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Bootstrap current plays a crucial role in the equilibrium of magnetically confined plas-
mas, particularly in quasi-symmetric stellarators and in tokamaks, where it can represent
bulk of the electric current density. Accurate modeling of this current is essential for
understanding the magnetohydrodynamic (MHD) equilibrium and stability of these con-
figurations. This study expands the modeling capabilities of M3D-C1, an extended-MHD
code, by implementing self-consistent physics models for bootstrap current. It employs
two analytical frameworks: a generalized Sauter model (Sauter et al. 1999 Phys. Plasmas
vol. 6, no. 7, pp. 2834–2839), and a revised Sauter-like model (Redl et al. 2021 Phys.
Plasmas vol. 28, no. 2, pp. 022502). The isomorphism described by Landreman et al.
(2022 Phys. Rev. Lett. vol. 128, pp. 035001) is employed to apply these models to
quasi-symmetric stellarators. The implementation in M3D-C1 is benchmarked against
neoclassical codes, including NEO, XGCa and SFINCS, showing excellent agreement.
These improvements allow M3D-C1 to self-consistently calculate the neoclassical contri-
butions to plasma current in axisymmetric and quasi-symmetric configurations, providing
a more accurate representation of the plasma behavior in these configurations. A work-
flow for evaluating the neoclassical transport using SFINCS with arbitrary toroidal
equilibria calculated using M3D-C1 is also presented. This workflow enables a quanti-
tative evaluation of the error in the Sauter-like model in cases that deviate from axi- or
quasi-symmetry (e.g. through the development of an MHD instability).

Key words: plasma simulation, fusion plasma, plasma instabilities

1. Introduction

Bootstrap current is a neoclassical electrical current in the plasma driven by inho-
mogeneities in the magnetic field and is proportional to temperature and density
gradients in the plasma (Peeters 2000; Helander 2012). In tokamaks and quasi-
symmetric stellarators, the bootstrap current can represent a significant fraction of
the total current density, and it can strongly affect the rotational transform of the
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magnetic field (Helander, Geiger & Maaßberg 2011; Neuner et al. 2021). Therefore,
accurate calculation of this current is essential for capturing corrections due to
neoclassical physics.

Neoclassical transport can be calculated by solving the drift-kinetic equation.
While several codes exist to solve this equation, obtaining a self-consistent state
requires solving both the drift-kinetic equation and the magnetohydrodynamic
(MHD) equilibrium equations iteratively (Landreman, Buller & Drevlak 2022). This
process is computationally intensive (Redl et al. 2021). As a more efficient alterna-
tive, analytical models can be employed to approximate neoclassical transport. One
such model is the approach taken by Sauter, Angioni & Lin-Liu (1999), which pro-
vides a local expression for the bootstrap current and neoclassical conductivity. In
this model, the coefficients relating the bootstrap current to temperature and pres-
sure gradients are obtained by fitting results from the codes CQL3D (Monticello
1993; Killeen et al. 2012) and CQLP (Sauter, Harvey & Hinton 1994) applied to a
range of axisymmetric equilibria. This model, however, is known to be less accurate
at higher electron collisionalities ν∗

e > 1 limiting its applicability near the plasma edge
(Koh et al. 2012; Landreman & Ernst 2012). The model relies on three neoclassical
parameters: fraction of trapped particles ft , collisionality ν∗ and effective charge
number Zef f . To overcome these limitations, a revised version of the Sauter model,
developed by Redl et al. (2021), utilizes the NEO code (Belli & Candy 2008; Belli &
Candy 2011), a drift-kinetic solver for neoclassical steady-state solutions. The revised
model offers enhanced accuracy and robustness across a broader range of collision-
alities, extending its applicability beyond the limitations of the original Sauter model.
Both the Sauter model and the Redl model have been extensively verified and tested
in tokamak geometry.

However, these models are not generally applicable to stellarators because they
are exclusively fit to calculations in axisymmetric geometry. A recent approach
by Landreman et al. (2022) addresses this by exploiting the isomorphism between
axisymmetric and quasi-symmetric configurations. This method allows the appli-
cation of the Redl model to compute the bootstrap current in quasi-symmetric
stellarators. Here, quasi-symmetry refers to the special condition in which the mag-
netic field strength B = |B| exhibits continuous symmetry in a suitable coordinate
system. Specifically, B depends only on the flux-surface label (ψ) and a linear
combination of Boozer poloidal (θ ) and toroidal angles (ζ ), such that for an inte-
ger N representing the toroidal periodicity of the geometry, B = B(ψ, θ − Nζ )
(Landreman et al. 2022). This symmetry ensures conserved guiding-center motion
analogous to that in axisymmetric fields (Landreman 2019).

Bootstrap current models have been implemented into nonlinear MHD models at
various levels of fidelity. A heuristic model of the bootstrap response was imple-
mented in NIMROD in order to model neoclassical tearing modes (Gianakon,
Kruger & Hegna 2002). The Sauter model has been implemented into JOREK
and has been applied to dynamical modeling of the H-mode pedestal during Edge-
Localised Mode (ELM) cycles (Pamela et al. 2017). At higher fidelity, and potentially
applicable to arbitrary geometry, are approaches in which the MHD equations
are augmented and closed by the introduction of a kinetic equation for the non-
Maxwellian contributions to the distribution function (Wang & Callen 1992; Ramos
2010, 2011). Progress has been made in developing these models (Held et al. 2004;
Lyons, Jardin & Ramos 2015) and implementing them into nonlinear MHD codes
(Held et al. 2015), but they remain extremely computationally expensive and, thus
far, limited in their application.
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Challenges remain in integrating these advances into comprehensive simulation
frameworks, and there is still a notable gap in the ability of nonlinear MHD
simulation codes to treat stellarators. Most MHD codes assume axisymmetric com-
putational domains and are designed for tokamak applications and are only able
to handle weakly shaped stellarator geometries (Schlutt et al. Schlutt et al., 2012,
2013; Roberds et al., 2016). Recent advancements, however, have enabled M3D-C1
to model the nonlinear MHD evolution of strongly shaped stellarator plasmas by
accommodating non-axisymmetric domain geometries (Zhou et al. 2021). The abil-
ity to treat stellarator geometry has also recently been implemented in JOREK3D
(Nikulsin et al. 2022) and NIMSTELL (Carl & Brian 2021).

In this work, we further extend the capabilities of the M3D-C1 code to include
self-consistent physics models for bootstrap current for both tokamak and quasi-
symmetric stellarator geometry. For the calculation of bootstrap current, we use
the Sauter et al. (1999) formula and its improved version described in Redl et al.
(2021). Building on the method developed by Landreman et al. (2022), we apply
isomorphism between axisymmetric and quasi-symmetric geometries to compute the
bootstrap current for quasi-symmetric stellarator configurations.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the M3D-C1 code, including implementation details of the two bootstrap current
models. This section also outlines the neoclassical models used for validation and
verification. Section 3 details the computational set-up and presents results of cross-
verification between M3D-C1 and the neoclassical models for a tokamak case and
two quasi-axisymmetric stellarator cases. Additionally, this section presents simula-
tions of the nonlinear evolution of a quasi-axisymmetric (QA) stellarator equilibrium,
highlighting the impact of the bootstrap model. Finally, § 4 offers a summary of the
findings and a discussion of their implications.

2. Model description

The M3D-C1 code is a high-fidelity extended-MHD code (Jardin et al. 2012a).
It employs a split-implicit time scheme, which allows for time steps that extend
beyond the Alfvénic time scale, enabling stable simulations on the transport time
scale (Jardin 2012). The code utilizes high-order finite elements with C1 continuity,
constructed on an axisymmetric mesh. Recent developments have enabled M3D-
C1 to model the MHD evolution of stellarator plasmas by accommodating non-
axisymmetric domain geometries (Zhou et al. 2021). The governing equations for
both tokamak and stellarator simulations are fully detailed in Jardin et al. (2012a)
and Zhou et al. (2021), while the single-fluid model equations, relevant to the analysis
of plasma behavior in this work, are reproduced in Appendix C.

In the present work, we extend M3D-C1 to include a non-inductive current source,
specifically, the bootstrap current, by modifying Ohm’s law as follows:

E = −v×B + η[J − J x ]. (2.1)

Where, E is the electric field, v is fluid velocity, η is the electrical resistivity, and
J is the current density. This is equivalent to adding a force on the electrons Fe

x
such that Fe

x = −η ne e J x , which corresponds to removing the contribution of J x to
the friction force on the electrons due to collisions with ions (Braginskii 1965). Thus,
collisional drag will cause the current density to decay towards J x . Even if the force
is applied instantly, the actual current in the plasma J = ∇×B/μ0 will evolve on
resistive time scales. How this force appears in the ion momentum equation depends
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on whether this is an internal force (e.g. the bootstrap current) or an external force
(here, μ0 is the permeability of free space). For an internal force, there must be an
equal and opposite force in the ion momentum equation, which results in no net
force added to the MHD force balance equation.

For a force consistent with a purely parallel, divergence-free current (J x =
J‖(B/B)), the quantity J‖/B must remain constant on a magnetic surface. Using
this condition, we can relate the local parallel current to the magnetic field via the
expression

J‖ = 〈J x · B〉
〈B2〉 B, (2.2)

where 〈·〉 denotes the magnetic surface average. To calculate 〈Jx · B〉, the general-
ized neoclassical models of Sauter et al. (1999) and Redl et al. (2021) are employed,
which provide analytical expressions for this quantity. The specific forms of these
models are given in Appendix A.

For stellarators, the bootstrap current is computed using the method introduced by
Landreman et al. (2022) (shown in (2.3)), which exploits the isomorphism between
axisymmetric and quasi-symmetric geometries

〈Jx · B〉 = G̃

ι− N

[
L31

(
pe
∂ ln ne

∂ψt
+ pi

∂ ln ni

∂ψt

)

+ pe(L31 + L32)
∂ ln Te

∂ψt
+ pi(L31 + αL34)

∂ ln Ti

∂ψt

]
. (2.3)

Here, G̃(ψt)= G + N I , G is μ0/2π times the poloidal current outside the flux-
surface (ψt), I is μ0/2π the toroidal current inside the flux-surface (ψt), ψt is
toroidal flux per radian i.e. Ψt = 2π ψt , ι is the rotational transform, pe/ i , ne/ i , Te/ i

are the electron (ion) pressures, densities and temperatures and α, L31, L32, L34

are the bootstrap coefficients (see Appendix B for further definitions). The Sauter–
Redl–Landreman formulation requires information about the global equilibrium,
quantities such as G, I and ψt . This information is generally not known within M3D-
C1, as its treatment of magnetic field does not assume the presence of magnetic
surfaces. To address this challenge, a separate calculation is performed in which an
approximate magnetic coordinate system is constructed from M3D-C1 output using
Fusion-IO (Ferraro 2025), taking isotherms of Te as proxies for magnetic surfaces.
Due to the strongly anisotropic conduction of Te, these isotherms closely coincide
with magnetic surfaces when surfaces exist and the dynamics is sufficiently slow;
when surfaces do not exist, the isotherms are related to quadratic flux minimiz-
ing surfaces (Dewar, Hudson & Price 1994). However, it is worth reiterating that
the Sauter–Redl–Landreman formula is valid only in quasi-symmetric geometries.
Limitations introduced by deviations from quasi-symmetry are discussed in § 3.2.

To evaluate the neoclassical bootstrap current density and its related coefficients
correctly, it is necessary to compute quantities such as the trapped particle frac-
tion ft and geometric factors like the inverse aspect ratio ε and q R (as defined
in Appendix B). These parameters are integral to the expressions for the boot-
strap current coefficients α, L31, L32 and L34 (see Redl et al. 2021 for detailed
expressions). To facilitate these calculations, we define a coordinate system based
on the electron temperature isotherms, T̂e = 1 − Te/T max

e with T max
e being the max-

imum electron temperature within the plasma domain. This is roughly analogous
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to the normalized flux ΨtN =ψt/ψLC F S. Within this framework, the global equilib-
rium quantities 〈I (T̂e)〉, 〈G(T̂e)〉, 〈T̂e〉, along with 〈 ft(T̂e)〉, 〈ε(T̂e)〉, 〈q R(T̂e)〉 and
ι(T̂e)= (dΨp/dT̂e)/(dΨt/dT̂e) are calculated externally to M3D-C1 as flux-surface
averages (all flux-surface averaging is performed externally). They are then read
into M3D-C1 at the start of the simulation and extrapolated to local mesh coordi-
nates. During the dynamical simulations, the bootstrap coefficients α, L31, L32 and
L34 are evaluated locally at each time step using the evolving profiles of T̂e. The
global equilibrium quantities are re-extrapolated at the beginning of each time step
to reflect the updated T̂e distribution. Using T̂e rather than Te enables a consistent
treatment of cases where the temperature profile evolves in amplitude but maintains
its shape, thereby avoiding unnecessary recomputation of the global quantities and
other variables required for the calculation of the bootstrap coefficients.

To validate the accuracy of the bootstrap current calculations in M3D-C1 simu-
lations, the results are compared with predictions from well-established neoclassical
codes, namely: (i) XGCa, a global total-f gyrokinetic neoclassical code, where f is
the 5D phase space distribution function (see Hager & Chang 2016 for details),
(ii) NEO, a drift-kinetic neoclassical steady-state solver, a detailed description of
which can be found in Belli & Candy (2008, 2011) and (iii) the stellarator neoclassi-
cal code SFINCS (the stellarator Fokker–Planck iterative neoclassical conservative
solver), which solves the radially local four-dimensional drift-kinetic equation with-
out assuming quasi-symmetry. See Landreman et al. (2014) for further details. These
comparisons are performed for both tokamak (NEO, XGCa, SFINCS) and quasi-
symmetric stellarator (SFINCS) geometries, ensuring consistent and reliable results
across a range of magnetic confinement configurations.

3. Numerical results: bootstrap current calculations
3.1. Tokamak case verification

For the verification study, the low aspect ratio ‘CIRC1’ case from Hager &
Chang (2016) is considered here. The configuration features a circular cross-section
with inverse aspect ratio ε = 0.84 at the outer boundary. In this analysis, following
Hager & Chang (2016), the inverse aspect ratio ε is defined as the ratio of the mean
minor radius amean = (Rmax − Rmin)/2 to the geometrical center Rc = (Rmax + Rmin)/2
of a flux surface, where Rmax and Rmin are the maximum and minimum major radii
on a flux surface. The density and temperature profiles used in the simulations are
tanh-type pedestals, as shown in figure 1(a).

Figure 1(b) shows the bootstrap current profile for the CIRC1 configuration.
Maximum bootstrap current occurs at ψN ∼ 0.89, where ε = 0.63 and the electron
collisionality ν∗

e is 0.92. A comparison between the M3D-C1 code using the Sauter
et al. (1999) model and the NEO code’s Sauter model reveals a 2.18 % difference at
the peak of the bootstrap current profile. Furthermore, the bootstrap current pro-
files from M3D-C1 and XGCa are nearly identical, with a difference of only 0.04 %
at the peak. The M3D-C1 profile calculated using the Redl et al. (2021) model shows
a 2.12 % difference from XGCa and a 1.01 % difference from SFINCS profiles at
the peak. It is important to highlight that the electron collisionality in this configu-
ration is less than unity (ν∗

e < 1), which is within the regime where the Sauter and
Redl models are expected to provide reasonable approximations. While no single
code serves as a definitive reference, NEO and SFINCS solve the drift-kinetic equa-
tion directly and provide high-fidelity neoclassical transport calculations. Given the
complexity of bootstrap current calculations, agreement within a few percent at the
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FIGURE 1. Set-up and results for tokamak verification: (a) prescribed density and temperature
distributions; (b) bootstrap current profiles showing that M3D-C1 results closely approximate
those from the drift-kinetic calculations. 1Hager & Chang (2016), 2Belli & Candy (2008, 2011),
3Landreman et al. (2014).

profile peak is generally considered acceptable. Accordingly, the strong agreement
among M3D-C1, NEO-3D, SFINCS and XGCa simulations supports the validity of
the bootstrap current calculations for this case.

3.2. Stellarator verification
The implementation of Redl et al. (2021) formulae with the isomorphism as

defined by Landreman et al. (2022) are verified on two QA stellarator configurations
from Landreman & Paul (2022) and Landreman et al. (2022). These QA configu-
rations both have a minor radius of 1.70 m and volume-averaged B = 5.86 T. The
density (n) and temperature (T ) profiles for both cases are specified using

n(ψtN )= n0

(
1 −ψ5

tN

)
, (3.1a)

T (ψtN )= T0

(
1 −ψtN

)
, (3.1b)

where ψtN is the normalized toroidal flux. For the first case (QA_Case1), a
pure hydrogen plasma with n0 = nH,0 = 4.13 × 1020 m−3 and T0 = TH,0 = 12 keV
(Landreman et al. 2022; Landreman et al. 2022 – § IV) is considered. This case uses a
VMEC (Hirshman & Whitson, 1983) equilibrium with zero plasma pressure. VMEC
is an equilibrium solver commonly used in stellarator optimization, which uses a vari-
ational method to find the minimum total energy of a system. The bootstrap current
is calculated using the temperature and density profiles shown in figure 2(a), how-
ever, it is not self-consistent with the equilibrium. The second case (QA_Case2) is
a QA configuration with n0 = ne,0 = 2.38 × 1020 m−3, T0 = Te,0 = 9.45 keV, that was
optimized for volume-averaged β =2.5 % (see Sect. VIC in Landreman et al. 2022)).
Here, β is the ratio of the plasma pressure to the magnetic pressure. Figures 2 and
3 provide further details of each configuration including the equilibrium profiles,
cross-sections at various toroidal angles and three-dimensional views.

Figure 4 compares M3D-C1’s bootstrap current profile with those of the SFINCS
and Redl formulae from Landreman et al. (2022). It is evident from figure 4 that
M3D-C1’s implementation of the modified Redl et al. (2021) formulae, as presented

https://doi.org/10.1017/S0022377825100834 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100834


Journal of Plasma Physics 7

FIGURE 2. Quasi-axisymmetric configuration (QA_Case1): (a) density and temperature equi-
librium profiles, (b) toroidal cross-sections of the plasma boundary and (c) three-dimensional
view.

FIGURE 3. Optimized QA configuration with a volume-averaged β = 2.5 % (QA_Case2):
(a) density and temperature equilibrium profiles, (b) toroidal cross-sections of the plasma
boundary and (c) three-dimensional view.

in Landreman et al. (2022), is in close agreement with the SFINCS and Redl based
on calculations from Landreman et al. (2022). Minor discrepancies between the pro-
files may be attributed to numerical treatments between the codes or to temperature
isotherms not being exactly aligned with the magnetic surfaces, although the exact
sources remain unclear. Nevertheless, the results strongly support the robustness of
M3D-C1’s implementation in these complex configurations.

3.3. Stellarator: nonlinear evolution
In this section, the impact of the bootstrap model on the nonlinear evolution of a

QA stellarator equilibrium is analyzed. The simulations conducted in M3D-C1 are
initialized using the QA equilibrium profile from section VIC of Landreman et al.
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FIGURE 4. Bootstrap current profiles for (a) quasi-axisymmetric configuration (QA_Case1)
and (b) optimized QA configuration with volume-averaged β = 2.5%. (QA_Case2).
1Landreman et al. (2014), 2Redl et al. (2021).

(2022) (QA_Case2). The nonlinear evolution of the equilibrium are begun from
an initial state with nested magnetic surfaces. This equilibrium, developed using
SIMSOPT optimization software (Landreman et al. 2021), was optimized for low
quasi-symmetry error, good energetic particle confinement and a self-consistent boot-
strap current. The initial equilibrium profiles used in the simulations in this section
are shown in figure 3(a). The computational domain is aligned with the shape of the
equilibrium plasma, bounded by the last closed flux surface. The viscosity coefficient
is fixed at (ν = 3.65 × 10−4 kg (ms)−1). The heat transport is modeled according to
(C5), which accounts for thermal energy exchange and diffusion across the plasma.
To explore a range of physical scenarios, several simulation configurations are exam-
ined. Four resistivity profiles are considered, using the Spitzer resistivity model with
varying scaling factors of η0 = {1, 10, 1000, 10 000}. The general resistivity form is
expressed as

η(R, φ, Z)= ηnorm η0 T −3/2
e (R, φ, Z), (3.2)

where ηnorm = 2.74 Ωm is the normalization factor for the classical resistivity value,
η0 is an artificial scale factor and Te is the electron temperature at the position
(R, φ, Z). In this set of simulations, the perpendicular thermal conductivity (κ) is
held constant at 2.18 × 10−20 m−1 s−1. To assess the effect of the bootstrap model,
all configurations are evaluated with the bootstrap model both enabled and disabled.

The simulations are performed on a semi-structured grid consisting of 36 toroidal
planes, resulting in a total of 1.88 × 105 three-dimensional elements within the com-
putational domain. The grid is designed to provide sufficient resolution to accurately
capture the nonlinear dynamics of the plasma.

Figure 5 shows the toroidal current density profiles from simulations with η0 =
10000 at two times, t = 0 and t = 250τA, comparing the cases with and without the
bootstrap current model. In the absence of the bootstrap model, the current decays
over time. In contrast, when the bootstrap model is enabled, the current is main-
tained, emphasizing its role in sustaining plasma currents. However, despite these
differences, the simulations remain MHD unstable, and the current continues to
evolve. The plasma instability is further evidenced by the Poincaré plots in figure 6.
At t = 250.0τA in figure 6, these plots reveal that the chaotic region at the plasma
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FIGURE 5. Toroidal current density profiles for simulations with resistivity scale factor η0 =
104, comparing simulations with and without the bootstrap (BS) model at t = 0 and 250τA,
highlighting the effect of the bootstrap current model on the profile evolution.

FIGURE 6. Poincaré sections of the magnetic field starting from a QA stellarator equilibrium
optimized at 2.5 % plasma beta for the case with resistivity scale factor η0 = 104 (QA_Case2).
The sections are shown as a function of time for 0 ≤ t ≤ 350τA, comparing simulations with the
bootstrap model disabled (top row) and enabled (bottom row).

boundary is significantly smaller when the bootstrap model is enabled, indicating
that enabling the bootstrap model modifies the evolution of instabilities by slowing
the breakup of magnetic surfaces.

It was found in Wright & Ferraro (2024a) that the growth of instabilities in equi-
libria similar to the ones under consideration here exist in the limit of low resistivity
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FIGURE 7. Time evolution of total kinetic energy for varying resistivity scaling factors η0 = 1,
10, 1000 and 10 000 demonstrating faster kinetic energy growth at higher resistivity.

(e.g. are essentially ideal), but are accelerated at high resistivity. Because the instabili-
ties progressed more rapidly than the resistive decay time, it was concluded that this
result was not a consequence of neglecting the bootstrap current drive; for exam-
ple, through the spurious resistive decay of equilibrium currents that are actually
driven by the bootstrap effect. Now that we are in a position to evaluate this with a
bootstrap model included, we vary the resistivity scaling factor η0 here, running sim-
ulations with η0 =1, 10, 1000 and 10 000. Figure 7 shows the kinetic energy grows
more rapidly with increasing resistivity, supporting the conclusions of Wright &
Ferraro (2024a) that resistivity enhances the growth rate, even when the bootstrap
model is included.

To further investigate the stability of the equilibrium over time, the deviation from
quasi-symmetry is quantified as the system evolves. This is achieved by calculat-
ing the two-term quasi-symmetry error (FQS) (Helander & Simakov 2008; Helander
2014; Paul, Antonsen & Cooper 2020), as shown in the following equation:

FQS =
〈{

1
B3

[(N − ιM)B×∇B · ∇ψ − (MG + N I )B · ∇B]
}2
〉

(3.3)

where B is the magnetic field, M = 1, N = 0 for quasi-axisymmetry. The notation
〈·〉 denotes the magnetic surface average, with isotherms of Te serving as proxies for
magnetic surfaces, consistent with the approach used in the bootstrap current calcu-
lation. Figure 8 compares FQS obtained from M3D-C1 outputs with the bootstrap
model enabled, at two distinct times t = 0.0, t = 250.0τA, as well as from SFINCS
and VMEC using the t = 0 equilibrium. The M3D-C1 FQS metric closely resem-
bles the VMEC quasi-symmetry error. While the equilibrium evolves over time, as
observed in the Poincaré plots, the FQS value does not significantly change in the
range 0< t < 250 τA, indicating that quasi-symmetry is maintained throughout this
period. However, beyond t > 250, the chaotic region grows, making it difficult to
generate well-defined isothermal surfaces globally (at which point neoclassical trans-
port is likely strongly subdominant to parallel transport along chaotic field lines
anyway), so analysis is concluded there.
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FIGURE 8. Two-term quasi-symmetry error as defined in (3.3) for the QA stellarator equilibrium
optimized at 2.5 % plasma beta (QA_Case2) with a resistivity scale factor η0 = 104.

4. Summary and discussion

This work enhances the capabilities of the M3D-C1 extended-MHD code by incor-
porating self-consistent bootstrap current models for tokamak and quasi-symmetric
stellarator geometries. Two models are implemented, namely, (a) the Sauter model
(Sauter et al. 1999) and (b) the Redl model (Redl et al. 2021). For quasi-symmetric
stellarators, the isomorphism outlined by Landreman et al. (2022) is employed.

The numerical verification presented in this work demonstrates the accuracy of
these new implementations. In § 3.1, the bootstrap current in a tokamak with a cir-
cular plasma boundary is tested using both bootstrap models. Comparisons between
the flux-surface-averaged bootstrap current from the updated M3D-C1 code and
results from established neoclassical codes, such as XGCa (Hager & Chang 2016),
NEO (Belli & Candy 2008, 2011) and SFINCS (Landreman et al. 2014), show
excellent agreement.

In § 3.2, the bootstrap current is evaluated in two quasi-symmetric stellara-
tor configurations, QA_Case1 and QA_Case2. These results are compared with
SFINCS calculations, yielding good agreement. Finally, § 3.3 explores the applica-
tion of the updated M3D-C1 code to nonlinear MHD simulations of an optimized
QA stellarator configuration, where the expected toroidal current sustainment is
observed.

The accurate modeling of bootstrap currents is critical to understanding and
improving plasma performance in magnetic confinement devices. These results not
only verify the bootstrap models in the updated M3D-C1 code but also highlight its
potential to improve the design and optimization of future fusion reactors through
accurate neoclassical current predictions in non-axisymmetric geometries. The suc-
cessful implementation and verification of these models provides a solid foundation
for advancing nonlinear MHD simulations, offering crucial insights that can guide
the design and operational strategies of next-generation fusion devices.

This capability will enable new investigations into nonlinear MHD physics where
bootstrap current is expected to be important. In particular, this includes transport-
time scale simulations where the global equilibrium evolves due to heating, as is done
in nonlinear calculations of pressure limits (cf. Wright & Ferraro 2024b), sawtooth
cycles (cf. Jardin et al. 2012b) and ELM cycles (cf. Futatani et al. 2021), for example.
While the implementation described here is only strictly valid for quasi-symmetric

https://doi.org/10.1017/S0022377825100834 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100834


12 S. Saxena, N.M. Ferraro, M.F. Martin and A. Wright

magnetic geometries, the ability to calculate the neoclassical transport of generic
non-axisymmetric output using NEO 3D (Sinha et al. 2022, 2023) and SFINCS (as
described above) enable post hoc evaluation of the accuracy of the Sauter–Redl–
Landreman model. These capabilities also lay the groundwork for coupled M3D-
C1/NEO 3D or M3D-C1/SFINCS modeling, which would be applicable to a wider
range of geometries. One fundamental challenge is that the treatment of stochastic
regions is beyond the scope of existing neoclassical theory, and requires a kinetic-
MHD theory to treat self-consistently. In cases where the accuracy of the dynamics
of these regions is less critical, such as when the time evolution is slow or time-
dependent effects are negligible, the flattening of temperature and density profiles
by classical transport along stochastic field lines, which is naturally included in the
extended-MHD model, is expected to dominate over neoclassical effects in any case.
We also note that the Sauter–Redl–Landreman models implemented here, as well as
NEO 3D and SFINCS, all calculate time-independent transport, and are therefore
not able to treat time-dependent neoclassical response. In principle this limits the
applicability of the model on Alfvénic time scales (e.g. kink modes) – compounded
by the fact that these modes are not likely to maintain quasi-symmetry – but the
neoclassical response is not expected to play a significant role in such phenomena
anyway.
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Appendix A. Bootstrap current formulation
The bootstrap current formulation used in this study follows (A1) (Sauter et al.

1999; Sauter, Angioni & Lin-Liu 2002) and (A2) (Redl et al. 2021)

〈Jx · B〉 = 〈 j‖ B〉 = −F(ψ)

(
pL31

∂ ln p

∂ψ
+ pe L32

∂ ln Te

∂ψ
+ piαL34

∂ ln Ti

∂ψ

)
, (A1)

〈Jx · B〉 = 〈 j‖ B〉 = −F(ψ)[
pL31

∂ ln n

∂ψ
+ pe(L31 + L32)

∂ ln Te

∂ψ
+ pi(L31 + αL34)

∂ ln Ti

∂ψ

]
, (A2)

where F(ψ)= R Bφ , ψ is poloidal flux per radian i.e. Ψp = 2πψ , R is the major
radius and Bφ the toroidal magnetic field. For details on the definitions of the
coefficients in these equations, please refer to the corresponding references.
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For convenience, the common terms used to calculate the coefficients in (A1) and
(A2) and their definitions, as presented in Sauter et al. (1999) and Redl et al. (2021)
are summarized below.

The trapped particle fraction, denoted by ft is

ft = 1 − 3
4
〈B2〉

∫ 1/Bmax

0

λdλ

〈√1 − λB〉 . (A3)

The effective electron and ion collisionalities are

ν∗
e = 6.921 × 10−18 q Rne lnΛe

T 2
e ε

3/2
, (A4a)

ν∗
i = 4.9 × 10−18 q RZ 4ne lnΛi i

T 2
i ε

3/2
. (A4b)

The Coulomb logarithms are

Λe = 31.3 − ln
(√

ne

Te

)
, (A5a)

Λi i = 30 − ln

(
Z 3√ni

T 3/2
i

)
. (A5b)

Here, R (m) is the major radius, q = 1/ι is the safety factor, with electron (Te) and
ion (Ti ) temperatures in eV and densities (ne and ni ) in m−3.

Appendix B. Isomorphism
For applicability to quasi-symmetric stellarators, the Redl et al. (2021) formula is

modified according to the isomorphism as defined in Landreman et al. (2022), see
(2.3).

Noting that the rotational transform is defined as ∂ψ/∂ψt = ι, we have

∂

∂ψt
= ι

∂

∂ψ
. (B1)

In the case of axisymmetry, N = 0 and G = F = R Bφ in (2.3) recovers the result of
Redl et al. (2021). For the calculation of the bootstrap coefficients, the factors q R
in (A4a) and (A4b) and the inverse aspect ratio ε are defined as follows:

q R = G + ιI

ι− N

〈
1
B

〉
, (B2a)

ε = Bmax − Bmin

Bmax + Bmin
. (B2b)

Appendix C. M3D-C1: single-fluid equations
Summary of the M3D-C1 equations used in this study (reproduced from Jardin

et al. (2012a))

∂n

∂t
+ ∇ · (nv)= 0, continuity, (C1)

nmi

(
∂v

∂t
+ v · ∇v

)
= J×B − ∇ p − ∇ · Π + F, momentum, (C2)
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∂p

∂t
+ v · ∇ p + Γ p∇ · v = (Γ − 1)[ηJ 2 − ∇ · q − Π : ∇v + Q], energy,

= (Γ − 1)[η J · (J − Jx) − ∇ · q − Π : ∇v + Q] (C3)

∂B
∂t

= ∇×(v×B − η J)

= ∇×[v×B − η(J − J x)], (C4a)

J = 1
μ0

∇×B, Maxwell, (C4b)

q = κ⊥∇Te − κ‖
B B
B2

· ∇Te, heat transport model, (C5)

where n is the density, v is the fluid velocity, mi is ion mass, J is the current
density, B is the magnetic field, p is the pressure, Π is the viscous stress tensor,
F is the external force, Q is external heat source, Γ = 5/3, η is the resistivity, q
is the heat flux and μ0 is the vacuum permeability. The viscous stress tensor is the
sum of the ion and electron stress tensors Π = Πi + Πe. The ion stress tensor has
several contributing processes implemented following Πi = Π⊥

i + Π∧
i + Π

‖
i , where

Π⊥
i is perpendicular ion viscosity, which represents the simple cross-field angular

momentum diffusivity, Π∧
i is the ion gyroviscosity, which represents the finite ion

Larmor radius effects, and Π∧
i is the parallel ion viscosity, representing the pressure

anisotropy. The Πe term is implemented as a hyper-resistive term.
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