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Abstract

The Gehring–Martin–Tan inequality for two-generator subgroups of PSL(2,C) is one of the best known
discreteness conditions. A Kleinian group G is called a Gehring–Martin–Tan group if the equality holds
for the group G. We give a method for constructing Gehring–Martin–Tan groups with a generator of order
four and present some examples. These groups arise as groups of finite-volume hyperbolic 3-orbifolds.
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1. Introduction

In this paper we are interested in discreteness conditions for groups of isometries of
a hyperbolic 3-space H3. It was shown by Jørgensen that it suffices to understand the
discreteness problem for a class of two-generated groups. The most famous necessary
discreteness conditions are the Shimizu lemma and the Jørgensen inequality [2]. There
are some generalisations of these conditions for complex and quaternionic hyperbolic
spaces (see, for example, [5, 8, 15]).

A description of the set of all two-generated discrete nonelementary groups of
isometries H3 for which the equality holds in the Jørgensen inequality is an open
problem of special interest. For many elegant results concerning this problem, see
[4, 7, 17] and references therein.

We shall consider a different discreteness condition for two-generated groups which
was independently proved by Gehring and Martin [7] and Tan [18]. Like the Jørgensen
inequality, this condition takes the form of an inequality involving the trace of one of
the generators and the trace of the commutator of generators. We shall say that a group
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is a GMT-group if it can be generated by two elements for which the equality holds.
The following problem arises naturally.

Problem 1.1. Find all GMT-groups.

The problem is still open. In this paper we shall present a method to construct new
examples of GMT-groups from known examples.

The most interesting example of a GMT-group is a group related to the well-known
figure-eight knot. Denote by F (n) the orbifold with the underlying space S 3 and
singular set the figure-eight knot F with singularity index n, n ≥ 4. According to
[1], the orbifolds F (n) are extreme in the following sense: let Ln denote the set of
all orientable hyperbolic 3-orbifolds with nonempty singular set and with all torsion
orders bounded below by n. Therefore,

L2 ⊃ L3 ⊃ L4 ⊃ · · · and ∩ Ln = ∅.

Then, for all n ≥ 4, the unique lowest-volume element of Ln is the orbifold F (n). A
formula for volF (n) was given in [21]. It was shown in [19] that F (4) is extreme
in the sense of discreteness conditions: the orbifold group of F (4) is a GMT-group.
Below we shall use the orbifold group of F (4) as a starting point for constructions of
new examples of GMT-groups.

In Section 2 we shall give basic definitions and describe some properties of
GMT-groups. In particular, we shall prove Lemma 2.4, which gives a method for
constructing new GMT-groups. Next, we shall apply this method. In Section 3 we
shall prove that some 3-orbifold hyperbolic groups related to the figure-eight knot
are GMT-groups. In Section 4 we shall give examples of GMT-groups which are
subgroups of the Picard group.

2. Gehring–Martin–Tan discreteness condition
Let H3 be the three-dimensional hyperbolic space presented by the Poincaré model

in the upper halfspace. Then the boundary ∂H3 can be identified with C. It is
well known that the group Iso(H3) of all orientation-preserving isometries of H3 is
isomorphic to

PSL(2,C) = SL(2,C)/{±I},

where I denotes the unit matrix. In the sequel we shall not distinguish between a matrix
M ∈ SL(2,C) and its equivalence class {±M} ∈ PSL(2,C). An action of

g =

(
a b
c d

)
∈ PSL(2,C)

on
H3 = {(z, t) | z ∈ C, t ∈ R+}

is defined by the following rule:

g(z, t) =

( (az + b)(cz + d) + act2

|cz + d|2 + |c|2t2 ,
t

|cz + d|2 + |c|2t2

)
.

Recall that a matrix M ∈ SL(2,C)\{±I} is said to be:
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• elliptic if tr2(M) ∈ [0, 4);
• parabolic if tr2(M) = 4; and
• loxodromic if tr2(M) ∈ C\[0, 4].

In particular, a loxodromic element is said to be:

• hyperbolic if tr(M) ∈ (−∞, 0) ∪ (2,+∞).

We shall say that an element of the group PSL(2,C) is elliptic, parabolic or loxodromic
if its representative in SL(2,C) is of such type.

A group G < PSL(2,C) is said to be discrete if it is a discrete set in the matrix
quotient topology. A group G < PSL(2,C) is said to be elementary if there exists a
finite G-orbit in H3 ∪ C, and nonelementary otherwise.

In 1977, Jørgensen proved in [9] that a nonelementary group G < PSL(2,C) is
discrete if and only if any two elements f , g ∈ G generate a discrete group. His result
motivated many other investigations of discreteness conditions for two-generated
groups. In the present paper we shall discuss the necessary discreteness condition
obtained in 1989 by Gehring and Martin [7] and independently by Tan [18]. We
formulate their result as follows.

Theorem 2.1 [7, 18]. Suppose that f , g ∈ PSL(2,C) generate a discrete group. If
tr[ f , g] , 1, then the following inequality holds:

|tr2( f ) − 2| + |tr[ f , g] − 1| ≥ 1. (2.1)

This result makes the following definitions natural. For f , g ∈ PSL(2,C) such that
tr[ f , g] , 1, define

G( f , g) = |tr2( f ) − 2| + |tr[ f , g] − 1|.

Let G < PSL(2,C) be a two-generated group. The value

G(G) = inf
〈 f ,g〉=G

G( f , g)

is referred to as the Gehring–Martin–Tan number (or, shortly, the GMT-number) of G.
A two-generated discrete group G < PSL(2,C) is said to be a GMT-group if it can be
generated by f and g such that G( f , g) = 1.

The following statement shows (see also [20]) that the property G( f , g) = 1 implies
many restrictions on f .

Lemma 2.2. Suppose that f , g ∈ PSL(2,C) generate a discrete group and tr[ f , g] , 1.
Assume that f is one of the following transformations:

(i) parabolic;
(ii) hyperbolic;
(iii) elliptic of order 2 or 3; or
(iv) elliptic with trace tr2( f ) = 4 cos2(πk/n), where (n, k) = 1, n/k ≥ 6.

Then, for any g, G( f , g) > 1.
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Proof. The result follows immediately from the classification of elements of PSL(2,C)
and from the fact that G( f , g) is defined for pairs f , g such that tr[ f , g] , 1.

(i) If f is parabolic, then tr2( f ) = 4 and therefore |tr2( f ) − 2| = 2 > 1.
(ii) If f is hyperbolic, then tr( f ) ∈ (−∞, 0) ∪ (2,∞), so |tr2( f ) − 2| > 2.
(iii) If f is elliptic of order 2, then tr2( f ) = 0, so |tr2( f ) − 2| = 2. If f is elliptic of order

3, then tr2( f ) = 1, so |tr2( f ) − 2| = 1. Since tr[ f , g] , 1, we get G( f , g) > 1.
(iv) If f is elliptic with trace tr2( f ) = 4 cos2(πk/n), where (n, k) = 1 and n/k ≥ 6, then

tr2( f ) ≥ 4 cos2(π/6) = 3, so |tr2( f ) − 2| ≥ 1. Since tr[ f , g] , 1, G( f , g) > 1. �

The following statement gives a way to find GMT-subgroups of GMT-groups with
a generator of order four.

Lemma 2.3 [20]. Let 〈 f ,g〉 be a GMT-group withG( f ,g) = 1, where f is elliptic of order
four. Then a group generated by f and h = g f g−1 is a GMT-group with G( f , h) = 1.

The following statement gives a method for constructing GMT-groups as extensions
of GMT-groups with a generator of order four.

Lemma 2.4. Let 〈 f , g〉 be a GMT-group with G( f , g) = 1, where f is elliptic of order
four. Assume that h ∈ PSL(2,C) is an involution of 〈 f , g〉 with one of the following
conjugation actions:

(i) h f h−1 = g;
(ii) h f h−1 = f −1; or
(iii) h f h−1 = f g−1 f −1.

Then 〈 f , h〉 is a GMT-group.

Proof. Since f is elliptic of order four, we have tr2( f ) = 2 and hence G( f , g) =

|tr[ f , g] − 1| and G( f , h) = |tr[ f , h] − 1|. Since h is an involution, it follows that either
〈 f , g〉 is a subgroup of index 2 in 〈 f , h〉, or 〈 f , g〉 and 〈 f , h〉 coincide. Therefore, 〈 f , h〉
is discrete. Recall that by [2] the identify

tr[ f , h f h−1] = (tr[ f , h] − 2)
(
tr[ f , h] − tr2( f ) + 2

)
+ 2 (2.2)

holds for any f , h ∈ PSL(2,C). From (2.2), using tr2( f ) = 2,

tr[ f , h f h−1] = (tr[ f , h] − 2)tr[ f , h] + 2.

Hence,
|tr[ f , h f h−1] − 1| = |tr[ f , h] − 1|2. (2.3)

Consider the case (i) with h f h−1 = g. Then

|tr[ f , h f h−1] − 1| = |tr[ f , g] − 1| = G( f , g) = 1.

Therefore, G( f , h) = 1.
Consider the case (ii) with h f h−1 = f −1. Then

|tr[ f , h f h−1] − 1| = |tr[ f , f −1] − 1| = 1.
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Figure 1. Generators of the group π1(S 3\F ).

Therefore, G( f , h) = 1.
Consider the case (iii) with h f h−1 = f g−1 f −1. Then

|tr[ f , h f h−1] − 1|= |tr[ f , f g−1 f −1] − 1| = |tr( f g−1 f −1g) − 1|
= |tr([ f , g]−1) − 1| = |tr[ f , g] − 1| = 1.

Here we used the relation tr (α−1) = trα for α ∈ SL(2,C). Therefore, G( f , h) = 1. �

In the next section we shall realise a method based on Lemma 2.4.

3. The figure-eight knot and related orbifolds

Let us denote by F the figure-eight knot in the 3-sphere S 3 presented by its diagram
in Figure 1. The knot group π1(S 3\F ) can be easily found by the Wirtinger algorithm.
Taking generators b and ρ, the corresponding loops are marked in Figure 1. Thus,

π1(S 3\F ) = 〈ρ, b | ρ−1 [
b, ρ

]
=

[
b, ρ

]
b〉,

where [b, ρ] = bρb−1ρ−1. It is well known [16] that the group π1(S 3\F ) has a faithful
representation in PSL(2,C).

Denote by F (n) the orbifold with the underlying space S 3 and singular set F
with singularity index n, where n ≥ 4. Cyclic n-fold coverings of F (n) are known
as Fibonacci manifolds (see [13, 22] for their interesting properties). We call F (n) the
figure-eight orbifold. Denote its orbifold group by Γn = πorbF (n). The group Γn has
the following presentation:

Γn = 〈ρn, bn | ρ
n
n = bn

n = 1, ρ−1
n

[
bn, ρn

]
=

[
bn, ρn

]
bn〉,

where generators ρn and bn correspond to loops ρ, b ∈ π1(S 3\F ). It is well known that
for n ≥ 4 the group Γn has a faithful representation in PSL(2,C). According to [14],
this representation is defined on the generators by

ρn =

(
cos(π/n) iedn/2 sin(π/n)

ie−dn/2 sin(π/n) cos(π/n)

)
, bn =

(
cos(π/n) ie−dn/2 sin(π/n)

iedn/2 sin(π/n) cos(π/n)

)
. (3.1)
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The quantity dn, defined as the complex distance between the axis of fn and the axis
of gn, is given by

cosh dn = 1
4

(
1 + cot2(π/n) − i

√
3 cot4(π/n) + 14 cot2(π/n) − 5

)
.

The image of Γn under this representation is a nonelementary discrete group. In what
follows, we shall not distinguish between the group Γn and its image under the faithful
representation.

GMT-numbers of the figure-eight knot group and of the figure-eight orbifold groups
were studied in [19]. It was shown that G

(
π1(S 3\F )

)
= 3 and the following result was

obtained.

Theorem 3.1 (See [19]). Let n ≥ 4. Then the following inequalities hold for the figure-
eight orbifold groups:

1 ≤ G(Γn) ≤ 3 − 4 sin2 π

n
.

By writing the above inequalities for n = 4, we immediately get the following result.

Corollary 3.2 (See [19]). The figure-eight orbifold group Γ4 is a GMT-group.

This result can be checked directly. Indeed, by (3.1), we have tr2(ρn) = 4 cos2(π/n),
so |tr2(ρ4) − 2| = 0. Also, by [19, Lemma 1], for any λ ∈ R,

|tr[ρn, bn] − λ| =
√

(λ2 − 3λ + 3) + 4(λ − 1) sin2(π/n)

and this gives |tr[ρn, bn] − 1| = 1 for any n. Hence, G(ρn, bn) = 1.

4. Quotient orbifolds of the figure-eight orbifold

Lemma 4.1. The figure-eight orbifold group Γn, n ≥ 4, has involutions of types (i), (ii)
and (iii) from Lemma 2.4.

Proof. Being one of the simplest knots, the figure-eight knot has been intensively
studied. In 1914, Dehn [6] demonstrated that the figure-eight group Γ has eight outer
automorphisms forming the dihedral group

〈σ, τ | σ2 = τ4 = (στ)2 = 1〉,

where σ(ρ) = b,
σ(b) = ρ

and

τ(ρ) = ρbρ−1,

τ(b) = b−1ρb.

Later, in 1931, Magnus [11] proved that Γ has no other outer automorphisms. It is
obvious that the actionsσ(ρn) = bn,

σ(bn) = ρn
and

τ(ρn) = ρnbnρ
−1
n ,

τ(bn) = b−1
n ρnbn
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Figure 2. Singular sets of O1(n) and O2(n).

Table 1. Automorphisms of Γn.

σ τ τ2 τ3 στ στ2 στ3

ρn bn ρnbnρ
−1
n b−1

n b−1
n ρ−1

n bn b−1
n ρnbn ρ−1

n ρnb−1
n ρ−1

n

bn ρn b−1
n ρnbn ρ−1

n ρnb−1
n ρ−1

n ρnbnρ
−1
n b−1

n b−1
n ρ−1

n bn

are outer automorphisms of Γn for any n. The action of the group 〈σ, τ〉 by
automorphisms on Γn is presented in Table 1 (see also [23]).

Note that F (n), n ≥ 4, is a hyperbolic 3-orbifold of finite volume (see, for example,
[3]). There are two involutions acting as described in the statement of Lemma 2.4. For
any n, there is h1 ∈ Iso(H3) such that

σ(ρn) = h1ρnh−1
1 = bn,

where the involution σ is of type (i) in Lemma 2.4, and also h2 ∈ Iso(H3) such that

στ2(ρn) = h2ρnh−1
2 = ρ−1

n ,

where the involution στ2 is of type (ii). For any n, there exists h3 ∈ Iso(H3) which
realises τ2 with conjugation by bn:

bn(τ2(bn))b−1
n = h3bnh−1

3 = bnρ
−1
n b−1

n

and the involution h3 is of type (iii). �

Let us define two orbifolds with a 3-sphere S 3 as the underlying space. Denote by
O1(n) the orbifold with singular set the spatial theta-graph presented in Figure 2 with
singularities 2, 2 and n at its edges, as indicated in the figure. Denote by O2(n) the
orbifold with singular set the two-component link 62

2 with singularities 2 and n at its
components, as presented in Figure 2.

Theorem 4.2. The orbifold group πorbO1(4) is a GMT-group.

Proof. For a fixed n, consider the involution h1 ∈ Iso(H3) from the proof of Lemma 4.1
such that h1ρnh−1

1 = bn and h1bnh−1
1 = ρn. For ρn and bn given by (3.1), we have

h1 = ( 0 i
i 0 ). An extension of Γn by h1 has the following presentation:

∆n = 〈ρn, bn, h1 | ρ
n
n = bn

n = h2
1 = 1, ρ−1

n
[
bn, ρn

]
=

[
bn, ρn

]
bn, h1ρnh−1

1 = bn〉. (4.1)
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Figure 3. Singular set of F (n)/h1.

It is easy to see that the conjugation by h1 is induced by an involution of S 3 whose axis
corresponds to the dotted line in Figure 1 and intersects the figure-eight knot F in two
points. This symmetry induces an isometry, also denoted by h1, of the orbifold F (n).

The quotient space F (n)/h1 has S 3 as its underlying space. Its singular set is a
spatial graph with two vertices presented by a diagram in Figure 3. This graph can
be described as the torus knot 51 with a tunnel AB. Points A and B are the images of
intersection points of the singular set of F (n) with the axis of the involution h1. Two
edges of this graph, which are images of the axis of h1, have singularity index 2, and
the third edge, which is the image of the singular set of F (n), has singularity index n.

It can be checked directly (see, for example, [23]) that the orbifold group of
F (n)/h1 is isomorphic to ∆n with generators ρ, b and h1, as pictured in Figure 3.
Indeed, the relations (4.1) hold by the Wirtinger algorithm. In particular, the relation
ρ−1

n
[
bn, ρn

]
=

[
bn, ρn

]
bn is a consequence of the fact that the loop around its unknotting

tunnel AB (see [12] about unknotting tunnels) is an element of order two in the orbifold
group. Obviously, the spatial theta-graphs presented diagrammatically in Figure 2(left)
and Figure 3 are equivalent, so πorbO1(n) = ∆(n). Eliminating bn from (4.1), we see
that ∆n is a two-generated group with generators ρn and h1.

Suppose that n = 4. By Corollary 3.2, Γ4 is a GMT-group and the pair Γ4 and h1
satisfies case (i) of Lemma 2.4. Hence, πorbO1(4) is a GMT-group. �

Theorem 4.3. The orbifold group πorbO2(4) is a GMT-group.

Proof. To see the symmetry of h3, we shall redraw the singular set of the orbifold F (n)
as in Figure 4. Define λ = bρb−1 (see Figure 4). It is easy to see that h3 corresponds
to a rotational symmetry of order two such that b goes to λ−1 and λ goes to b−1.
Therefore, h3bh−1

3 = bρ−1b−1, corresponding to the case (iii) of Lemma 2.4. Using
ρ = b−1h3b−1h3b from the defining relation ρ−1[b, ρ] = [b, ρ]b, we get the relation

bh3bh3b−1h3b−1h3bh3 = h3bh3b−1h3b−1h3bh3b,

which corresponds to the canonical defining relation of the two-generated fundamental
group of the two-bridge link 10/3 pictured on the right in Figure 2 (see also [23]).
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Figure 4. Singular set of the orbifold F (n).

Figure 5. Singular sets of orbifolds O3 and O4.

Thus, the group generated by ρn, bn and h3 is the orbifold group πorbO2(n). Suppose
that n = 4. By Corollary 3.2, Γ4 is a GMT-group and the pair Γ4 and h3 satisfies the
case (iii) of Lemma 2.4. Hence, πorbO2(4) is a GMT-group. �

5. More examples of GMT-groups

In this section we shall give two more examples of GMT-groups. Let us denote the
orbifolds with the singular set presented in Figure 5 by O3 and O4. The singular set
of O3 is a spatial graph with two vertices that can be described as a Hopf link with an
unknotting tunnel. The singular set of O4 can be described as a double link with an
unknotting tunnel. Singularity indices are presented in Figure 5. Both singular vertices
of O3 belong to ∂H3. One of the singular vertices of O4 belongs to ∂H3, whereas the
other one lies in H3.

Theorem 5.1. The orbifold groups of πorbO3 and πorbO4 are GMT-groups.

Proof. The orbifold group of πorbO3 has the following presentation:

πorbO3 = 〈a, b | a4 = b4 = 1, [a, b]2 = 1〉,

where a relation [a, b]2 = 1 corresponds to a loop around a tunnel. Concerning the
hyperbolicity of this orbifold, see, for example, [10]. Let us use the letters a and
b also for images of generators in the group Iso(H3), corresponding to a faithful
representation. Then tr2(a) = 2 and tr[a, b] = 0. Hence, πorbO3 is a GMT-group.
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It can be seen from Figure 5 that the singular set of O3 has a symmetry of order two
that exchanges a and b. This symmetry induces an involution τ of πorbO3 defined by

τ(a) = pap−1 = b and τ(b) = pbp−1 = a

for some p ∈ Iso(H3). It is easy to verify that the quotient orbifold O3/p is isometric
to O4. Moreover, πorbO4 is two-generated with generators a and p, and p satisfies case
(i) of Lemma 2.4. Hence, πorbO4 is a GMT-group and has the presentation

πorbO4 = 〈a, p | a4 = p2 = 1, (apapa−1 pa−1 p)2 = 1〉. �
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