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1.

Following Craven (1965) we say that a set M of natural numbers is harmon-
ically convergent if

(1) £

converges, and we call n(M) the harmonic sum of M. (Craven defined these
concepts for sequences rather than sets, but we found it convenient to work with
sets.) Throughout this paper, lower case italics denote non-negative integers.

Let r > 1, 1 g; m ̂  r, and 0 ̂  dt < d2 < ••• < dm < r. We define

(2) M{t) = M{r;dud2,-,dn;tut2,-,tm)

to be the set of natural numbers which contains the digit dt exactly tt times
(i = 1,2, •• •, m) when expressed in the scale of r. Further, let

MM = {[V][neM(0},

M°(0 = {[nx]\neM(t), n < r),

m

T = E h,

T* =

where [x] denote the least integer ^ x and 0! = 1. Note that M°(t) is empty if
T > 1. We prove the following theorems.
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THEOREM 1. If d^ > 0 and X > log(r - m)/logr, then

/r~l 1 m 1 \

r + 1 ( s 4 - s 4

THEOREM 2. If dt > 0,m < r,andO ^ 2 ^ log(r - m)/logr, (/jen MA(0 is
not harmonically convergent, i.e. n(Mx{t)) = oo.

2.
To prove the theorems, we first prove some lemmata. We assume throughout

that dt > 0.

LEMMA 1. For I 2; 1 we have

ll(r-m)'-T

0«<,. r*(/-r)! lJ l = r'
b B M(t)

= 0 if 1<T.

PROOF. The case I < T is obvious. Let / ^ T. If 6 < r' then

i - i

ft = E 6/r
/ where 0 ^ bj < r.

7 = 0

The sum in the lemma equals the number of ways we may choose (b0, bu •••, ft,_ t )

such that bj = dt for exactly tt values of j(i = 1,2, •••, m). The T element of which

f; have value dt may be chosen in

U

ways, and for the remaining (I — T) elements there are (r — m) possible choices.
This proves the lemma.

LEMMA

PROOF.

2.

By

<x
\

For X >

CO

y

Lemma

log(r-m)/logr

1 I 1
6e~M(«)

1 we get

00 1

,b<r' 7 = 1 r

we have

T\rk

T V _ r + m ) r + i

n(r-m)'-r

T*(l — TV.
6 6 M(«)
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= Tl y l l\/r-m\l

T*(r-mY l = T

T*(r~

Tlrx

T-trif L r-m

We now prove Theorem 1. For k ̂  1 and X > log(r — m)/logr we have, with
'i = (*i»-",'i-i> < i - l» U+i>'-;tJ, and A = {a\ 1 g a < r and a ^ dt for
i = 1,2, —,m),

1 1 * 1
^ "r FT = ^ T lr\ ~^~ ^ ^ —a

n E M(() n e M(<)

k

+ 1
1 = 1

b e M(ti)

aeA " ! = 1 ~ OSKr 1 i = l " / / = 1 ' O S K r '
bsM(t) beM(tt)

Letting k -*• oo, Theorem 1 follows from this by Lemma 2.
To prove Theorem 2, we first note that [x] < 2x for x > 1. Hence, by

Lemma 1,

1 1 * 1 1 * 1

[nA] 2 / = 1 r . g n < p I + i nx 2 , = 1
0

= 1 *

~ 2T*(r-m)V|\ T )[ rx

vhen k -* co.
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3.

In Kleve (1971) we treated the case: A integer, dt > 0, and tt= 0, i = l,2,---,m.
The estimates given there are better then those given by Theorem 1. Better estimates
may be given in the general case, but the expressions seem to be very complicated.

Craven (1965) and Alexander (1971) gave estimates for n(Ul=oM(t)) m the
special case m = 1. Improved estimates for this sum may be obtained from
Theorem 1. In general, if Mj, j = 1,2, •••,s are harmonically convergent sets, then
so is U j - 1 Mj and

J U ^ i n(Mj).

In fact, \i is a measure on the <r-algebra of all subsets of the set of natural numbers.
If we consider the special case A = m = 1 in Theorem 1, we get, for t > 0,

r - l <

1 = 1 » °

r(logr+ 1).
Further

MMO)) ^ Klog r + 1),

" = i if , = 1.

= 0 if t > 1.

Hence, for T ^ 1,
r

u
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