hamilton cycle.

Proof. Let k≥ 15 and set t := �2(k−5)/2	. We first shall prove that there is a (randomly generated)
t-vertex tournament T(k) with δ0(T(k))≥ ( 12 − 3/2

t2/5 − 1
2t
)
t that is �Tk+1-free. Then we will get the

desired oriented graph by taking a blow-up of such a tournament.
Consider a random tournament T on t vertices; that is, the orientation of each edge is selected

uniformly at random, independently of all other edges. By the union bound,

P(T contains a copy of �Tk+1)≤
( t
k+1
)
(k+ 1)!

2(
k+1
2 )

<
tk+1

2k(k+1)/2 . (3.1)

By Chernoff’s bound,3 for each v ∈V(T), we have

P

(
d±
T (v)+

1
2

≤ t
2

− (3/2)t3/5 =
(
1
2

− 3/2
t2/5

)
t
)

≤ exp
(−(3/2)2t6/5

t

)
= exp

(− (3/2)2t1/5
)
.

Then, by the union bound, we have

P

(
δ0(T)+ 1

2
≤
(1
2

− 3/2
t2/5

)
t
)

≤ 2t exp
(− (3/2)2t1/5

)
. (3.2)

Thus, the probability that one of the events (3.1) or (3.2) holds is at most

tk+1

2k(k+1)/2 + 2t exp
(− (3/2)2t1/5

)
< 1,

where the inequality holds for all k≥ 15 (in fact, one can see that the inequality holds for all k≥ 2,
but we are assuming k≥ 15 in this context). Hence, there is a tournament T(k) on t vertices with
δ0(T(k))>

( 1
2 − 3/2

t2/5 − 1
2t
)
t not containing a copy of �Tk+1.

Finally, Rk is obtained by blowing up each vertex of T(k) into a set of size �n
t � or �n

t 	 so that it
contains n vertices in total. Thus, Rk does not contain a copy of �Tk+1 and

δ0(Rk)>
(
1
2

− 3/2
t2/5

− 1
2t

)
t ·
⌊n
t

⌋
≥
(
1
2

− 3/2
t2/5

− 1
2t

)
(n− (t − 1))≥

(
1
2

− 2
t2/5

)
n

≥
(
1
2

− 4
2k/5

)
n,

as desired (where we used the fact that n is sufficiently large in the second to last inequality and
the fact that t = �2(k−5)/2	 ≥ 2(k−5)/2 in the last inequality). �

While Proposition 3.3 is sufficient for our purposes, one can adapt the proof of Proposition 3.2
to obtain an oriented graph R′

k which does not contain the kth power of a Hamilton cycle and
has a higher minimum semi-degree. Indeed, one can adapt the construction in Proposition 3.2

3If X has a binomial distribution, then P(X ≤E(X)− s)≤ e−s2/(2E(X)).
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so that now V1 is spanned by the blow-up of a random tournament. However, to obtain a
better understanding of the minimum semi-degree threshold, one would likely need a deeper
understanding of the function �r(k).

4. The regularity lemma and related results
The diregularity lemma is a version of the regularity lemma for digraphs proved by Alon and
Shapira [2]. In this section we discuss the diregularity lemma and other related results that are
needed for our proofs.

We first require some notation. Let G be a digraph and A, B⊆V(G) be disjoint. The density
of (A, B) is defined by dG(A, B) := eG(A,B)|A||B| . We will write d(A, B) if this is unambiguous. Note that
d(A, B) is not necessarily equal to d(B,A). Given ε > 0, we say that (A, B) is ε-regular (in G) if for
all subsets A′ ⊆A and B′ ⊆ B with |A′| > ε|A| and |B′| > ε|B|, we have

|dG(A, B)− dG(A′, B′)| < ε.
Finally, if G=G[A, B], we write G= (A, B).

We now state the degree form of the diregularity lemma.

Lemma 4.1 (Diregularity lemma [2]). Given any ε ∈ (0, 1) and t0 ∈N, there exist T = T(ε, t0) ∈N

and n0 = n0(ε, t0) ∈N such that the following holds for all n≥ n0. Let G be an n-vertex digraph and
let d ∈ [0, 1]. Then, there is a partition {V0,V1, . . . ,Vt} of V(G) with t0 < t < T and a spanning
subdigraph G′ of G such that

(a) |V0| ≤ εn;
(b) |Vi| = |V1| for every i ∈ [t];
(c) for every v ∈V(G), d+

G′(v)> d+
G (v)− (d + ε)n and d−

G′(v)> d−
G (v)− (d + ε)n;

(d) e(G′[Vi])= 0 for every i ∈ [t];
(e) for every distinct i, j ∈ [t], the pair (Vi,Vj) is ε-regular in G′ with density either 0 or at least d.

We call V1, . . . ,Vk clusters, V0 the exceptional set and the vertices in V0 exceptional vertices.
We refer to G0 as the pure digraph. The last condition of Lemma 4.1 says that all pairs of clusters
are ε-regular in both directions, but possibly with different densities. The reduced digraph R of G
with parameters ε, d, and t0 is the digraph defined by

V(R) := {V1, . . . ,Vt} and E(R) := {ViVj : dG′(Vi,Vj)≥ d}.
The following well-known result states that the reduced digraph of G essentially ‘inherits’ any

lower bound on the minimum total degree of G.

Proposition 4.2. Let 0< ε ≤ d/2 and let G be an n-vertex digraph such that δ(G)≥ αn for some
α > 0. Suppose we have applied Lemma 4.1 to G to obtain the reduced digraph R of G with
parameters ε, d, and t0. Then δ(R)≥ (α − 4d)|R|.

Note that when G is an oriented graph, its reduced digraph R is not necessarily oriented (i.e.
it may contain double edges). However, if for every double edge in R we retain precisely one
direction (with suitable probability), we obtain an oriented subgraph Ro of R that, with positive
probability, still inherits some of the properties of G. This argument was formalised by Kelly,
Kühn, and Osthus [23, Lemma 3.2], and in particular they proved the following result.

Lemma 4.3 ([23, Lemma 3.2]). For every ε ∈ (0, 1), if t0, n ∈N such that 1/n
 1/t0 
 ε, then the
following holds. Let d, α ∈ [0, 1] and let G be an n-vertex oriented graph such that δ0(G)≥ αn. Apply
Lemma 4.1 to G to obtain the reduced digraph R of G with parameters ε, d, and t0. Then there is a
spanning oriented subgraph Ro of R such that δ0(Ro)≥ (α − (3ε + d))|Ro|.
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Let G be a graph and A, B⊆V(G) be disjoint. We define the density dG(A, B) analogously to
before. As before, given ε > 0, we say that (A, B) is ε-regular in G if for all subsets A′ ⊆A and
B′ ⊆ B with |A′| > ε|A| and |B′| > ε|B| we have

|dG(A, B)− dG(A′, B′)| < ε.

Given ε, d > 0, we say that (A, B) is (ε, d)-superregular in G if (A, B) is ε-regular in G and,
additionally, dG(a)> d|B| for all a ∈A and dG(b)> d|A| for all b ∈ B.

The next two propositions are well-known and easy to prove properties of regular pairs.

Proposition 4.4. Suppose that 0< ε < ξ ≤ 1/2. Let G be a graph and let (A, B) be ε-regular in G
with density d. If A′ ⊆A and B′ ⊆ B with |A′| ≥ ξ |A| and |B′| ≥ ξ |B|, then (A′, B′) is ε/ξ -regular
in G with density at least d − ε.

Proposition 4.5. Given 0< ε < d ≤ 1, let G be a graph and let (A, B) be ε-regular in G with density
d. There are at most ε|A| vertices v ∈A such that dG(v, B)≤ (d − ε)|B|, and at most ε|B| vertices
w ∈ B such that dG(w,A)≤ (d − ε)|A|.

We will use the following specific version of the blow-up lemma of Komlós, Sárközy, and
Szemerédi [25].

Lemma 4.6 (Blow-up lemma [25]). Let 1/m
 ε 
 1/�, d, 1/�. Let V1, . . . ,V� be pairwise dis-
joint sets of vertices, each of size m. Let R be a graph with V(R)= {V1, . . . ,V�}. Let G be a graph on
V1 ∪ . . . ∪V� such that (Vi,Vj) is (ε, d)-superregular in G for each ViVj ∈ E(R). Let W1, . . . ,W�

denote the vertex classes of the m-blow-up R(m) of R that correspond to V1, . . . ,V�, respectively. If
H is a subgraph of R(m) so that �(H)≤ �, then G contains a copy of H such that, for each i ∈ [�],
the vertices in V(H)∩Wi are embedded into Vi in G.

Remark 4.7. Note that, although Lemma 4.6 is stated for graphs, it is also applicable when R,
G, and H are oriented graphs such that all edges in G[Vi ∪Vj] are oriented from Vi to Vj when
ViVj ∈ E(R). Indeed, in this case, one can ‘ignore’ the orientations of the edges and then apply
Lemma 4.6 to the underlying graphs of R, G, and H.

For example, suppose that R is the kth power of the directed cycle V1 . . .V�V1 where � ≥ 2k+
1. Then R is an oriented graph. Thus, in the oriented graph R(m), one can find the kth power
of a Hamilton cycle by ‘winding around’ the directed cycle V1 . . .V�V1. Define V�+1 :=V1. Let
G be the oriented graph on V1 ∪ . . . ∪V� such that, for all i ∈ [�], G[Vi,Vi+1] induces an (ε, d)-
superregular pair (Vi,Vi+1) in the underlying graph of G. (To emphasise, importantly all edges
between Vi and Vi+1 in G are oriented from Vi to Vi+1.) Then Lemma 4.6 tells us that G contains
the kth power of a Hamilton cycle. Note that this argument relies on R being an oriented graph
(so does not work if � ≤ 2k).

We finish this section with the following embedding result that allows us to find long k-cycles
(and therefore k-paths) in a digraph G if its reduced digraph contains a k-cycle.

Lemma 4.8. Let k, �, t0, n ∈N and η, d, ε > 0 be such that k+ 1≤ � and 1/n
 1/t0 
 ε 

d, η, 1/�, 1/k. Let G be an n-vertex digraph and suppose R is the reduced digraph of G obtained
by an application of Lemma 4.1 with parameters ε, d, and t0. If V1 . . .V�V1 is a copy of the k-cycle
Ck

� in R, then there is a k-cycle in G[V1 ∪ . . . ∪V�] covering all but at most η�|V1| vertices.
Recall that if � ≥ 2k+ 1, then Ck

� is an oriented graph. In this case of Lemma 4.8, one can
apply Lemma 4.6 á la Remark 4.7 (with Ck

� playing the role of R). However, when k+ 1≤ � ≤ 2k,
Ck

� is not an oriented graph. Thus, to apply Lemma 4.6, we first divide each cluster into two so
that the corresponding reduced digraph contains a copy of Ck

2�, which is an oriented graph since
2� ≥ 2k+ 1.
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Proof of Lemma 4.8. Let m be the largest integer such that 2m≤ |V1|; so 1/m
 ε. For
each i ∈ [�], let Wi,W�+i be disjoint subsets of Vi each of size m. Define the digraph Ho :=⋃

i∈[2�], j∈[k] G[Wi,Wi+j], where here the subindices are understood modulo 2�. In fact, notice
that crucially Ho is an oriented graph, and one can view Ho as being obtained from a copy
W1 . . .W2�W1 of Ck

2� by replacing each directed edge WiWi+j in Ck
2� with the oriented graph

G[Wi,Wi+j].
Let H be the underlying graph of Ho. Consider i ∈ [2�] and j ∈ [k]. By Proposition 4.4,

(Wi,Wi+j) is 3ε-regular inH with density at least d − ε. By Proposition 4.5, there are at most 3εm
vertices v in each of Wi and Wi+j such that dH[Wi,Wi+j](v)≤ (d − 4ε)m. Let d′ := d − 6(k+ 1)ε
and m′ := (1− 6kε)m≥m/2. There exists W′

i ⊆Wi of size m′ for each i ∈ [2�] such that, for
each i ∈ [2�] and j ∈ [k], (W′

i ,W′
i+j) is (6ε, d′)-superregular in H. Indeed, this can be achieved

by removing the 3εm vertices in each of Wi and Wi+j of the smallest degree in H[Wi,Wi+j], for
each i ∈ [2�] and j ∈ [k]. In particular, we have δ(H[W′

i ,W′
i+j])≥ (d − 4ε)m− 2k · 3εm> d′m′.

Further, by Proposition 4.4, (W′
i ,W′

i+j) is 6ε-regular in H.
Let H′ :=H[W′

1 ∪ . . . ∪W′
2�]. Let R′ be the graph on {W′

1, . . . ,W
′
2�} with E(R′)=

{W′
iW′

i+j : i ∈ [2�] and j ∈ [k]}; so R′ is an (undirected) copy of Ck
2�. Let C

∗ be a copy of Ck
2�m′ in

R′(m′) obtained by ‘winding around’ R′. We now apply Lemma 4.6 with (6ε, d′, 2�, 2k,H′, R′, C∗)
playing the role of (ε, d, �,�,G, R,H) to obtain a copy of Ck

2�m′ in H. This corresponds to an
(oriented) copy of Ck

2�m′ in G[V1 ∪ . . . ∪V�] covering all but at most (1+ 12kεm)� ≤ η�|V1|
vertices. �

5. Directed graphs: almost covering, absorbing, and connecting lemmas for
Theorem 1.4

As mentioned in Section 2, the proof of Theorem 1.4 relies on three main auxiliary results: an
almost covering lemma, an absorbing lemma, and a connecting lemma. In this section, we prove
these three results; see Lemmas 5.2, 5.5, and 5.14.

Recall that Theorem 1.4 corresponds to the k= 2 case of Conjecture 1.3. Our almost cover-
ing lemma and absorbing lemma actually hold for all k≥ 2. In fact, the almost covering lemma
requires a weaker minimum total degree condition than that in Conjecture 1.3. However, our con-
necting lemma only deals with the k= 2 case. Consequently, the only ingredient missing for a full
proof of the asymptotic version of Conjecture 1.3 is a connecting lemma for k≥ 3. We suspect
though that obtaining such a connecting lemma will be rather challenging; we discuss this further
in Section 8.

5.1 Almost covering lemma
Given k≥ 3, let Kk denote the digraph obtained from the complete digraph on k vertices by
deleting a matching on

⌊ k
2
⌋
edges. In particular, note that Ck

k+2 ⊆Kk+2, but Ck
k+1 �⊆Kk+1.4

The following result was proven in [8, Theorem 6.1].

Theorem 5.1 (Czygrinow, DeBiasio, Molla and Treglown [8]). Given any k≥ 2 and η > 0, there
exists an n0 ∈N such that for every n≥ n0, the following holds. If G is an n-vertex digraph with

δ(G)≥ 2
(
1− 1

k
+ η

)
n,

then G contains a Kk-tiling covering all but at most ηn vertices.

4Note that Ck
k+1 is a complete digraph, whereas Ck

k+2 is obtained from a complete digraph by removing the edges of a
Hamilton cycle.
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We use Theorem 5.1 to prove the almost covering lemma.

Lemma 5.2 (Almost covering lemma for total degree in digraphs). Given any integer k≥ 2 and
η > 0, there exist n0, T ∈N such that for any n≥ n0, the following holds. If G is an n-vertex digraph
with

δ(G)≥ 2
(
1− 1

k+ 2
+ η

)
n,

then G contains a collection of at most T vertex-disjoint k-paths that covers all but at most ηn
vertices.

Proof. Define constants ε, ξ , d > 0 and n0, t0, T ∈N such that

1
n0


 1
T

≤ 1
t0


 ε 
 ξ 
 d 
 1
k
, η, (5.1)

and where T is the output of Lemma 4.1 on input ε and t0.
Let G be a digraph on n≥ n0 vertices as in the statement of the lemma. Apply Lemma 4.1 with

parameters ε, d, and t0 to obtain the reduced digraph R of G with t0 < |R| < T. Let m denote the
size of the clusters of G. By Proposition 4.2 and (5.1),

δ(R)≥ 2
(
1− 1

k+ 2
+ η

2

)
|R|.

Thus, Theorem 5.1 yields a Kk+2-tiling T in R covering all but at most η|R|/2 of the Vi ∈V(R).
Recall that Ck

k+2 ⊆Kk+2. Therefore, for each tile Kk+2 in T formed by clusters Vi1 , . . . ,Vik+2 ,
we may apply Lemma 4.8 with ξ playing the role of η, to obtain a k-path in G[

⋃
j∈[k+2] Vij]

covering all but at most ξ (k+ 2)m vertices from
⋃

j∈[k+2] Vij .
Together, these k-paths form a collection of size at most |R| < T. Moreover, all but at most

|V0| + ξm|R| + η|R|
2

m≤ (ε + ξ + η/2)n
(5.1)≤ ηn

vertices of G are covered by these k-paths, as desired. �

5.2 Absorbing lemma
In [8, Theorem 4.2], the maximum number of edges in an n-vertex digraph G without a copy
of Kk was determined for all k, n ∈N. Using this result together with a standard supersaturation
argument (e.g. via Lemma 4.1), one can easily obtain the following theorem for the t-blow-up
Kk(t).

Theorem 5.3. Let k≥ 2, η > 0, and t ∈N. There exist n0 ∈N and ξ > 0 such that every digraph G
on n≥ n0 vertices with e(G)≥

(
1− 1

k−1 + η
)
n2 contains at least ξnkt copies of Kk(t).

The following definition is a crucial notion needed for constructing an absorbing k-path.

Definition 5.4. For a digraph G and v ∈V(G), we say a k-path on 2(k+ 2) vertices Pv =
v1 . . . v2(k+2) in G is an absorber for v if v1 . . . vk+2 v vk+3 . . . v2(k+2) is also a k-path in G.

We are now ready to state our absorbing lemma for digraphs.
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Lemma 5.5 (Absorbing lemma for total degree in digraphs). Given k ∈N and η > 0, there exist
n0 ∈N and ξ > 0 so that for any n≥ n0, the following holds. If G is an n-vertex digraph with

δ(G)≥ 2
(
1− 1

k+ 3
+ η

)
n,

then, for every vertex v ∈V(G), there are at least ξn2(k+2) absorbers Pv for v in G.

Proof. Let ξ1 > 0 be the output of Theorem 5.3 on input k+ 2, η, and t = 2. Let n0 ∈N be
sufficiently large and let G be a digraph on n≥ n0 vertices as in the statement of the lemma.

Given any v ∈V(G) note that

|N+
G (v)∩N−

G (v)| ≥ 2
(
1− 1

k+ 3
+ η

)
n− n=

(
k+ 1
k+ 3

+ 2η
)
n.

Let U be a subset of N+
G (v)∩N−

G (v) of size
k+1
k+3n. Observe that

δ(G[U])≥ 2|U| − 2
(

1
k+ 3

− η

)
n= 2

(
k

k+ 3
+ η

)
n≥ 2

(
k

k+ 1
+ η

)
|U|,

and in particular e(G[U])≥ ( k
k+1 + η)|U|2. Thus, Theorem 5.3 yields at least ξ1|U|2(k+2) ≥

ξ1(n/2)2(k+2) copies of Kk+2(2) in G[U]. Set ξ := ξ1/22(k+2).
As Ck

k+2 ⊆Kk+2, it is easy to see that each such copy of Kk+2(2) inG[U] is spanned by a k-path.
Moreover, as U ⊆N+

G (v)∩N−
G (v), each of these k-paths is an absorber for v, as desired. �

5.3 Connecting lemma
The full version of our connecting lemma (Lemma 5.14) is stated at the end of this section. Before
this, we introduce a few preliminary definitions and results.

Given a digraph G, let G± be the graph with vertex set V(G) such that ab ∈ E(G±) if and
only if ab, ba ∈ E(G). For a vertex v ∈V(G) and X ⊆V(G), recall that dG(v, X)= d+

G (v, X)+
d−
G (v, X). Given U,W ⊆V(G) and m ∈N, define N=m(U,W) := {w ∈W : dG(w,U)=m} and

d=m(U,W) := |N=m(U,W)|.
The following result is the starting point for our connecting lemma.

Lemma 5.6. For 1/n
 γ < 1, the following holds for every n-vertex digraph G with δ(G)≥
(8/5+ γ )n. If {A, B} is a partition of V(G) such that neither A nor B is an independent set, then
there exist a1a2 ∈ E(G[A]), b1b2 ∈ E(G[B]) and xy ∈ E(G) such that a1a2b1b2 or a1a2xyb1b2 is a
2-path.

Proof. For a contradiction, assume that G is an n-vertex digraph and {A, B} is a partition of
V(G) that together form a counterexample to the lemma. By considering the digraph with all
orientations reversed, we may assume without loss of generality that |A| ≥ |B|. Define

EA := {ab ∈ E(A, B) : there exists a′ ∈A such that a′ab is a 2-path},
EB := {ab ∈ E(A, B) : there exists b′ ∈ B such that abb′ is a 2-path}.

By our assumption, EA ∩ EB = ∅. Note that, for every ab ∈ E(A, B), we have d=4(ab,V(G))≥
2δ(G)− 3n≥ n/5+ 2γ n and so ab ∈ EA ∪ EB. Therefore, {EA, EB} is a partition of E(A, B).

Claim 5.7. EB is non-empty.

Proof. Suppose not. Let C be a maximal tournament in G[B]. Since B is not an independent set,
we have |C| ≥ 2. Note that EB = ∅ implies that dG(a, C)≤ |C| + 1 for every a ∈A. Furthermore,
because C is a maximal tournament in G[B], we have dG(b, C)≤ 2|C| − 2 for every b ∈ B. Recall

https://doi.org/10.1017/S0963548325100230 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100230


14 L. DeBiasio et al.

that |A| ≥ |B|, so |B| − 3n/5< 0. Hence,

|C|δ(G)≤
∑
v∈C

dG(v)≤ |B|(2|C| − 2)+ |A|(|C| + 1)= |C|(n+ |B|)− 2|B| + |A|

= 8n|C|/5+ |C|(|B| − 3n/5)− 2|B| + |A|
≤ 8n|C|/5+ 2(|B| − 3n/5)− 2|B| + |A| < 8n|C|/5,

a contradiction to the minimum total degree condition. �
By Claim 5.7, there exists ab ∈ EB. Set

B4 :=N=4(ab, B), B3 :=N=3(ab, B), A3 :=N=3(ab,A), c := |B4| − n/5.

Since ab ∈ EB, we have N=4(ab,A)= ∅ and so

16n/5+ 2γ n≤ dG(a)+ dG(b)≤ 2n+ |B3| + |A3| + 2|B4|.
This implies that c> 0 and |B3| + |A3| ≥ 4n/5− 2c. Since |B4| + |B3| ≤ |B| ≤ n/2 and |B4| =
n/5+ c, we have |B3| ≤ 3n/10− c and c≤ 3n/10, so |A3| ≥ n/2− c> 0. Hence,

|A3 ∪ B4| ≥ n/2− c+ n/5+ c= 7n/10. (5.2)

Claim 5.8. E(A3, B4)= ∅.
Proof. For a contradiction, assume that xy ∈ E(A3, B4). If xa ∈ E(G), then xayb is a 2-path because
y ∈N=4(ab, B). If xa /∈ E(G), then the fact that x ∈N=3(ab,A) implies that ax, xb ∈ E(G), so
axby is a 2-path. In both cases, we obtain a contradiction to our initial assumption that G is a
counterexample to the lemma. �

Note that δ(G±)≥ δ(G)− n≥ 3n/5+ γ n. Therefore, by (5.2) and Claim 5.8, there exist a1a2 ∈
E(G±[A3]) and b1b2 ∈ E(G±[B4]). For i ∈ {7, 8} set Vi :=N=i({a1, a2, b1, b2},V(G)). Note that
32n/5+ 4γ n≤ 2|V8| + |V7| + 6n, so

2|V8| + |V7| ≥ 2n/5+ 4γ n.

By Claim 5.8, V7 ∪V8 is disjoint from A3 ∪ B4, so

|V7| + |V8| ≤ n− |A3 ∪ B4|
(5.2)≤ 3n/10.

Therefore,

|V8| = (2|V8| + |V7|)− (|V7| + |V8|)≥ n/10+ 4γ n.

Let x ∈V8. Since we have assumed that G is a counterexample to the lemma, in G, x has no
neighbours in V8, and in G±, x has no neighbours in V7. Thus,

δ(G)≤ dG(x)≤ 2n− 2|V8| − |V7| < 8n/5,

a contradiction. �
Definition 5.9. In a digraph G, a 2-walk of length � is a sequence v1 . . . v� of vertices from V(G)
such that, for every i ∈ [� − 1], we have vivi+1 ∈ E(G), and moreover, for every j ∈ [� − 2], we have
vjvj+2 ∈ E(G). Note that the vertices v1, . . . , v� ∈V(G) are not necessarily distinct.

The notion of a 2-walk is used in the proof of the following result.

Lemma 5.10. Let 0< 1/n
 γ < 1. If G is an n-vertex digraph with δ(G)≥ (8/5+ γ )n, then for
every pair of disjoint edges ab, yz ∈ E(G), there exists a 2-path x1x2 . . . x�−1x� of length � ≤ 20where
x1 = a, x2 = b, x�−1 = y, and x� = z.
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Proof. Let σ > 0 be such that 1/n
 σ 
 γ . Take G, ab, and yz as in the statement of the lemma.
For � ≥ 3, let

−→
abV� := {v ∈V(G) : ∃ at least (σn)�−3 2-walks of length � that start with ab and end with v}

and
−→
Vyz

� := {v ∈V(G) : ∃ at least (σn)�−3 2-walks of length � that start with v and end with yz}.

Claim 5.11. For every � ≥ 3, we have |−→abV�|, |−→Vyz
�| ≥ n/5.

Proof. Wewill only show that |−→abV�| ≥ n/5 since the proof that |−→Vyz
�| ≥ n/5 follows analogously.

Let �2 := {ab}. For t ≥ 3, let �t be the collection of 2-walks of length t in G that start with the
edge ab. Since δ+(G)≥ (3n/5+ γ )n, for all t ≥ 3 we have that

|�t| ≥ (1/5+ 2γ )n|�t−1| ≥ (1/5+ 2γ )t−2nt−2. (5.3)

For a contradiction, suppose that |−→abV�| < n/5. Hence the number of 2-walks in �� that end with
a vertex in

−→
abV� is less than |��−1|n/5. So the number of 2-walks in �� that end at a vertex not in−→

abV� is at least

|��| − |��−1|n/5
(5.3)≥ 2γ n|��−1|

(5.3)≥ 2γ n(1/5+ 2γ )�−3n�−3 ≥ σ�−3n�−2.

By an averaging argument, there exists a vertex v ∈V(G)\−→abV� that is the end vertex of at least
σ�−3n�−3 2-walks in ��, a contradiction. �

Let {V+,V−} be the partition of V(G) such that for every v ∈V− we have d−
G (v)≥ d+

G (v) and
for every v ∈V+ we have d+

G (v)> d−
G (v).

Claim 5.12. For � ≥ 5, we have V− ⊆ −→
abV� and V+ ⊆ −→

Vyz
�.

Proof. We will only show that V− ⊆ −→
abV� as the proof that V+ ⊆ −→

Vyz
� is analogous. Let v ∈V−.

By Claim 5.11 and the fact that v ∈V−, we have

d−
G

(
v,

−→
abV�−2

)
≥ δ(G)/2+ n/5− n≥ γ n/2.

Therefore, there are at least (σn)�−5 × γ n/2≥ (σn)�−4 2-walks abv3 . . . v�−3v�−2 in G with
v�−2 ∈N−

G (v). Furthermore, for every such 2-walk, we have

|N+
G (v�−3)∩N+

G (v�−2)∩N−
G (v)| ≥ 2(δ(G)− n)+ δ(G)/2− 2n≥ 2γ n,

and for every v�−1 ∈N+
G (v�−3)∩N+

G (v�−2)∩N−
G (v), the sequence

abv3 . . . v�−3v�−2v�−1v
is a 2-walk in G. Thus, there are at least (σn)�−4 × 2γ n≥ (σn)�−3 2-walks in G that start with ab
and end at v. Hence, v ∈ −→

abV� and so V− ⊆ −→
abV�, as desired. �

For � ≥ 4, define
−→
abE� := {e ∈ E(G) : ∃ at least (σn)�−4 2-walks of length � that start with ab and end with e}.

and
−→
Eyz� := {e ∈ E(G) : ∃ at least (σn)�−4 2-walks of length � that start with e and end with yz}.
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Let X− ⊆V− be such that |X−| =min{σn, |V−|} and d+
G (x)≥ d+

G (y) for every x ∈ X− and
y ∈V−\X−. Similarly, let X+ ⊆V+ be such that |X+| =min{σn, |V+|} and d−

G (x)≥ d−
G (y) for

every x ∈ X+ and y ∈V+\X+. Set Y− :=V−\X− and Y+ :=V+\X+.

Claim 5.13. For every � ≥ 9, E(G[Y−])⊆ −→
abE� and E(G[Y+])⊆ −→

Eyz�.

Proof. We will only show that E(G[Y−])⊆ −→
abE� since the proof that E(G[Y+])⊆ −→

Eyz� is analo-
gous. We may assume that E(G[Y−]) �= ∅ and so |X−| = σn. Let cd ∈ E(G[Y−]). Pick v�−4 ∈ X−;
by Claim 5.12, v�−4 ∈ −→

abV�−4. Therefore, there are at least (σn)�−7 2-walks W of length � − 4 in
G that start with ab and end with v�−4. Let v�−5 be the penultimate vertex on any such 2-walk
W. There are more than 2(δ(G)− n)+ δ(G)/2− 2n≥ 2γ n vertices in N+

G (v�−5)∩N+
G (v�−4)∩

N−
G (c). Let v�−3 be such a vertex.
There are at least γ n vertices v�−2 inN+

G (v�−4)∩N+
G (v�−3)∩N−

G (c)∩N−
G (d). To see this, recall

that v�−4 ∈ X− and c, d ∈ Y− ⊆V−, so d+
G (v�−4)≥ d+

G (c) and d−
G (d)≥ δ(G)/2. Therefore,

|N+
G (v�−4)∩N+

G (v�−3)∩N−
G (c)∩N−

G (d)| ≥ d+
G (v�−4)+ d+

G (v�−3)+ d−
G (c)+ d−

G (d)− 3n
≥ d+

G (v�−4)+ (δ(G)− n)+ (δ(G)− d+
G (c))+ δ(G)/2− 3n≥ 5δ(G)/2− 4n≥ γ n.

In summary, there are σn choices for v�−4; at least (σn)�−7 choices for the 2-walkW; at least 2γ n
choices for v�−3; at least γ n choices for v�−2. By the choice of v�−3 and v�−2, adding v�−3v�−2cd
to the end ofW yields a 2-walk of length � in G that starts with ab and ends with cd. In total, this
process gives rise to at least

σn× (σn)�−7 × 2γ n× γ n≥ (σn)�−4

such 2-walks. Thus, cd ∈ −→
abE� and so E(G[Y−])⊆ −→

abE�, as desired. �
Let Y−

1 := Y−\{a, b, y, z} and Y+
1 := Y+\{a, b, y, z}. Suppose that Y−

1 is an independent (or
empty) set in G. Note that |Y−

1 ∪ Y+
1 | ≥ (1− 2σ )n− 4 and δ0(G)≥ δ(G)− n≥ (3/5+ γ )n. Thus,

there exist v1, v2, v3, v4 ∈ Y−
1 ∪ Y+

1 such that abv1v2v3v4 is a 2-path in G. Since Y−
1 is an inde-

pendent (or empty) set, there exists some i ∈ [3] such that vi, vi+1 ∈ Y+
1 . By Claim 5.13, vivi+1 ∈

E(G[Y+])⊆ −→
Eyz12−i. Therefore, there are at least (σn)8−i 2-walks of length 13 in G that start with

abv1 . . . vivi+1 and endwith yz. By a simple counting argument, one such 2-walk is in fact a 2-path.
Thus, the conclusion of the lemma holds in this case.

An analogous argument holds in the case when Y+
1 is an independent (or empty) set inG. Thus,

we may assume that neither Y−
1 nor Y+

1 is an independent or empty set.
Let G′ :=G\(X− ∪ X+ ∪ {a, b, y, z})=G[Y−

1 ∪ Y+
1 ], so δ(G′)≥ δ(G)− 2σn− 4≥

(8/5+ γ /2)n. Then by applying Lemma 5.6 to G′ and the partition {Y−
1 , Y

+
1 } of V(G′),

there exists a 2-path on at most 6 vertices in G′ that starts with an edge in E(G[Y−
1 ]) and ends

with an edge in E(G[Y+
1 ]). By Claim 5.13, E(G[Y−

1 ])⊆
−→
abE9 and E(G[Y+

1 ])⊆
−→
Eyz9. Combining

these facts, and using an averaging argument, one obtains a 2-path on at most 20 vertices in G
that starts with ab and ends with yz, as desired. �

From Lemma 5.10, we can easily deduce the following slight strengthening.

Lemma 5.14 (Connecting lemma for total degree in digraphs). Let 0< 1/n
 γ < 1. If G is an n-
vertex digraph with δ(G)≥ (8/5+ γ )n, then for every pair of disjoint edges ab, yz ∈ E(G) and every
set U ⊆V(G)\{a, b, y, z} of size at most γ n/2, there exists a 2-path x1x2 . . . x�−1x� of length � ≤ 20
in G\U where x1 = a, x2 = b, x�−1 = y, and x� = z.

Proof. As δ(G\U)≥ (8/5+ γ /2)n, this follows immediately by applying Lemma 5.10
to G\U. �
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6. Oriented graphs: absorbing, connecting, and almost covering lemmas for
Theorem 1.4

The goal of this section is to present the proofs of the absorbing, connecting, and almost covering
lemmas for Theorem 1.5; see Lemmas 6.7, 6.8, and 6.10.

6.1 Auxiliary lemmas for connecting and absorbing
In contrast to Lemma 5.14, our connecting lemma for oriented graphs (Lemma 6.8) does not
imply the existence of a k-path between every pair of k-tuples T1 and T2. It will only imply the
existence of such a k-path if T1 has many common out-neighbours and T2 has many common
in-neighbours. To make this precise, we introduce the following definition.

Definition 6.1. Let G be an n-vertex oriented graph and 0< δ < 1. We say that a k-vertex tour-
nament T in G is δ-out-good if |⋂x∈V(T) N

+
G (x)| ≥ (2k−1)δ−k+1

k22k−1 n. Likewise, T is δ-in-good if
|⋂x∈V(T) N

−
G (x)| ≥ (2k−1)δ−k+1

k22k−1 n. If a k-path P starts with a δ-in-good tournament on k vertices
and ends in a δ-out-good tournament on k vertices, we say that P is a δ-good k-path.

Note that Definition 6.1 is only useful when δ is reasonably large, since for 0< δ ≤
(k− 1)/(2k− 1), the common out- and in-neighbourhood conditions here do not even guarantee
a single common out- or in-neighbour.

The next lemma states that every large enough tournament in a dense oriented graph contains
a δ-in/out-good subtournament on k vertices.

Lemma 6.2. Let k≥ 2 and let G be a sufficiently large n-vertex oriented graph with δ0(G)= δn>
(k−1)n
2k−1 . Let T be a (2k− 1)-vertex tournament in G. Then T contains a δ-out-good tournament and
a δ-in-good tournament, each on k vertices.

Proof. Let X :=V(T), Y := {v ∈V(G) : d−
G (v, X)≤ k− 1}, and Z := {v ∈V(G) : d−

G (v, X)≥ k}. We
have

(δn− 2k+ 1)(2k− 1)= (δn− |X|)|X| ≤ eG(X,V(G)\X)
≤ (k− 1)|Y| + (2k− 1)|Z| = (k− 1)n+ k|Z|,

so

|Z| ≥ ((2k− 1)δ − k+ 1)n− (2k− 1)2

k
.

Thus, there exists a k-set X′ ⊆ X such that∣∣∣∣∣⋂
x∈X′

N+
G (x)

∣∣∣∣∣≥ |Z|(2k−1
k
) ≥ ((2k− 1)δ − k+ 1)n− (2k− 1)2(2k−1

k
)
k

≥ (2k− 1)δ − k+ 1
k22k−1 n,

where the last inequality follows as n is sufficiently large. Therefore, X′ induces a δ-out-good
tournament on k vertices. The proof for δ-in-good tournaments is analogous. �

The following lemma states that given an oriented graph G with large minimum semi-degree,
for every two large disjoint sets of vertices A and B, there are many edges from A to B.

Lemma 6.3 (Crossing edges between large sets). Let G be an n-vertex oriented graph with δ0(G)≥
δn≥ 2n

5 . Then, for any disjoint sets A, B⊆V(G), we have

eG(A, B)≥ |A|
( |A|

2
+ |B| − (1− δ)n

)
.
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In particular, if |A| ≥ |B| ≥ δn, then

eG(A, B)≥
(
5
2

− 1
δ

)
|A||B|.

Proof. We have
eG(A, B)≥

∑
v∈A

(
d+
G (v)− d+

G (v,A)− (n− |A| − |B|))≥ |A|δn− e(G[A])− |A|(n− |A| − |B|)

≥ |A|δn− |A|2
2

− |A|(n− |A| − |B|)= |A|
( |A|

2
+ |B| − (1− δ)n

)
.

When |A| ≥ |B| ≥ δn, the desired inequality follows easily since

|A|
( |A|

2
+ |B| − (1− δ)n

)
= |A||B|

( |A|
2|B| + 1− (1− δ)n

|B|
)

≥ |A||B|
(
5
2

− 1
δ

)
.

�
Recall that �r(k) and �tr(k) are defined at the beginning of Section 3.2. The following result will

allow us to find large transitive tournaments in oriented graphs with large minimum semi-degree.

Lemma 6.4. Let k≥ 2 and let G be an n-vertex oriented graph with δ0(G)= δn.

(i) If X ⊆V(G) with |X| > (�r(k)− 1)(1− 2δ)n, then G[X] contains a copy of �Tk.
(ii) If X ⊆V(G) with |X| ≥ �tr(k)(1− 2δ)n and |X| divisible by k, then G[X] has a �Tk-factor.

(iii) If X ⊆V(G) with |X| ≥ 3k(1− 2δ)n, then G[X] contains at least
( |X|

3k

)k
copies of �Tk.

Proof. Note |X| > (�r(k)− 1)(1− 2δ)n implies that δ(G[X])≥ |X| − (1− 2δ)n> �r(k)−2
�r(k)−1 |X|. Thus,

by Turán’s theorem, there exists a tournament T on �r(k) vertices in G[X]; by definition of �r(k), T
contains a copy of �Tk.

Similarly, |X| ≥ �tr(k)(1− 2δ)n implies that δ(G[X])≥ |X| − (1− 2δ)n≥ �tr(k)−1
�tr(k) |X|. By [35,

Proposition 9] (itself a simple corollary of the Hajnal–Szemerédi theorem), G[X] contains a
�Tk-factor.

For (iii), note |X| ≥ 3k(1− 2δ)n implies that δ(G[X])≥ |X| − (1− 2δ)n≥ (1− 1
3k )|X|. The idea

is to greedily construct a �Tk in G[X] by choosing an arbitrary vertex and noting that at least half
of its incident edges have the same direction. Then look inside that neighbourhood, choose an

arbitrary vertex and repeat. More precisely, for all 0≤ i≤ k− 2 we have
|X|
3i

− |X|
3k

2 ≥ |X|
3i+1 , and thus

this greedy process produces at least
∏k−1

i=0
|X|
3i = |X|k

3k(k−1)/2 copies of �Tk in G[X]; however, up to 2k

different options for this greedy process give rise to the same copy of �Tk. Therefore, we obtain at
least 1

2k·3k(k−1)/2 |X|k ≥ 1
3k2

|X|k copies of �Tk in G[X]. �
The following lemma is an amalgamation of [10, Lemma 2.9] and [20, Lemma 6.3]. Since the

statement is slightly different, for completeness, we rewrite their proof tailored to our statement.

Lemma 6.5 (Dependent random choice variant). Let k ∈N, 0< d ≤ 1, and define c := dk/ k√2. Let
G= (A, B) be a bipartite graph with e(G)≥ d|A||B|. For all 0< ε < 1, there exists U ⊆Awith |U| ≥
c|A| such that all but at most (ε|U|)k of the k-tuples in U have at least εc|B| common neighbours in B.

Proof. Let S be a subset of k random vertices, chosen uniformly from B with repetition. Let U
denote the set of common neighbours of S in A. Note that linearity of expectation and Jensen’s

inequality imply E[|U|]=∑
v∈A

(
dG(v)|B|

)k ≥ dk|A| = 21/kc|A|.
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Let Y denote the number of k-tuples in U with fewer than m := εc|B| common neighbours in
B. Note that, by linearity of expectation,

E[Y]< |A|k
(
m
|B|
)k

= (εc|A|)k .

By the previous two inequalities and another application of Jensen’s inequality, we have

E[Y]+ (εc|A|)k < 2 (εc|A|)k =
(
ε
(
21/kc|A|

))k ≤ (E[ε|U|])k ≤E

[
(ε|U|)k

]
,

which, by linearity of expectation, implies

E

[
(ε|U|)k − Y − (εc|A|)k

]
≥ 0.

Thus, there is a choice of S for which Y ≤ (ε|U|)k and for which (ε|U|)k ≥ (εc|A|)k, and
so |U| ≥ c|A|. �

6.2 The absorbing lemma
In this section we will use a very slightly different absorber compared to that used in Section 5.2.

Definition 6.6. Given a digraph G and x ∈V(G), we say that a k-path u1 . . . ukv1 . . . vk on 2k
vertices in G is a k-absorber for x if u1 . . . ukxv1 . . . vk is a k-path in G as well. We say that a k-path
u1 . . . u2kv1 . . . v2k on 4k vertices in G is a stretched k-absorber for x if u1 . . . u2kxv1 . . . v2k is a
k-path in G as well.

Note that we will only use the notion of a stretched k-absorber in the proof of Theorem 1.5 in
Section 7.1.

Lemma 6.7. Let 0< 1/n
 ξ 
 1/k≤ 1/2. If G is an n-vertex oriented graph with δ0(G)= δn≥(
1
2 − 1

4·33k+2

)
n, then every x ∈V(G) has at least ξn2k k-absorbers in G.

Proof. Given any x ∈V(G), let A⊆N−
G (x) and B⊆N+

G (x) be both of size δn. By Lemma 6.3, we
have

eG(A, B)≥
(5
2

− 1
δ

)
|A||B| ≥ 1

3
|A||B|.

LetU ⊆A be the set obtained by applying Lemma 6.5 to the underlying graph ofG[A, B] and with
parameters

d := 1/3 and ε := 1/3k+1.

In particular, it holds that

|U| ≥ dk

2
|A| = δn

2 · 3k ≥ n
2 · 3k+1 ≥ 3k(1− 2δ)n .

Thus, Lemma 6.4(iii) yields at least (|U|/3k)k copies of �Tk in G[U].
Due to our application of Lemma 6.5, all but at most (|U|/3k+1)k of the k-tuples in U have at

least εdk|B|/2= |B|/(2 · 32k+1) common out-neighbours in B. Hence, there are at least (3−k2 −
3−k2−k)|U|k > (3−k2−1)|U|k copies T1 of �Tk in G[U] such that the vertices in T1 have at least
|B|/(2 · 32k+1) common out-neighbours in B.
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Fix one such tournament T1 ⊆G[U] and observe that∣∣∣∣∣∣
⋂

v∈V(T1)
N+
G (v, B)

∣∣∣∣∣∣≥ |B|
2 · 32k+1 ≥ n

2 · 32k+2 ≥ 3k(1− 2δ)n.

An application of Lemma 6.4(iii) yields at least (|⋂v∈V(T1) N
+
G (v, B)|/3k)k ≥ nk/(33k(k+1)) copies

T2 of �Tk contained in
⋂

v∈V(T1) N
+
G (v, B). Fix one such tournament T2. As V(T1)⊆U ⊆

A⊆N−
G (x) and V(T2)⊆ B⊆N+

G (x), we can let T1 = :u1 . . . uk and T2 = :v1 . . . vk so that
u1 . . . ukv1 . . . vk is a k-absorber for x.

Note that there are more that (3−k2−1)|U|k ≥ (3−k2−1) d
k2

2k |A|k ≥ nk
33k2+1 choices for T1 and,

given a fixed choice of T1, at least nk/(33k(k+1)) choices for T2. Thus, in total we obtain at least

nk

33k2+1
× nk

33k(k+1) ≥ ξn2k

k-absorbers for x, as desired. �

6.3 The connecting lemma
The following lemma allows us to connect a δ-out-good copy of �Tk to a δ-in-good copy of �Tk by a
short k-path that avoids any small set of vertices.

Lemma 6.8 (Connecting an out-good �Tk to an in-good �Tk). Let 0< 1/n
 ζ 
 1/k≤ 1/2. Let
G be an n-vertex oriented graph with δ0(G)≥

(
1
2 − 1

318k

)
n. Set δ :=

(
1
2 − 1

2·317k
)
. Given any pair

of vertex-disjoint δ-out-good T+ and δ-in-good T− copies of �Tk in G, and any set of vertices U ⊆
V(G)\(V(T+)∪V(T−)) of size at most ζn, there exists � ∈ {3, 4} such that there is a k-path from
T+ to T− on k(� + 2) vertices in G\U.

Proof. Set α := 1/27 and τ := 3−6(k+1). Note that

τ ≤ 1
45

, 16 · τ

α2k ≤ 19
45

, and 3k(1− 2δ)= 1
316k

≤ α2kτ
k√4

≤ α2k

16 · 8k . (6.1)

TakeG, T+, T−, andU to be as in the statement of the lemma. As ζ 
 1/kwe have δ0(G\U)≥ δn.
Set G′ :=G\U and let

A1 :=
⎛⎝ ⋂

v∈V(T+)
N+
G′(v)

⎞⎠ \V(T−), B1 :=
⎛⎝ ⋂

v∈V(T−)
N−
G′(v)

⎞⎠ \V(T+),

A2 := {v ∈V(G′)\(V(T+)∪V(T−)) : d−
G′(v,A1)≥ α|A1|},

and

B2 := {v ∈V(G′)\(V(T+)∪V(T−)):d+
G′(v, B1)≥ α|B1|}.

So A1,A2, B1 and B2 are all disjoint from T+ and T−. As T+ is δ-out-good in G, we have that

|A1| ≥ (2k− 1)δ − k+ 1
k22k−1 n− |U| − k≥

1
2 − 2k−1

2·317k
k22k−1 · n− 2ζn≥ n

4k · 22k−1 ≥ n
8k

.
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Furthermore,

δn|A1| ≤
∑
v∈A1

d+
G′(v)≤ |A1|(|A2| + 2k)+ α|A1|(n− |A2|).

Therefore, we have |A2| ≥ δ−α
1−α

n− 2k
1−α

≥ 4
9n. Analogous calculations for |B1| and |B2| imply that

|A1|, |B1| ≥ n
8k

and |A2|, |B2| ≥ 4
9
n. (6.2)

We will split into two cases depending on the size of A2 ∩ B2. First, we prove the following
claim.

Claim 6.9. Let Y , Z ⊆V(G′) be such that |Y| ≥ τn and d+
G′(y, Z)≥ α|Z| for all y ∈ Y . Then there is

a copy T of �Tk in G′[Y] such that ∣∣∣∣∣∣
⋂

v∈V(T)
N+
G′(v, Z)

∣∣∣∣∣∣≥ α2k

16
|Z| .

Moreover, if there exists X ⊆V(G′) such that eG′(X, Y)≥ α|X||Y|, then we may further assume that∣∣∣∣∣∣
⋂

v∈V(T)
N−
G′(v, X)

∣∣∣∣∣∣≥ α2k

16
|X| .

Note that in this claim, X, Y and Z are not necessarily disjoint.

Proof. We shall apply Lemma 6.5 with α playing the role of d and ε := αk/(4 k√4), and so we set
c := αk/ k√2. If we are not in the moreover case of the claim, then we setW := Y . In the moreover
case, we apply Lemma 6.5 to the bipartite graph H which has vertex classes X and Y and an edge
between x ∈ X and y ∈ Y precisely if the directed edge xy is present in G′. Thus, we obtain a set
W ⊆ Y such that |W| ≥ c|Y| and in G′ all but at most (ε|W|)k k-tuples in W have at least εc|X|
common in-neighbours in X.

Next, we define H′ to be the bipartite graph which has vertex classes W and Z and an edge
between w ∈W and z ∈ Z precisely if the directed edge wz is present in G′. SinceW ⊆ Y , we have
e(H′)≥ α|W||Z|. So applying Lemma 6.5 to H′, we obtain a subset W̃ ⊆W, where

|W̃| ≥ c|W| ≥ c2|Y| ≥ α2kτn/ k√4
(6.1)≥ 3k(1− 2δ)n, (6.3)

and in G′ all but at most (ε|W̃|)k ≤ (ε|W|)k k-tuples in W̃ have at least εc|Z| common out-
neighbours in Z.

Lemma 6.4 and (6.3) imply that there are at least (|W̃|/3)k ≥ ck|W|k/3k > 2(ε|W|)k copies T
of �Tk in G′[W̃]. Recalling that we took ε = αk/(4 k√4) and c= αk/ k√2, we obtain one such T with∣∣∣∣∣∣

⋂
v∈V(T)

N+
G′(v, Z)

∣∣∣∣∣∣≥ εc|Z| ≥ α2k

16
|Z|

and, in the moreover case ∣∣∣∣∣∣
⋂

v∈V(T)
N−
G′(v, X)

∣∣∣∣∣∣≥ α2k

16
|X|,

as required. �
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We first assume that |A2 ∩ B2| ≤ τn. Let A′
2 :=A2\B2 and B′

2 := B2\A2; so

|A′
2|, |B′

2|
(6.2)≥ 4n

9
− τn

(6.1)≥ 19n
45

(6.1)≥ 16
τn
α2k . (6.4)

By Lemma 6.3 (with 19/45 playing the role of δ), we have

eG′(A′
2, B

′
2)≥

(
5
2

− 45
19

)
|A′

2||B′
2| ≥ α|A′

2||B′
2|.

By Claim 6.9 withA′
2, B

′
2, B1 playing roles ofX, Y , Z, we obtain a copy TB2 of �Tk inG′[B′

2]⊆G′[B2]
such that ∣∣∣∣∣∣

⋂
v∈V(TB2 )

N+
G′(v, B1)

∣∣∣∣∣∣≥ α2k

16
|B1|

(6.2)≥ α2k

16 · 8k n
(6.1)≥ 3k(1− 2δ)n and

∣∣∣∣∣∣
⋂

v∈V(TB2 )
N−
G′(v,A′

2)

∣∣∣∣∣∣≥ α2k

16
|A′

2|
(6.4)≥ τn .

By applying Claim 6.9 with
⋂

v∈V(TB2 ) N
−
G′(v,A′

2) and A1 playing the roles of Y and Z (and with
the orientations of each edge reversed), we obtain a copy TA2 of �Tk in G′[

⋂
v∈V(TB2 ) N

−
G′(v,A′

2)]
such that ∣∣∣∣∣∣

⋂
v∈V(TA2 )

N−
G′(v,A1)

∣∣∣∣∣∣≥ α2k

16
|A1|

(6.2),(6.1)≥ 3k(1− 2δ)n .

Since A′
2 ∩ B′

2 = ∅, we have that TA2 and TB2 are disjoint.
By Lemma 6.4(iii), there is a copy TB1 of �Tk in G′[

⋂
v∈V(TB2 ) N

+
G′(v, B1)] that is disjoint

from both TA2 and TB2 . Similarly, Lemma 6.4(iii) implies that there is a copy TA1 of �Tk in
G′[

⋂
v∈V(TA2 ) N

−
G′(v,A1)] that is disjoint from TA2 , TB1 , and TB2 . Note that the concatenation

of T+, TA1 , TA2 , TB2 , TB1 , T− yields a k-path from T+ to T− in G′ on 6k vertices (with some
additional edges), as desired.

We now outline the proof of the case when |A2 ∩ B2| ≥ τn. By Claim 6.9 with A1,A2 ∩ B2, B1
playing roles of X, Y , Z, we obtain a copy TA2∩B2 of �Tk in G′[A2 ∩ B2]. In fact, we can argue simi-
larly to the previous case to find a copy TA1 of �Tk in G′[A1] and a copy TB1 of �Tk in G′[B1] so that
the concatenation of T+, TA1 , TA2∩B2 , TB1 , T− yields a k-path from T+ to T− in G′ on 5k vertices,
as desired. �

6.4 The almost covering lemma
Our goal in this subsection is to prove the following result.

Lemma 6.10. Let k≥ 2 and let Q≥ 101000k. There exists n0 ∈N such that if G is an oriented graph
on n≥ n0 vertices with δ0(G)≥ ( 12 − 1

(20Q)3 )n, then V(G) can be partitioned into sets S of size Q
or Q+ 1, where for each such S we have that G[S] is a tournament, δ0(G[S])≥ 2|S|/5 and G[S]
contains the kth power of a Hamilton cycle. In particular, G can be partitioned into at most n/Q
vertex-disjoint k-cycles.

Bollobás and Häggkvist [4] proved that for all ε > 0 and k ∈N, there exists n0 ∈N such that for
every tournament T on n≥ n0 vertices, if δ0(T)≥ n

4 + εn, thenCk
n ⊆ T. Draganić, Munhá Correia,
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and Sudakov [10, Theorem 1.5] gave a refinement of this result, which in particular gives better
quantitative bounds. We state their result in a less general form, which is more convenient for our
purposes.

Theorem 6.11. Let k≥ 2 and let n≥ 101000k. If T is an n-vertex tournament with δ0(T)≥ 2n/5,
then T contains the kth power of a Hamilton cycle.

Therefore, to prove Lemma 6.10, we will first partitionG into vertex-disjoint tournaments each
of size Q or Q+ 1 and with minimum semi-degree at least 2(Q+ 1)/5. Then the lemma follows
by applying Theorem 6.11 to each tournament. We need the following lemma on martingales.

Lemma 6.12 ([1, Lemma 2.2]). Let � be a finite probability space and let F0, . . . ,Fn be partitions
of �, with Fi−1 refined by Fi for each i ∈ [n]. For each i ∈ [n], let Yi be a Bernoulli random variable
on � that is constant on each part of Fi. Furthermore, let pi be a real-valued random variable on
� which is constant on each part of Fi−1. Let x and δ be real numbers with δ ∈ (0, 3/2), and let
X := Y1 + . . . + Yn. If

∑n
i=1 pi ≥ x holds almost surely and E[Yi |Fi−1]≥ pi holds almost surely

for all i ∈ [n], then P
(
X < (1− δ)x

)
< e−δ2x/3.

Proof of Lemma 6.10. Given such a Q, let γ := (20Q)−3 and let n0 ∈N be sufficiently large. Let
G be an oriented graph as in the statement of the lemma. We randomly partition V(G) into t :=
�n/Q� sets S1, S2, . . . , St each of size Q and n− tQ≤Q− 1 other vertices. Then each Si can be
viewed as a uniformly random set of Q vertices from G. We claim that with positive probability,
all three of the following properties hold:

(a) at most 4γQ2t of the G[Si] are not tournaments;
(b) at most 4e−Q/204 t of the G[Si] have minimum semi-degree below 2(Q+ 1)/5;
(c) for every v ∈V(G), there are at least t/200 indices i ∈ [t/100] such that

d+
G (v, Si), d

−
G (v, Si)≥ 2(Q+ 1)/5.

We now show that this implies the lemma. Let S1, . . . , St be such that (a)–(c) holds. Let I be
the set of i ∈ [t] such that G[Si] is not a tournament or δ0(G[Si])< 2(Q+ 1)/5; so

|I| ≤ 4γQ2t + 4e−Q/204 t ≤ t/(500Q).

LetW :=V(G)\⋃i∈[t]\I Si, so

|W| ≤Q|I| +Q− 1< t/400.

Recall that every vertex has at most 2γ n non-neighbours in G. Together with (c), for each w ∈W,
the number of i ∈ [t/100]\I such that Si ⊆N+

G (w)∪N−
G (w) and d

+
G (w, Si), d

−
G (w, Si)≥ 2(Q+ 1)/5

is at least

t/200− |I| − 2γ n≥ t/400> |W|.
Therefore, for each w ∈W, we can greedily assign it a unique i ∈ [t/100]\I such that G[Si ∪ {w}]
is a tournament of order Q+ 1 with minimum semi-degree at least 2(Q+ 1)/5. The lemma holds
by applying Theorem 6.11 to each tournament.

To complete the proof, we will show that each of (a)–(c) fails with probability at most 1/4.
First, note thatG has at most (2γ n− 1)n/2≤ 2γ

(n
2
)
non-edges. For i ∈ [t], letXi be the number

of non-edges in G[Si]. Then we have

EXi ≤ 2γ
(
Q
2

)
≤ γQ2.
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For i ∈ [t], let Ei be the event that G[Si] is not a tournament, namely, G[Si] has some non-edges;
let X be the number of i ∈ [t] such that G[Si] is not a tournament. Therefore, we obtain

EX =
∑
i∈[t]

1 · P(Ei)=
∑
i∈[t]

P(Xi ≥ 1)≤
∑
i∈[t]

E(Xi)≤ γQ2t.

By Markov’s inequality, we obtain that

P((a) fails)= P(X > 4γQ2t)≤ 1/4.

Second, consider i ∈ [t] and v ∈ Si. Then by Chernoff’s bound for the hypergeometric distribu-
tion, we obtain that

P(d+
G (v, Si)≤ 2(Q+ 1)/5), P(d−

G (v, Si)≤ 2(Q+ 1)/5)≤ e−Q/203 .

So, by the union bound, for every i ∈ [t], we have

P

(
δ0(G[Si])<

2(Q+ 1)
5

)
≤ 2Qe−Q/203 ≤ e−Q/204 .

Let Y be the number of i ∈ [t] such that δ0(G[Si])< 2(Q+ 1)/5; so EY ≤ te−Q/204 . By Markov’s
inequality, we obtain that

P((b) fails)= P(Y > 4te−Q/204)≤ 1/4.

Finally, fix v ∈V(G) and let t0 := t/100. Consider a process of picking a sequence of vertex-
disjoint sets S1, S2, . . . , St0 of size Q, one by one, each time uniformly at random from the
remaining vertices. Note that this is equivalent to considering the first t0 members of our par-
tition S1, . . . , St . Now condition on any outcome of S1, . . . , Si−1. Let S :=⋃

j∈[i−1] Sj and thus
|S| = (i− 1)Q< n/100. Then we have d+

G (v,V(G)\S), d−
G (v,V(G)\S)≥ (0.49− γ )n. Therefore,

by Chernoff’s bound for the hypergeometric distribution, we obtain that

P(d+
G (v, Si)≤ 2(Q+ 1)/5 | S1, . . . , Si−1), P(d−

G (v, Si)≤ 2(Q+ 1)/5 | S1, . . . , Si−1)≤ e−Q/203 .

For i ∈ [t0], let Ev,i be the event that d+
G (v, Si), d

−
G (v, Si)≥ 2(Q+ 1)/5 holds. Then we get

E(1Ev,i | S1, . . . , Si−1)= P(Ev,i | S1, . . . , Si−1)≥ 1− 2e−Q/203 ≥ 2/3.

Let Zv :=∑
i∈[t0] 1Ev,i . So by Lemma 6.12 with (n,Fi, Yi, pi, x, δ, X)= (t0, Si, 1Ev,i , 2/3, 2t0/3,

1/4, Zv), we obtain that

P(Zv < t0/2)≤ e−t0/72.

By the union bound,

P((c) fails)≤
∑

v∈V(G)
P(Zv < t0/2)≤ ne−t0/72 ≤ 1/4,

where the last inequality follows as t0 = �n/Q�/100 and n is sufficiently large. This completes the
proof of the lemma. �

7. Proofs of Theorems 1.4 and 1.5
In this section we combine our auxiliary lemmas to prove both Theorem 1.4 and Theorem 1.5.
In the next subsection, we prove Theorem 1.5. The proof of Theorem 1.4 is quite standard and
follows the same structure as Theorem 1.5, so we do not provide all of the calculations in the
proof in Section 7.2.

https://doi.org/10.1017/S0963548325100230 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100230


Combinatorics, Probability and Computing 25

7.1 Proof of Theorem 1.5
The second part of Theorem 1.5 follows from Proposition 3.3, so we just need to prove the first
part. Let c := 106000 and k≥ 2. Define constants ε, η, d, ζ , ξ > 0 and n0, T ∈N so that

0< 1/n0 
 1/T 
 ε 
 η 
 d 
 ζ , ξ 
 1/c, 1/k.
Given any n≥ n0, let G be an n-vertex oriented graph with

δ0(G)≥
(
1
2

− 1
ck

)
n.

Let δ := 1
2 − 2

ck . Throughout the proof, we simply write good, in-good and out-good to mean
δ-good, δ-in-good and δ-out-good (with respect to G), respectively.

Constructing the absorbing path.We first find a good k-path PA whose first and last k vertices
are denoted by A1 and A2, respectively, and such that

(i) |V(PA)| ≤ ηkn and
(ii) for every set L⊆V(G)\V(PA) of size at most η2kn, G[L∪V(PA)] contains a spanning

k-path from A1 to A2.

To do this, for each x ∈V(G) define
Ax := {P : P is a (3k− 1)-absorber for x},

and set A :=⋃
x∈V(G) Ax.5 By Lemma 6.7 (with 3k− 1 playing the role of k), we have |Ax| ≥

ξn2(3k−1). Let C ⊆ A be a random collection of (3k− 1)-absorbers in which we independently
include each element of A with probability p := 4η4k/3n/|A |. Since E(|C|)= p|A | = 4η4k/3n,
Markov’s inequality yields that

P(|C| ≥ 8η4k/3n)≤ 1/2. (7.1)
Moreover, for every x ∈V(G) we have

E(|C ∩ Ax|)= p|Ax| ≥ 4η4k/3n · ξn2(3k−1)/|A | ≥ 4η5k/3n.
Thus, Chernoff’s bound together with the union bound yields that

P
(∃x ∈V(G) : |C ∩ Ax| ≤ 2η5k/3n

)≤ 2n exp (− η5k/3n/3)< 1/4 . (7.2)
Finally, let X be the random variable that counts the number of pairs of (3k− 1)-paths P, P′ ∈ C
sharing at least one vertex. Since the number of pairs of (3k− 1)-paths on 2(3k− 1) vertices that
intersect in at least one vertex is at most (6k− 2)2n12k−5, we have

E(X)≤ p24(3k− 1)2n12k−5 = 16(3k− 1)2η8k/3n12k−3

|A |2 ≤ 16(3k− 1)2η8k/3

ξ 2
· n≤ η2kn,

where for the second inequality we used |A | ≥ ξn6k−2. Again by Markov’s inequality, we
obtain

P

(
X ≥ 4η2kn

)
≤ 1/4. (7.3)

Hence, there is a choice of C for which all three events in (7.1)–(7.3) fail. That is, there is a
subset C ⊆ A such that |C| ≤ 8η4k/3n, X ≤ 4η2kn, and |C ∩ Ax| ≥ 2η5k/3n for every x ∈V(G).
Consequently, after deleting at most X ≤ 4η2kn elements from C, we obtain a set P ⊆ A of
pairwise vertex-disjoint (3k− 1)-paths such that

|P| ≤ 8η4k/3n and |P ∩ Ax| ≥ 2η5k/3n− 4η2kn≥ η5k/3n for every x ∈V(G). (7.4)

5Recall that a (3k− 1)-absorber consists of 2(3k− 1) vertices; see Definition 6.6.
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We need to connect the (3k− 1)-paths in P . To do that, we modify them so that they are all
good k-paths. This follows from a simple application of Lemma 6.2. More precisely, let P ∈ P
be a fixed (3k− 1)-path and let T1 and T2 be the first and last 3k− 1 vertices of P, respectively.
As P has 6k− 2 vertices, T1 and T2 are disjoint. Further, let T′

1 be the first 2k− 1 vertices in T1;
let T′′

1 be the last k vertices in T1; let T′
2 be the last 2k− 1 vertices in T2; let T′′

2 be the first k
vertices in T2. Since T′

1 and T
′
2 induce transitive tournaments, Lemma 6.2 yields transitive tourna-

ments on k vertices T∗
1 ⊆ T′

1 and T
∗
2 ⊆ T′

2, where T
∗
1 is in-good and T

∗
2 is out-good. Suppose P is a

(3k− 1)-absorber for a vertex x ∈V(G), meaning that both T1T2 = T′
1T

′′
1T

′′
2T

′
2 and T1xT2 form

(3k− 1)-paths. It is easy to see that both T∗
1T

′′
1T

′′
2T

∗
2 and T∗

1T
′′
1 xT

′′
2T

∗
2 induce k-paths in G (with

some additional edges), and hence P′ := T∗
1T

′′
1T

′′
2T

∗
2 is a stretched k-absorber for x. In other words,

after deleting 2k− 2 vertices from P we obtain a good k-path P′ such that for every x ∈V(G), if P
is a (3k− 1)-absorber for x, then P′ is a stretched k-absorber for x.

Repeat this argument for every P ∈ P to obtain a new collection P ′ of vertex-disjoint good
k-paths and observe that due to (7.4), it holds that |P ′| ≤ 8η4k/3n and for every x ∈V(G) there
are at least η5k/3n stretched k-absorbers in P ′.

We connect the paths in P ′ by greedily applying Lemma 6.8. More precisely, let P ′ =:
{P′

1, . . . , P′
r} where r ≤ 8η4k/3n. Every k-path in P ′ starts with an in-good transitive tourna-

ment and ends in an out-good transitive tournament, and has size 4k. Suppose that the k-paths
P′
1, . . . , P

′
i are already connected using at most 4k additional vertices for each connection.

Then, the number of vertices used in those connections and in the k-paths in P ′ is at most
(4k+ 4k)|P ′| ≤ 8k · 8η4k/3n≤ ζn. Hence, Lemma 6.8 yields a k-path connecting P′

i with P′
i+1

using at most 4k additional vertices and avoiding all vertices from previous connections and all
vertices from P ′. Let PA be the resulting good k-path and observe that

|V(PA)| ≤ (4k+ 4k)|P ′| ≤ 64kη4k/3n≤ ηkn.

Hence (i) follows.
Finally, to see (ii), let L⊆V(G)\V(PA) be a set of at most η2kn vertices. For every x ∈ L, there

are η5k/3n> η2kn vertex-disjoint stretched k-absorbers for x in P ′ (so they are subpaths of PA).
Therefore, we may greedily choose a distinct stretched k-absorber for each vertex x ∈ L, and use
their absorbing properties to ensure we can indeed find the desired k-path as in (ii).

Choosing a reservoir. Choose a set S⊆V(G)\V(PA) of size η3kn uniformly at random.
As δ0(G)≥ δn+ |V(PA)|, for every vertex v ∈V(G), we have E(|N+

G (v, S)|),E(|N−
G (v, S)|)≥ δ|S|.

Similarly, for every out-good transitive tournament T+ in G, we have

E

⎛⎝∣∣∣∣∣∣
⋂

x∈V(T+)
N+
G (x, S)

∣∣∣∣∣∣
⎞⎠≥ η3k

∣∣∣∣∣∣
⋂

x∈V(T+)
N+
G (x)\V(PA)

∣∣∣∣∣∣ ≥
(
(2k− 1)δ − k+ 1

k22k−1 − ηk
)

|S|.

We say that an out-good transitive tournament T+ ⊆V(G)\S is out-bad for S if∣∣∣∣∣∣
⋂

x∈V(T+)
N+
G (x, S)

∣∣∣∣∣∣< (2k− 1)(δ − ζ k)− k+ 1
k22k−1 (|S| + k) ;

that is, T+ is not (δ − ζ k)-out-good in G[S∪V(T+)]. We define in-bad for S analogously. Thus,
using Chernoff’s bound for the hypergeometric distribution together with the union bound, we
obtain
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P

(
δ0(G[S])≤

(
δ − ζ k

2

)
|S|
)

< 1/2,

P
(∃ an out-good transitive tournament T+ that is out-bad for S

)
< 1/4 and

P
(∃ an in-good transitive tournament T− that is in-bad for S

)
< 1/4.

Hence, there is a setR⊆V(G)\V(PA) such that

(a) |R| = η3kn and
(b) for any vertex-disjoint out-good transitive tournament T+ and in-good transitive tourna-

ment T−, both on k vertices in V(G)\(V(PA)∪R), we have

δ0(G[R∪V(T+)∪V(T−)]≥
(
δ − ζ k

)
|R|,

and moreover in G[R∪V(T+)∪V(T−)] the tournaments T+ and T− are (δ − ζ k)-out-
good and (δ − ζ k)-in-good, respectively.

Covering most vertices and final absorption. Our goal for this part is to find a k-cycle that
contains PA as a subpath and covers all but at most η2kn vertices from V(G). After that, we apply
(ii) to finish the proof.

Let G′ :=G\(V(PA)∪R) and Q := 101000(2k−1). Apply Lemma 4.1 with parameters ε, d and
t0 := 1/ε2, to obtain a partition {V0,V1, . . . ,Vt} of V(G′) where 1/ε2 ≤ t ≤ T. Thus, Lemma 4.3
yields a spanning oriented subgraph Ro of the reduced digraph of G′, with

δ0(Ro)≥
(

δ0(G′)
n

− 2d
)
t ≥

(
δ0(G)− |V(PA)∪R|

n
− 2d

)
t

(i), (a)≥
(
1
2

− 1
ck

− η3k − ηk − 2d
)
t ≥

(
1
2

− 2
ck

)
t ≥

(
1
2

− 1
(20Q)3

)
t.

Apply Lemma 6.10 with Ro, 2k− 1 playing the roles of G, k to obtain a partition of V(Ro) into
(2k− 1)-cycles C1, . . . , Cr each of them of size Q or Q+ 1 and

r ≤ t/Q.

By our choice of ε, for every i ∈ [r], we can apply Lemma 4.8 to Ci with η2k/2 playing the role
of η. Thus, we obtain (2k− 1)-paths P1, . . . , Pr covering all vertices of G′ except at most

|V(G′)\
⋃
i∈[r]

V(Pi)| ≤ εn+ η2k

2
· n
t

· t ≤ 2η2kn
3

(7.5)

vertices.
Roughly speaking, we shall connect these (2k− 1)-paths and the absorbing k-path PA into a

k-cycle by applying Lemma 6.2 and property (b) of R together with Lemma 6.8. In fact, we first
modify these (2k− 1)-paths P1, . . . , Pr to get good k-paths. For a fixed i ∈ [r], let T1 and T2 be the
first and last (2k− 1) vertices of Pi, respectively. Due to Lemma 6.2, there are k-vertex in-good
and out-good transitive tournaments T′

1 ⊆ T1 and T′
2 ⊆ T2, respectively. It is easy to see that if we

delete from Pi the vertices in T1\T′
1 and T2\T′

2 then we obtain a k-path from T′
1 to T′

2. Applying
the same argument for every i ∈ [r] we obtain a collection of good k-paths {P′

1, . . . , P′
r} covering

almost all vertices from G′. In particular, if L :=V(G′)\(⋃i∈[r] V(P′
i)
)
then, using (7.5) we have

|L| ≤ |V(G′)\
⋃
i∈[r]

V(Pi)| + 2(k− 1)r ≤ 3η2kn
4

. (7.6)
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Set P′
r+1 := PA. From now on, operations over the indices are assumed to be modulo r + 1. We

now connect the k-paths P ′ := {P′
1, . . . , P′

r , P′
r+1} into the k-cycle using only vertices fromR. Let

T+
j andT−

j be the out-good and in-good tournaments at the end of and the start of P′
j, respectively.

Suppose the k-paths P′
1, . . . , P

′
i−1 are already connected into a single k-path P∗

i−1 using at most
6k(i− 1) additional vertices, all fromR. Furthermore, P∗

i−1 is obtained by connecting T+
j−1 to T

−
j

for j ∈ [i− 1]. Due to (b) and the fact that
1
2

− 1
318k

<
1
2

− 2
ck

− ζ k = δ − ζ k,

we may apply Lemma 6.8 to the oriented graph G[R∪V(T+
i−1)∪V(T−

i )]. More precisely, we
have

δ0
(
G
[
R∪V

(
T+
i−1
)∪V

(
T−
i
)])≥ (δ − ζ k)|R|,

and moreover in G[R∪V(T+
i−1)∪V(T−

i )] the tournaments T+
i−1 and T−

i are (δ − ζ k)-out-good
and (δ − ζ k)-in-good, respectively. Thus, since the number of vertices fromR∪V(T+

i−1)∪V(T−
i )

used in connecting so far is at most 6k(i− 1)≤ 6k(r + 1)≤ 7kt/Q≤ ζ |R|, Lemma 6.8 yields a
k-path on at most 6k vertices completely contained in R∪V(T+

i−1)∪V(T−
i ), from T+

i−1 to T−
i

and avoiding all previous connecting k-paths. We obtain P∗
i as desired.

Therefore, we can greedily connect all consecutive k-paths P′
1, . . . , P

′
r+1 using vertex-disjoint

k-paths completely contained inR (including connecting from P′
r+1 to P′

1). Let H′ be the k-cycle
obtained in this way. Note that H′ covers all vertices from V(G)\L except possibly some vertices
inR. Thus,

|V(G)\V(H′)| ≤ |L| + |R| (7.6), (a)≤ 3η2k

4
n+ η3kn≤ η2kn.

Finally, using (ii), we absorb all vertices in V(G)\V(H′) into PA (which is a subpath of H′) and
obtain a kth power of a Hamilton cycle in G.

7.2 Proof of Theorem 1.4
Define additional constants γ , ξ > 0 and n0, T ∈N such that

0< 1/n0 
 1/T 
 γ 
 ξ 
 η.

Given any n≥ n0, let G be an n-vertex digraph as in the statement of the theorem.

Constructing the absorbing path. First, we find an absorbing 2-path PA in G that starts with
an edge a1a2 and ends with an edge a3a4 so that

(i) |V(PA)| ≤ 32γ n and
(ii) for every set L⊆V(G)\V(PA) of size at most γ 2n, G[L∪V(PA)] contains a spanning

2-path from a1a2 to a3a4.

To construct PA, we proceed as in the proof of Theorem 1.5 above. More precisely, given
v ∈V(G) define Av := {P : P is an absorber for v} and A :=⋃

v∈V(G) Av. In particular, recalling
Definition 5.4, note that the sets in A each have size 8. Note that Lemma 5.5 with k= 2, implies
that |Av| ≥ ξn8 for every v ∈V(G). Similarly to before, take a random subset B ⊆ A , in which
every element is taken with probability p := γ n/|A |; note that standard concentration inequalities
imply that

P(|B| ≥ 2p|A |)≤ 1/2 and P(∃v ∈V(G) : |B ∩ Av| ≤ p|Av|/2)< 1/4.
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Moreover, if X is the random variable counting the number of pairs P, P′ ∈ B sharing at least one
vertex, it is not hard to check that P(X ≥ γ 3/2n)< 1

4 . Hence, we may pick a collection B ⊆ A for
which all bad events above fail. In particular, after deleting at most γ 3/2n elements from such a
collection, we obtain a collection P ⊆ A of pairwise vertex-disjoint absorbers satisfying

|P| ≤ 2γ n and |P ∩ Av| ≥ γ 3/2n for every v ∈V(G). (7.7)

We can now sequentially connect up the absorbers in P into a single 2-path PA via repeated
applications of Lemma 5.14. In each application of Lemma 5.14, we only introduce at most 16 new
vertices; this ensures (i) holds. Further, (7.7) ensures 2 holds.

Choosing a reservoir. We choose a reservoir R⊆V(G)\V(PA), by taking a random set in
which every vertex from V(G)\V(PA) is included independently with probability γ 2/4. With
positive probability, we have

(a) γ 2n/8≤ |R| ≤ γ 2n/2 and
(b) given any pair of vertex-disjoint edges ab, yz ∈ E(G), and any set U ⊆R\{a, b, y, z} of size

at most η|R|/4, there is a 2-path P on at most 20 vertices from ab to yz inG[R∪ {a, b, y, z}]
which avoids U.

Indeed, one can ensure thatR satisfies δ(G[R∪ {a, b, y, z}])≥ (8/5+ η/2)|R∪ {a, b, y, z}| for
all choices of ab, yz ∈ E(G); then (b) follows by applying Lemma 5.14.

Covering most vertices and final absorption. As before, we construct a 2-cycle H′ in G
covering all vertices except at most η2n. Let G′ :=G\(V(PA)∪R) and note that

δ(G′)≥
(
8
5

+ η − 32γ − γ 2

2

)
n≥

(
3
2

+ γ 3
)
n.

Lemma 5.2 with k= 2, and γ 3 playing the role of η, implies the existence of at most T vertex-
disjoint 2-paths in G′, covering all but at most γ 3n vertices in G′. We can now greedily connect
these 2-paths and the absorbing 2-path PA viaR by iteratively applying property (b). LetH′ be the
resulting 2-cycle.

We finish by noting that |V(G)\V(H′)| ≤ γ 3n+ |R| ≤ γ 2n. Thus, the absorbing property (ii)
implies that H′ can be extended to the square of a Hamilton cycle in G.

8. Further discussion and results
8.1 Open problems and approaches to almost covering
In this paper, we asymptotically resolved Conjecture 1.3 in the case of the square of a Hamilton
cycle (Theorem 1.4). Obtaining a connecting lemma is the main barrier to extending our proof to
kth powers of a Hamilton cycle more generally. For example, consider an n-vertex digraph G with
δ(G)= (5/3+ o(1))n. So certainly G satisfies the minimum total degree condition from the k= 3
case of Conjecture 1.3. However, δ(G)= (5/3+ o(1))n only implies that δ+(G)≥ (2/3+ o(1))n.
Thus, there could be three vertices x, y, z ∈V(G) for which |N+

G (x)∩N+
G (y)∩N+

G (z)| = o(n).
Even worse, if one considers a digraph G as in the k≥ 4 cases of Conjecture 1.3, then there can

be k-sets of vertices in G without a single common out-neighbour. In this case, it is impossible to
prove a direct analogue of Lemma 5.14 where one can connect any k-set of vertices to another k-set
via a short k-path. Instead, one would likely need a connecting lemma more akin to Lemma 6.8.

It is also natural to look at minimum degree conditions that force a kth power of a Hamilton
path in a digraph or oriented graph. For example, Ghouila-Houri [21] proved that every n-vertex
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digraph G with minimum total degree δ(G)≥ n− 1 contains a Hamilton path.6 Notice that the
extremal construction for Conjecture 1.3 given in Proposition 3.1 actually contains the kth power
of a Hamilton path. We suspect that the minimum total degree threshold for forcing a kth power
of a Hamilton path in a digraph is lower than the corresponding threshold in Conjecture 1.3. Such
a phenomenon may also occur for the minimum semi-degree problem in oriented graphs. Note
that the former problem is closely linked to the problem of relaxing the minimum total degree
condition in Conjecture 1.3 at the expense of a connectivity-type condition.

The almost covering lemma (Lemma 6.10) for Theorem 1.5 has a different flavour to analogous
results in the literature. Indeed, a standard approach is to follow the strategy that was used in [27]
to prove Conjecture 1.1 for large graphs. In [27], the authors find a Kk+1-tiling in the reduced
graph R of the host graph G so that most vertices in R are covered by these cliques. Then they use
an (undirected) graph analogue of Lemma 4.8 to ‘wind around’ these copies of Kk+1 in R to obtain
a collection of vertex-disjoint k-paths in G covering most of the vertices.

Thus, a natural approach to Theorem 1.5 would have been to first obtain a minimum semi-
degree condition that forces an almost spanning Ck

�-tiling in an oriented graph G where � ≥
2k+ 1. Then one would be able to make use of Lemma 4.8 to obtain an almost covering lemma.

The difficulty with this approach is that it is not immediately clear that one can even obtain such
a Ck

�-tiling result. For example, a special case of a result of Bollobás and Häggkvist [4, Theorem 4]
tells us that there are arbitrarily large regular tournaments (i.e. oriented graphs with the largest
possible minimum semi-degree) that do not even contain a single copy of C2

5. This highlights
that both Turán-type and H-tiling problems in oriented graphs are much more subtle than their
(undirected) graph analogues. We discuss these problems further in the next subsection.

8.2 Turán-type and tiling problems for oriented graphs
We say that an oriented graph H is Turánable if there exists n0 ∈N such that for all oriented
graphsG on n≥ n0 vertices, if δ0(G)≥ �(n− 1)/2�, thenH ⊆G. Thus, in the previous subsection,
we stated that C2

5 is not Turánable. If we restrict to odd n, then H being Turánable is equivalent
to H being contained in every sufficiently large regular tournament. This case corresponds to
the notion of omnipresent, which was introduced by Bollobás and Häggkvist [4] more than three
decades ago.

LetDr denote the tournament on 3r vertices obtained from the r-blow-up C3(r) of the directed
cycle C3 by replacing the three independent sets in C3(r) with transitive tournaments. The next
theorem is a slight generalisation of one of Bollobás and Häggkvist’s results, rephrased into our
language.7

Theorem 8.1 (Bollobás and Häggkvist [4]). A tournament T is Turánable if and only if T ⊆Dr for
some r ∈N.

Given � ≥ 2k+ 1, it is not hard to see that Ck
� ⊆Dr for some r ∈N if and only if � ≥ 3k. In the

next subsection, we prove that Theorem 8.1 also holds for power of cycles.

Theorem 8.2. Let k≥ 1 and � ≥ 2k+ 1. Ck
� is Turánable if and only if Ck

� ⊆Dr for some r ∈N.
Equivalently, Ck

� is Turánable if and only if � ≥ 3k.

In fact, we believe Theorem 8.1 can be extended to all oriented graphs.

6Note one does not require that G is strongly connected here.
7While the proof of Theorem 8.1 is essentially identical to the proof of Theorem 4 in [4], we note that the statement of the

latter theorem does not quite imply the former (unless one can prove that omnipresent implies Turánable). This is because in
order for a graphH to be Turánable, it must also hold that for every sufficiently large even n,H is a subgraph of every oriented
graphG on n vertices with minimum semi-degree at least n

2 − 1, which may not even be a tournament. The forward direction
of Theorem 8.1 follows from Theorem 4 in [4] because Turánable clearly implies omnipresent. The upcoming Proposition 8.5
provides the proof for the backward direction of Theorem 8.1.
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Conjecture 8.3. An oriented graph H is Turánable if and only if there is an r ∈N with H ⊆Dr .

It is also natural to look at the analogous problem forH-factors. We say that an oriented graph
H is tileable if there exists n0 ∈N such that for all oriented graphs G on n≥ n0 vertices with n
divisible by |H|, if δ0(G)≥ �(n− 1)/2�, then G contains an H-factor. For example, it is known
that all acyclic oriented graphs (including transitive tournaments) are tileable; see [37, Theorem
1.3]. Directed cycles are also tileable; see [29, 36].

The next question is perhaps the most natural starting point in the study of tileability.

Question 8.4. Let H be an oriented graph. Is it true that H is tileable if and only if H is Turánable?

Once one knows that an oriented graph F is Turánable, the next step is to determine the mini-
mum semi-degree threshold for forcing a copy of F in an oriented graph. Thus, given n ∈N and a
Turánable oriented graph F, define

ex0(n, F) :=max{δ0(G) : G is an n-vertex oriented graph with F �⊆G}.
Further, set κ0(F) := limn→∞ ex0(n,F)

n ∈ [0, 1/2]. The proof that this limit exists can be shown
similarly as in [31, Proposition 1.2]. In Section 8.4, we prove the following result.

Proposition 8.5. There exists a constant K > 1 such that, for each r ∈N, κ0(Dr)< 1
2 − 1

Kr .

Note that Proposition 8.5 is quite a useful result. Indeed, given any oriented graph F such that
F ⊆Dr , we have that κ0(F)≤ κ0(Dr); so Proposition 8.5 provides an upper bound on κ0(F).

In fact, if Conjecture 8.3 holds, then κ0(F)< 1/2 for every Turánable oriented graph F.
Moreover, since Ck

� ⊆D� for every � ≥ 3k, we have the following corollary for powers of cycles.

Corollary 8.6. There is a K > 1 such that for every k ∈N and � ≥ 3k, we have κ0(Ck
�)≤ 1

2 − 1
K� .

Note that the problem of determining κ0(C3) is a special case of the minimum semi-degree
version of the Caccetta–Häggkvist conjecture, and it is known that 1/3≤ κ0(C3)≤ 0.343545; see
[30].

For k≥ 2, the best lower bound construction we found for an oriented graph with high
minimum semi-degree not containing a copy of Ck

3k is given by the blow-up of a semi-regular
tournament on 3k− 1 vertices. It would be interesting to determine if this is indeed the best
construction, at least for the first non-trivial case.

Question 8.7. Is it true that κ0(C2
6)= 2/5?

Remark 8.8. After this paper first appeared online, Araujo and Xiang [3] made progress on the
above-mentioned problems. They disproved Conjecture 8.3, and answered Questions 8.4 and 8.7
in the negative. In particular, regarding Question 8.4, they showed that for all r ≥ 2, Dr is not
tileable.

8.3 Proof of Theorem 8.2
Define the tournament Fr iteratively as follows. Let F1 := C3. For r ≥ 2, let Fr be the vertex-disjoint
union of three copies of Fr−1, namely, F1, F2, and F3, and add all edges from V(F1) to V(F2), from
V(F2) to V(F3), and from V(F3) to V(F1). Note that Fr is a regular tournament on 3r vertices.

Before proving Theorem 8.2, we make one observation regarding the tournaments Fr .

Observation 8.9. Let k ∈N. If 2k+ 1≤ � ≤ 3k− 1, then Ck
� �⊆ Fr for all r ∈N. �

Proof. Let � ≥ 2k+ 1 and r ∈N. Observe that if |Fr| = 3r < � then clearly Ck
� �⊆ Fr .

Let C := Ck
� be a k-cycle with vertices v1, . . . , v� and suppose that C ⊆ Fr (and consequently

3r ≥ �). We shall prove by induction on r that � ≥ 3k.
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If r = 1, then C ⊆ F1 implies that C = C3, that is, k= 1 and � = 3; so indeed � ≥ 3k. For the
inductive step, letV1,V2, andV3 be the three vertex classes such thatVi :=V(Fi) for i ∈ [3], where
the Fi correspond to the three copies of Fr−1 given in the definition of Fr . If V(C)⊆Vi for some
i ∈ [3], then C ⊆ Fr−1 and we conclude by induction. Thus, we may assume that this is not the
case; notice that this actually implies that C intersects each of V1, V2, and V3. Therefore, without
loss of generality, suppose V1 is the class with the smallest number of vertices from C and that
v1 ∈V3 and v2 ∈V1. Then, the k− 1 successors of v2 in C, namely, v3, . . . , vk+1, are all contained
inV1, since they are all in the out-neighbourhood of both v1 and v2. In particular, |V(C)∩V1| ≥ k.
Since V1 is the class with the smallest amount of vertices from C, then � ≥ 3k. �

Now Theorem 8.2 is an immediate consequence of Observation 8.9 and Theorem 8.1.

Proof of Theorem 8.2. If � ≥ 3k, then Ck
� ⊆D�, and since D� is Turánable by Theorem 8.1, we

have that Ck
� is Turánable.

If 2k+ 1≤ � ≤ 3k− 1, then Observation 8.9 implies Ck
� �⊆ Fr for all r ∈N. Since Fr is itself a

regular tournament on 3r vertices with δ0(Fr)= 1
2 (3

r − 1), Ck
� is not Turánable by definition. �

8.4 Proof of Proposition 8.5
The proof of Proposition 8.5 makes use of Lemma 6.10. We will also use the following result,
which just follows immediately by combining Lemma 1.3 and Theorem 3.5 from [19].

Theorem 8.10 (Fox and Sudakov [19]). Given any ε > 0, there exists δ > 0 such that the following
holds for all r ∈N and n≥ δ−4r/δ . If T is an n-vertex tournament with δ0(T)≥ εn, then Dr ⊆ T.

Now we are ready to prove Proposition 8.5.

Proof of Proposition 8.5. Let δ > 0 be the output of Theorem 8.10 on input ε := 2/5. Let K :=
max{203 · 106000, 203 · δ−12/δ} and Q :=max{102000, δ−4r/δ}; so Kr ≥ (20Q)3.

Suppose G is a sufficiently large n-vertex oriented graph with δ0(G)≥ (1/2− 1/Kr)n. By
Lemma 6.10 (with k= 2), certainly there exists a tournament T on Q or Q+ 1 vertices in G, such
that δ0(T)≥ 2|T|/5. As |T| ≥ δ−4r/δ , Theorem 8.10 implies that Dr ⊆ T ⊆G, as desired. �
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