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Large-eddy simulation has been used to model turbulent channel flow over a range of
surfaces featuring a prominent spatial heterogeneity; the flow streamwise direction is
aligned relative to the heterogeneity at a range of angles, defined herein with θ . Prior
work has established that a sharp roughness heterogeneity orthogonal to the flow
streamwise direction (θ = 0) induces formation of an internal boundary layer, which
originates at the heterogeneity and thickens in the downflow direction before being
homogenized via ambient shear. In contrast, more-recent studies have shown that a
sharp roughness heterogeneity parallel to the flow streamwise direction (θ = π/2)
induces streamwise-aligned, Reynolds-averaged secondary cells, where the spacing
between adjacent surface heterogeneities regulates the spatial extent of secondary
cells. No prior study has addressed intermediate (oblique) cases, 06 θ 6π/2. Results
presented herein show that the momentum penalty exhibits a nonlinear dependence
upon obliquity, where internal boundary layer-like flow processes persist over a range
of obliquity angles before abruptly vanishing for spanwise roughness heterogeneity
(θ = π/2). This result manifests itself within effective roughness lengths recovered
a posteriori: the traditional approach to roughness modelling – predicated upon
dependence with surface geometric arguments including height root-mean-square,
skewness, frontal- and plan-area index, effective slope. and combinations thereof – is
insufficient. A revised model incorporating dependence upon roughness frontal area
index and flow-heterogeneity obliquity angle is able to accurately predict effective
roughness length a priori.

Key words: turbulence modelling

1. Introduction
Inertia-dominated rough-wall turbulence figures prominently in engineering and

geophysical flows; in engineering flows, roughness affects thermal efficiency and
aero-/hydro-dynamic performance of lifting surfaces, while roughness in geophysical
flows affects, for example, land–atmosphere interactions and benthic sequestration
rates in the ocean bottom-boundary layer. For turbulent wall flow of depth, δ, over
a spatially homogeneous roughness distribution with characteristic amplitude, h,
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FIGURE 1. Visualization of heterogeneous roughness cases, where panels (a,e) correspond
with canonical spanwise-heterogeneous and IBL cases, respectively, while panels (b–d) are
oblique flow–roughness alignment cases. Panel (c) includes annotation of the azimuthal
angle origin, based on the Cartesian coordinate system alignment for θ = 0 (x′1 − x′2) and
θ =π/4 (x1− x2), and showing how panels (a–e) correspond to θ =π/2, 3π/8, π/4, π/8
and 0, respectively. Spacing between rows of adjacent high roughness, s/δ, noted in panels
(a,e). Panel ( f ) shows a streamwise–wall-normal transect visualization of a prototypical
roughness element, which is a vertically truncated, square-based pyramid, and where solid
black, dark grey, grey and light grey correspond to cases A1, B1, C1 and D1, respectively
(table 1; case discussion to follow).

the ratio, δ/h, regulates outer (inertial) layer structural attributes; δ/h & 20 is a
well-established lower limit on the presence of outer-layer similarity (Townsend
1976; Jimenez 2004; Flack, Schultz & Connelly 2007). For δ/h . 20, vortical flow
processes emanating from the roughness sublayer attenuate inertial-layer turbulence
spatial correlation. Prognostic models for roughness effects are typically based upon
a roughness length, z0 = z0(X), where X = {X1, X2, . . . , Xn} are geometric attributes
of the rough surface; z0 can be used within the equilibrium (logarithmic) condition
for prediction of Reynolds-averaged streamwise velocity (in this document, the first,
second and third components of all vectors are aligned with the streamwise, x1,
spanwise, x2, and wall-normal, x3, directions, respectively).

Spatial heterogeneity in roughness confounds application of traditional roughness
metrics. For discussion, we define a roughness heterogeneity composed of ‘stripes’
of relatively high- and low-roughness length, z0,h and z0,l, respectively, where z0,h
represents the influence of a distribution of roughness elements with height, h,
while z0,l represents a surrounding ‘low’ roughness. A range of such cases are
shown in figure 1, where panel (a) shows a canonical spanwise-heterogeneous
case, for which the flow streamwise direction is aligned parallel to the roughness
heterogeneity. Spanwise heterogeneities are responsible for Reynolds-averaged flow
heterogeneities (Barros & Christensen 2014; Vanderwel & Ganapathisubramani 2015;
Medjnoun, Vanderwel & Ganapathisubramani 2018), which are known to be a
realization of Prandtl’s secondary flow of the second kind (Anderson et al. 2015a)
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(discussion to follow). The stripes of elements in figure 1(a–e) could notionally be
represented by z0,h, while the surrounding white space represents the ‘less rough’
region and could be represented by the lower roughness length, z0,l.

Figure 1(e), in contrast, shows a scenario wherein the flow streamwise direction is
aligned orthogonal to the heterogeneity. This scenario induces formation of an internal
boundary layer (IBL) (Antonia & Luxton 1971): an abrupt production of turbulence
across the heterogeneity, and associated formation of an internal layer originating
at the heterogeneity and thickening in the streamwise direction. In this article, an
azimuthal angle, θ , is introduced to define alignment of the flow streamwise direction
relative to the roughness heterogeneity; the origin of the azimuthal angle is selected
such that θ =π/2 and 0 correspond to a canonical spanwise heterogeneity (figure 1a)
and streamwise heterogeneity (figure 1e), respectively (θ and its origin are denoted
in figure 1c).

Cases with θ = 0 have received sustained attention for many years, while the
flow physics associated with θ = π/2 arrangements have, in more recent times,
also gained attention. One can envision that scenarios wherein the flow is aligned
precisely parallel (figure 1a) or orthogonal (figure 1e) to a roughness heterogeneity
are likely the exception, not the norm: cases of practical importance in engineering
and geophysics are expected to encounter roughness heterogeneities at oblique angles,
i.e. 0 < θ < π/2. Nugroho, Hutchins & Monty (2013) have performed experimental
measurement of turbulent boundary layer flow over a ‘herringbone’ roughness pattern,
composed of riblets in a converging–diverging pattern; this work is one exception
to the sparsity of prior efforts on oblique roughness. However, since Nugroho et al.
(2013) consider a distribution wherein lines of convergence and divergence are
streamwise aligned and spaced evenly (in the span), this arrangement does not
provide a clear basis for assessing flow response to oblique arrangements; indeed,
Nugroho et al. (2013) reviewed spanwise–wall-normal distributions of turbulence
statistics and flow depth.

In this article, results of large-eddy simulation (LES) of inertia-dominated turbulent
channel flow over the arrangements shown in figure 1 are shown. We consider cases
with θ = π/2 (figure 1a), 3π/8 (figure 1b), π/4 (figure 1c), π/8 (figure 1d) and
0 (figure 1e); as noted in the following section, use of a pseudospectral LES code
necessitates periodicity of the lower boundary, thereby dictating the specific values
of θ considered for this work. In addition to obliquity, θ , the height of roughness
elements is also varied; we consider vertically truncated, square-based pyramidal
roughness elements (element transect shown in figure 1f ). The transition from
spanwise-heterogeneous roughness flow response (θ = π/2, figure 1a) to IBL (θ = 0,
figure 1e) is nonlinear: IBL-like structure is persistent even for small obliquity values,
before vanishing abruptly for pure spanwise-heterogeneous arrangements. A prognostic
roughness model is proposed, which incorporates obliquity. An additional roughness
parameter affecting aero-/hydro-dynamics of these surfaces is the spacing, s/δ,
between adjacent rows of relatively high roughness. For simplicity, we consider cases
with s/δ ≈ π for this work (Anderson et al. 2018) (figure 1a,e shows annotations).
Previous work has established that that this spacing is optimal for maintaining δ-scale
streamwise rolls; herein, our sole focus was reconciling the flow response to variable
obliquity for idealized cases.

The LES code and case details are summarized in § 2. Section 3 presents carefully
selected LES results, and presents a revised prognostic model designed for variable
obliquity. Concluding remarks are presented in § 4. Results of resolution sensitivity
testing are provided in Appendix, which demonstrate no discernible influence of
computational mesh resolution.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1022


886 A15-4 W. Anderson

2. Large-eddy simulation: numerical procedure and cases
The spatially filtered incompressible momentum transport equations are solved,

Dtũ(x, t) = f (x, t), where the grid-filtering operation is performed via convolution
with the filtering kernel, ũ(x, t) = G∆ ? u(x, t), where .̃ . . denotes a grid-filtered
quantity; f = −ρ−1∇p − ∇ · τ + e1Π + f b, where ρ is density, ∇p is a pressure
correction required to preserve a divergence-free (incompressible) flow, ∇ · ũ = 0,
τ = ũ′ ⊗ u′ is the subgrid-scale stress tensor, where u′ = u − ũ, Π = ρ−1dP0/dx1 is
an imposed pressure gradient and f b is a body force. Note that the shear-normalized
viscous stress tensor, Re−1

τ ∇
2ũ, is omitted since Reτ = uτδν−1

∼ O(107) for the
inertia-dominated (fully rough) flow conditions typical of geophysical/engineering
wall-sheared turbulence, where uτ is the shear velocity, δ is flow depth (channel
half-height), ν is kinematic viscosity, and Reτ is the roughness Reynolds number. A
solenoidal velocity field is maintained by computing the divergence of the momentum
transport equation, Dt[∇ · ũ(x, t)] =∇ · f (x, t), applying the divergence-free condition,
∇ · ũ=0 and solving the resultant pressure Poisson equation with Neumann conditions
at the domain top and bottom, ∂ p̃/∂x3|x3/δ=1 = 0 and ∂ p̃/∂x3|x3/δ=0 = 0, respectively.
Spectral discretization is used in the horizontal directions, while vertical gradients are
evaluated with centred second-order finite differencing.

The deviatoric component of the subgrid-scale stresses, τ d, is evaluated using the
eddy viscosity modelling approach, τ d

= τ − 1
3δ : τ = −2νtS̃, where νt = (Cs∆)

2
|S̃|

is the turbulent viscosity, Cs is the Smagorinsky coefficient, ∆ is the filter size, S̃ =
1
2(∂ũ+ ∂ũT

) is the resolved strain-rate tensor and |S̃| = (2S̃ : S̃)1/2 is the magnitude
of the resolved strain-rate tensor. In the present study, Cs is evaluated dynamically
during LES with the Lagrangian scale-dependent dynamic subgrid-scale (SGS) model
of Bou-Zeid, Meneveau & Parlange (2005). The present LES code has been used in
many studies of inertia-dominated, rough-wall turbulence (Anderson et al. 2015a, and
references therein); Appendix presents results of resolution sensitivity testing.

The computational mesh is discretized via ∆x1 = Lx1/Nx1 , ∆x2 = Lx2/Nx2 and
∆x3 = Lx3/Nx3 , where {Lx1, Lx2, Lx3} is the domain spatial extent and {Nx1, Nx2, Nx3} is
the grid resolution. The lower wall momentum fluxes (figure 1) are modelled with a
hybrid approach. For locations where h(x1, x2) >∆x3/2 (i.e. an element is protruding
into the vertically staggered computational mesh), the drag force imposed on the
flow by h(x1, x2) is captured with the body force, f b, appearing in the grid-filtered
momentum transport equation (Anderson & Meneveau 2010; Anderson 2012); these
regions are conceptually equivalent to ‘more rough’ regions, which would exhibit a
relatively larger roughness length (i.e. z0,h). For locations where h(x1, x2) < ∆x3/2
– i.e. flat regions in figure 1 surrounding the large elements – surface stress is
modelled under logarithmic (equilibrium) conditions with baseline roughness length,
z0/δ = 5 × 10−6 (Anderson & Meneveau 2010); in § 1, such regions were defined
with the relatively lower roughness length, z0,l. This work is, thus, entirely predicated
upon local (space–time) efficacy of the logarithmic law (i.e. the presumption of local
space–time equilibrium conditions in a complex flow). In the strictest possible sense,
local equilibrium never exists, but in recent years there has been widespread use
of the logarithmic law in such conditions. Bou-Zeid et al. (2005) demonstrated that
such use of the logarithmic law could be used successfully in channel flows, and
many immersed boundary methods leverage the logarithmic law for prescription of
peripheral stresses (Graham & Meneveau 2012 and references therein). Given the
absence of an existing experimental dataset for equivalent cases, the influence of
the logarithmic law upon the resultant flow cannot be quantified, nor would such an
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Case max(h)/δ Case max(h)/δ Case max(h)/δ Case max(h)/δ θ (deg.)

A1 — B1 — C1 — D1 — π/2
A2 — B2 — C2 — D2 — 3π/8
A3 0.05 B3 0.10 C3 0.15 D3 0.20 π/4
A4 — B4 — C4 — D4 — π/8
A5 — B5 — C5 — D5 — 0

TABLE 1. Summary of LES case attributes, where the maximum height of vertically
truncated, square-based pyramids, is also shown via figure 1; obliquity angle shown in
right-most column (cf. figure 1c).

effort fall within the scope of this work. It is stressed, however, that results from this
wall-modelling protocol have been compared against a variety of literature datasets,
and in all cases reasonable agreement has been attained (Willingham et al. 2013;
Anderson, Li & Bou-Zeid 2015b; Zhu et al. 2016).

The aforementioned LES code has been used to model flow over the cases shown in
figure 1, where a transect of the vertically truncated, square-based pyramids is shown
in figure 1( f ) and the element maximum heights are displayed in table 1. Figure 1(c)
shows the obliquity angle and its origin, with the values for specific cases summarized
in table 1 (right-most column). Within the main narrative, results will be shown for
all cases summarized in table 1, with computational mesh resolution, {Nx1,Nx2,Nx3} =

{128, 128, 128}, and spatial extent, {Lx1/δ, Lx2/δ, Lx3/δ} = {2π, 2π, 1}; for the
additional cases reviewed in Appendix, results are shown for LES with equivalent
physical attributes to cases A1, A3 and A5, but with {Nx1,Nx2,Nx3} = {64, 64, 64}. In
all cases, the grid-filtered momentum transport equations are numerically integrated
until the flow attains temporal statistical homogeneity; the transport equations are
then further advanced to recover Reynolds-averaged turbulence statistics. Turbulence
statistics shown herein are based upon a shear-normalized averaging (large-eddy
turnover) time, δtNtU0δ

−1 & 103, where δt is the dimensional time step, Nt is
the number of compute time steps associated with time averaging and U0 is the
dimensional centreline velocity, i.e., U0= uτ 〈ũ1〉12t(x3/δ= 1). In this article, averaging
of any quantity over dimension, a, is denoted with 〈. . .〉a.

3. Results
Figure 2 presents Reynolds-averaged distributions of 〈ũ1〉t and 〈ũ3〉t, in the

streamwise–wall-normal (b,d, f,h) and spanwise–wall-normal (a,c,e,g) planes. Note
that 〈ũ1〉t and 〈ũ3〉t are not shown for case A1 in the streamwise–wall-normal plane,
or for case A5 in the spanwise–wall-normal plane. These figures are omitted since
they correspond with planes over which the Reynolds-averaged quantities exhibit no
heterogeneity, and are thus redundant. Beginning with figure 2(a), which corresponds
with a canonical spanwise-heterogeneous roughness, there is a distinct pattern of
downwelling and upwelling above relatively more and less rough regions of the
surface, which has been widely reported in preceding studies under similar inertial
conditions (Willingham et al. 2013). Regions of downwelling and upwelling correlate
precisely with relative streamwise momentum excess and deficit, respectively, with
the former and latter named low- and high-momentum pathways, respectively (Barros
& Christensen 2014). This pattern of downwelling and upwelling is responsible for
counter-rotating streamwise rolls, which constitute manifestation of Prandtl’s secondary
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FIGURE 2. Reynolds-averaged streamwise velocity (colour flood, with colour bar for all
panels shown at right of panel a) and vertical velocity (line contours, with 〈ũ3〉t <−0.07
and +0.07 denoted by blue and red, respectively) transects in the streamwise–wall-normal
plane (panels b,d, f,h) and spanwise–wall-normal plane (panels a,c,e,g). Results in
panel (a), panels (b,c), panels (d,e), panels ( f,g) and panel (h) correspond with case
A1, case A2, case A3, case A4 and case A5, respectively. Streamwise–wall-normal and
spanwise–wall-normal transects shown at spanwise location, x2/δ = π, and streamwise
location, x1/δ =π, respectively.

flow of the second kind (Anderson et al. 2015a). Asymmetry in the low- and
high-momentum pathway location (figure 2a) has been reported on numerous previous
occasions (Anderson et al. 2015a), and is a natural consequence of the difficulties
associated with attaining a true Reynolds average for the slowly varying secondary
cells. Note, however, that the pattern of downwelling and upwelling definitively
confirms that low- and high-momentum pathways are positioned above the low- and
high-roughness regions, respectively. Figure 2(h) shows results for the orthogonal
arrangement, case A5, in the streamwise–spanwise plane at x2/δ = π. The 〈ũ1〉t

contours show the ‘standard’ IBL pattern, with plumes of relative momentum deficit
thickening in the streamwise, accompanied by downwelling from aloft (Bou-Zeid
et al. 2005).

Figure 2(b–g) shows 〈ũ1〉t and 〈ũ3〉t in the streamwise–wall-normal (b,d, f,h) and
spanwise–wall-normal (a,c,e,g) planes, with all transects shown at central out-of-plane
locations. Panels (b,c) to panels ( f,g) correspond with cases A2 to A4, with A2 being
‘most similar’ to a canonical spanwise heterogeneity and A4 ‘most similar’ to an
internal boundary layer. Inspection of 〈ũ1〉t and 〈ũ3〉t in the x1–x3 plane reveals
the persistent nature of IBL-like flow patterns, even for the weakest obliquity
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FIGURE 3. Reynolds-averaged flow statistics. Panels (a,b) show vertical profiles of plane-
and time-averaged streamwise (a) and spanwise (b) velocity for case D1 (lightest grey),
D2 (light grey), D3 (grey), D4 (dark grey) and D5 (black), where annotations for obliquity
and maximum element height are displayed in panels, for reference. Panel (a) includes
a reference logarithmic profile based upon the baseline roughness length, z0/δ = 5 ×
10−5 (uppermost, thick black line). Panels (c,d) show time-, plane- and depth-averaged
streamwise (panel c) and spanwise (panel d) velocity datapoints for all cases, with
obliquity on the abscissa, and direction of increasing element height shown (asterisk,
square, plus, and circle symbols correspond with cases A1–A5, B1–B2, C1–C5 and
D1–D5, respectively).

(case A2, figure 2b). In this sense, there is no linear transition between IBL and
spanwise-heterogeneous flow patterns; this is further appreciated via inspection of 〈ũ1〉t
and 〈ũ3〉t in the spanwise–wall-normal plane. Unlike for the spanwise-heterogeneous
case (figure 2a), which exhibits distinct downwelling of high-momentum fluid onto
the ‘more rough’ regions, downwelling and upwelling fluid is laterally shifted for
the oblique arrangements. Moreover, for the canonical spanwise-heterogeneous case,
the flow patterns induce counter-rotating streamwise vorticity (evident from the 〈ũ3〉t
distribution). For the oblique cases (figure 2b–g), the upwelling–downwelling 〈ũ3〉t
distribution is associated with a single roll aligned parallel with the heterogeneity.
This pattern of an oblique roll is specific only to these cases with flow–roughness
heterogeneity, and will be shown to induce substantial lateral flow.

Figure 3(a,b) shows vertical profiles of plane- and time-averaged streamwise and
spanwise velocity, respectively, for cases A1 to A5 (line profiles defined in caption).
The location of max(h)/δ has been superimposed upon figure 3(a,b), which is
helpful for interpreting the inflection in 〈ũ1〉12t(x3) and the accumulation in lateral
flow evidenced by 〈ũ2〉12t(x3). In figure 3(a), the direction of increasing θ has been
added, which confirms a monotonic decrease in momentum penalty, δU, as the flow
transitions from IBL to spanwise heterogeneous. Closer inspection shows relatively
modest decreases in δU from the IBL to oblique cases, followed by an abrupt
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decrease for the spanwise-heterogeneous case (case A1, lightest grey in figure 3a);
further discussion to follow. Logarithmic scaling is not evident, nor should it be
expected for flow over a rough surface with such extreme spatial heterogeneity.
Figure 3(b) shows how lateral flow, 〈ũ2〉12t(x3) > 0, emerges for the oblique cases
(〈ũ2〉12t(x3)= 0 for cases A1 and A5). The largest lateral flow occurs for θ = 3π/8 –
the largest obliquity angle case (figure 1b) – since this case exhibits weakest IBL-like
properties (figure 2), and instead the heterogeneity induces lateral flow.

In order to further appreciate the influence of θ and max(h)/δ, figure 3(c,d)
shows time- and volume-averaged streamwise velocity, 〈ũ1〉123t, and spanwise velocity,
〈ũ2〉123t, respectively. Each symbol in figure 3(c,d) represents a table 1 simulation, the
abscissa is obliquity and the direction of increasing max(h)/δ is shown, for reference,
in panel (c). In panel (c), it is apparent that increasing element height induces
monotonically increasing momentum penalty. When discussing the case A1 to A5
profiles (figure 3a), it was noted that momentum penalty decreases incrementally with
increasing obliquity, before an abrupt fall for the case of spanwise heterogeneity; this
pattern is persistent with increasing max(h)/δ, evidenced by the sudden rise in 〈ũ1〉123t
from θ = 3π/8 to θ = π/2. The pattern of lateral flow with θ is consistent across
cases, with the largest value associated with θ = 3π/8 (figure 3b,d). Note, too, that
the datapoints at θ = 3π/8 show monotonic increase in lateral flow with increasing
max(h)/δ.

The topographically induced development of a Reynolds-averaged spanwise velocity
component may lead readers to wonder how this affects the fundamental arguments
upon which the LES code (§ 2) is based. During LES, the flow is forced by a
non-dimensional pressure gradient, exΠ . For the case of canonical channel flow over
a ‘sandpaper’ roughness, exΠ is opposed by a Reynolds-averaged wall stress related
directly to uτ ; upon attaining time stationarity, this uτ would be used as a normalizing
velocity. The presence of a finite 〈ũ2〉t(x) indicates a redistribution of exΠ , which
can be readily understood through consideration of a control volume, as shown
in figure 4(a). Panel (a) shows the outer LES domain and inner control volume,
and topographically induced ‘flow steering’ denoted by time- and volume-averaged
velocity, 〈ũ〉123t. Panels (b,c) show idealized profiles of 〈ũ1〉t(x) and 〈ũ2〉t(x),
respectively, across the control volume surface. Along the ‘top’ and ‘bottom’ sides
of the panel (b) CS, the profiles show relative excesses and deficits in 〈ũ1〉t(x) due
to streamwise proximity to the elevated roughness stripe; these profiles are compliant
with the idealized 〈ũ1〉t(x) distribution along the ‘left’ and ‘right’ sides of the CS.
Streamwise development in 〈ũ1〉t(x) is responsible for sustenance of the spanwise
flow; in panel (b), the dashed grey lines show continuation of the profiles external to
the control surface, which demonstrate how nonlinear deceleration and acceleration
(with respect to x1) enable development of 〈ũ2〉t(x); these profiles are informed by
preceding insights from groups who have studied IBL processes (Bou-Zeid, Meneveau
& Parlange 2004). Panel (c) shows idealized profiles of 〈ũ2〉t(x), where the largest
values develop across the heterogeneity due to the upwelling and downwelling flow
patterns reported in figure 2. With this, application of integral form conservation of
linear momentum in x1 yields

F1

ρ
=

∫
d2x

[∫
dx
Πdx

]
n1d2x−

∫
d2x

〈τw
13〉t(x1, x2)

ρ
n3d2x

=

∫
d2x
〈ũ1(x, t)

[
ũ(x, t) : n̂

]
〉td2x

≈

∫
d2x
〈ũ1(x, t)ũ2(x, t)〉td2x, (3.1)
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x1
x1 x1

x2
x2 x2

Control surface
(CS)

LES

CS
CS

¯u¡˘123t

n̂ n̂

n̂ n̂

n̂
n̂

n̂ n̂

¯u¡1˘t(x)

¯u¡1˘t(x)

¯u¡2˘t(x)

(a) (b) (c)

FIGURE 4. Schematic of flow–roughness alignment at oblique angle, θ = π/2, where
elevated roughness is denoted by a grey strip. Panel (a) shows computation LES
computational domain and interior control volume with perimeter control surface (CS).
Panel (a) shows idealized time- and volume-averaged velocity, indicating resultant
‘flow steering’ due to flow–roughness obliquity. Panels (b,c) show idealized profiles of
time-averaged streamwise (b) and spanwise (c) velocity, where momentum imbalance
highlights the redistribution of streamwise momentum derived for sustenance of the
Reynolds-averaged spanwise flow. Panel (b) shows continuation of the streamwise
momentum profiles external to the control surface.

where n̂ is the unit normal vector over vertical faces of the domain (see also
figure 4b,c) and 〈τw

13〉t(x1, x2) is the spatial distribution of Reynolds-averaged
streamwise–wall-normal wall stress. Integral form conservation of linear momentum
in x2 yields

F2

ρ
=

∫
d2x

〈τw
23〉t(x1, x2)

ρ
n3 d2x=

∫
d2x
〈ũ2(x, t)ũ1(x, t)〉t d2x, (3.2)

where 〈τw
23〉t(x1, x2) is the spatial distribution of Reynolds-averaged spanwise–wall-

normal wall stress. Equations (3.1) and (3.2) confirm that the redistribution of
momentum to the spanwise does not lead to an intrinsic violation of momentum
conservation; rather, that

uτ =
{

1
Lx1Lx2

∫
d2x

[∫
dx
Πdx

]
n1d2x

}1/2

=

{
1

Lx1Lx2

∫
d2x

[
〈τw

13〉t(x1, x2)

ρ
+
〈τw

23〉t(x1, x2)

ρ

]
n3d2x

}1/2

. (3.3)

It is, thus, clear that overall forcing (in our case, the non-dimensional pressure
gradient), is distributed over the two Reynolds-averaged wall stress terms, but that
conservation of linear momentum is nevertheless preserved. Therefore, the flow can
be normalized by uτ with no loss of generality. The profiles sketched in figure 4(b,c)
show idealized Reynolds-averaged streamwise and spanwise velocity, respectively,
which demonstrates how an imbalance between the spanwise flux (panel c) of
streamwise momentum (panel b) develops the right-hand side term in (3.1).

To further the preceding results, we now address development of prognostic
models for the effective roughness length, z0,Eff ., associated with the present spatially
heterogeneous rough surfaces (figure 1, table 1). The intrinsic difficulty posed by
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this endeavour is a priori correlation of surface geometric details and roughness
length; foremost among geometric statistics traditionally used in this effort are height
root-mean-square, skewness, plan- and frontal-area index (Jimenez 2004; Flack et al.
2007)

σh′ = (〈h2
〉12 − 〈h〉212)

1/2, sh′ =
〈h3
〉12 − 〈h〉312

(〈h2〉12 − 〈h〉212)
3/2
, λp =

Ap

Ad
, and

λf =

Ni∑
i

Nj∑
j

R(∂1h(xi, xj))

Ad
,


(3.4)

where Ap is the plan are covered by obstacles, R(x) = x and 0 if x > 0 or < 0,
respectively (ramp function), thereby isolating the cumulative frontal area (i.e. the
area ‘seen’ by incoming flow within the roughness sublayer) (Anderson & Meneveau
2010, 2011), and Ad is the surface area. Napoli, Armenio & Marchis (2008) have
demonstrated that an ‘effective slope’ parameter, ES, is a promising avenue to
prediction of momentum penalty, although for the inertia-dominated (fully rough)
cases herein momentum penalty dependence upon ES by definition vanishes. Note
that, as defined, ES = 2λf for the cases considered herein (i.e. the topography is
not superimposed upon a non-periodic, large-scale undulation). It may be of interest
to generalize the notion of λf and ES for the influence of obliquity by defining a
streamwise and spanwise component and considering the ratio of the former to the
latter

λf ,1 =

Ni∑
i

Nj∑
j

R(∂1h(xi, xj))

Ad
=

1
2

ES1, and λf ,2 =

Ni∑
i

Nj∑
j

R(∂2h(xi, xj))

Ad
=

1
2

ES2,

(3.5a,b)
and

χ =
λf ,1

λf ,2
. (3.6)

However, recall that for the present cases, the elements are cubes, and, as such, χ
is unity for all cases. A future study could address cases with χ 6= 1, which could
be attained with topographies composed of rectangular prisms or ellipsoidal elements.
Such an effort is beyond the scope of this article, and cannot be addressed herein. For
the roughness cases considered in this article (table 1), figure 5(a–c) shows σh′ , λp and
λf , respectively. In the ‘engineering’ roughness literature, correlations predicated upon
linear scaling with σh′ are common (Flack & Schultz 2010):

z1
0,Eff . = f (σh′(x))= ασh′(x), (3.7)

where α∼O(10−1) has been consistently reported for an exceptionally broad range of
roughness types. It is clear, upon inspection, that σh′ and λp do not capture variable
θ , although the preceding results report distinct flow response; the σh′ datapoints vary
with max(h)/δ, but this alone is inadequate for any prognostic model specific to
heterogeneous roughness at variable obliquity. Figure 5(c) shows a clear dependence
of λf upon θ , with the smallest and largest values reported for θ = π/2 and 0,
respectively. The previous results have established a dependence upon max(h)/δ and
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FIGURE 5. Surface and effective roughness attributes. Panels (a,b,c) show root-mean-
square, plan- and frontal-area index, respectively. Panel (d) shows datapoints for effective
roughness with (3.7) (solid grey) and (3.8) profiles (solid black); panel (d) inset shows
front-area index against maximum height for the case of θ =0. Symbol usage equivalent to
figure 3. Panel (e) shows comparison of (3.8) prediction (abscissa) against existing datasets
(ordinate): complex roughness with prominent spanwise heterogeneity (Mejia-Alvarez
& Christensen 2010; Barros & Christensen 2014) (square), arrays of multiscale cubic
topography (Zhu et al. 2016) (‘plus’ symbols) and cases considered in this article
(‘asterisk’ symbols). Direction of increasing max(h)/δ noted in panels (a,d).

θ , and to this extent a generalized model based upon the product of independent
functions is proposed

z2
0,Eff . = f (σh′(x), λf , θ)≈ α1σh′(x)p(λf )q(θ)≈ α1σh′(x)λf

[
1− α2 exp(α3θ)

]
, (3.8)

where α1, α2 and α3 are empirical constants. The datapoints in figure 5(d) are
a posteriori recovered effective roughness lengths, based upon best fit logarithmic
profiles to the 〈ũ1〉12t(x3) profiles from LES of flow over the table 1 cases. As
noted in the discussion accompanying figure 3(a), for some flow–roughness obliquity
arrangements 〈ũ1〉12t(x3) does not scale with the logarithm of x3. However, the reported
deviation from logarithmic scaling is not so severe that logarithmic fits cannot be used
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for the purpose of z0,Eff . recovery. The abscissa is obliquity angle, which demonstrates
how these oblique surfaces become ‘less rough’ with increasing θ ; similarly, the
datapoints show how the surfaces become ‘more rough’ with increasing roughness
height amplitude. The figure includes an inset, to illustrate that λf ∼max(h)/δ.

As expected, z0,Eff . decreases abruptly from θ = 3π/8 to π/2, which corresponds
to the aforementioned regime transition from ‘IBL like’, with an oblique vortex
across the heterogeneity, to canonically spanwise heterogeneous (figure 1a, and
accompanying text).

The solid grey profiles in figure 5 show predictions of (3.7) with α= 0.12. For the
IBL arrangement, this model performs well, but for increasing obliquity a significant
divergence emerges, indicating that scaling upon σh′ alone is inadequate for the current
roughness cases. Also included in figure 5 are black profiles, showing predictions
from (3.8) with α1 = 0.95, α2 = 0.1 and α3 = 1.35. Equation (3.8) is generalized
to incorporate the dependence upon obliquity and roughness amplitude, and we see
strong support for this model.

Figure 5(e) shows results of model efficacy testing, where the model and literature
data are shown on the abscissa and ordinate, respectively (divergence from the
one-to-one line constitutes weaker performance of the model); case details are noted
in the caption. The datapoint from Christensen and company (Mejia-Alvarez &
Christensen 2010; Barros & Christensen 2014) corresponds to their complex roughness
case (Bons et al. 2001), which features a prominent spanwise heterogeneity. For those
experiments, uτ = 0.736 m s−1 (Mejia-Alvarez & Christensen 2010, their figure 4b),
U0=16.9 m s−1 (Mejia-Alvarez & Christensen 2010, their table 2) and boundary layer
depth, δ = 100 mm (Mejia-Alvarez & Christensen 2010). The author used the Bons
et al. (2001) topography to compute frontal-area index, λf ≈ 0.23. These numerical
values were used to recover z0,Eff . a posteriori, which was compared against an (3.8)
prediction with θ = π/2. There is some disagreement in the predictions, although
it is stressed that the Bons et al. (2001) topography represents a case of complex,
multiscale roughness with a predominant spanwise heterogeneity, which would thus
challenge the predictive potential of any model. Unfortunately, comparison against the
datasets from Ganapathisubramni and company (Vanderwel & Ganapathisubramani
2015; Medjnoun et al. 2018) was not possible, since they consider continuous
streamwise-aligned rows of LEGO elements, for which λf =∞. To further diversify
the study, results from a complementary LES investigation have been included in
figure 5(e) (Zhu et al. 2016). These results correspond to flow over distributions of
cubic roughness elements under inertia-dominated conditions. Although those cases
exhibited no streamwise or spanwise correlation, they nevertheless broaden the scope
of comparison, and as seen the agreement is favourable; equation (3.8) with θ = 0
was used for these cases.

4. Conclusion

Prior research on roughness has addressed a wide range of topics, from limitations
on the presence of outer-layer similarity to roughness sublayer structural properties,
and to roughness element geometry influences. IBL dynamics has also been the topic
of substantial prior work: IBLs are a product of streamwise roughness heterogeneity,
from low-to-high or high-to-low roughness, originate at the surface heterogeneity, and
thicken in the downstream before homogenizing via ambient, background shear. Flow
response to roughness heterogeneities aligned parallel and oblique to the streamwise
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direction has received relatively less attention. Recent efforts have revealed the large-
scale influence of spanwise heterogeneity, which can induce Reynolds-averaged, depth-
scale, streamwise vortical rolls. To our knowledge, no prior effort has specifically
considered oblique heterogeneity.

LES was used to explore flow response and roughness characteristics due to
flow–roughness heterogeneity aligned at parallel, oblique and orthogonal angles.
Results indicate that IBL-like dynamics is persistent, even at ‘weak’ obliquity angles,
but vanishes abruptly when the heterogeneity is aligned parallel with the streamwise
direction. Associated with this is the emergence of a significant Reynolds-averaged
lateral flow for oblique cases – this component is, by definition, zero for IBL
and spanwise-heterogeneous cases. Reynolds-averaged streamwise velocity is used
to recover effective roughness a posteriori, which is posed against common input
arguments for roughness models (height root-mean square, plan- and frontal-area
index).

We show that height root-mean-square, a widely used surface geometric statistical
measure against which roughness can be correlated, fails to capture roughness effects
at oblique angles (skewness would, by definition, also not capture the changing
aerodynamic signature of the surface with variable obliquity). Frontal-area index, on
the other hand, is a promising quantity for prognostic roughness model development.
Height root-mean-square and frontal-area index are used to develop a generalized
roughness model, which performs well with changing obliquity and differing
roughness amplitudes. Given the sparsity of prior work in this area, comprehensive
datasets for model efficacy testing do not exist. The model appears to perform
well against the cases considered (Mejia-Alvarez & Christensen 2010; Zhu et al.
2016), though further work is needed to fully generalize the model based on a
comprehensive survey of the parameter space. Such an effort is beyond the scope of
this article, which is intended as a catalyst for future work in the areas of roughness,
wall turbulence and obliquity.
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Appendix. Resolution sensitivity
Figure 6 presents a brief sampling of flow statistics from LES modelling of flow

over cases A1, A3 and A5 at relatively high {Nx1, Nx2, Nx3} = {128, 128, 128} and
relatively low {Nx1, Nx2, Nx3} = {64, 64, 64} resolution, with further details of profile
colour coding and symbol usage summarized in the caption. To quantify resolution
sensitivity in a normalized sense, the Reynolds-averaged streamwise velocity for the
low-resolution case was extrapolated to the high-resolution grid points, which enables
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FIGURE 6. Results of resolution sensitivity testing from LES modelling of flow over
cases A1, A3 and A5. Panel (a) shows vertical profiles of time- and plane-averaged
streamwise velocity difference, δ〈ũ〉12t(x3), between the LES cases with {Nx1, Nx2, Nx3} =

{128, 128, 128} and {64, 64, 64} – where the latter was interpolated onto the former’s grid
points before subtraction – and normalized by centreline velocity, 〈ũ〉12t(x3/δ= 1), for the
high-resolution case; colour usage equivalent to figure 3(a). Panel (b) shows a posteriori
recovered effective roughness for {Nx1,Nx2,Nx3} = {128, 128, 128} (circle) and {64, 64, 64}
(square).

recovery of a difference; the velocities are then normalized by the centreline velocity.
In all cases, the differences are minimal (|δ〈ũ〉12t(x3)|/〈ũ〉12t(x3/δ = 1) < 10 %),
indicating resolution insensitivity and modelling efficacy. As an additional measure,
a posteriori recovered effective roughness lengths for the relatively high- and
low-resolution cases are shown in figure 6(b). The roughness lengths agree closely
across obliquity angles, providing further support for the scientific conclusions
provided herein and prognostic quality of the generalized roughness model (3.8).
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