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Lifting Quasianalytic Mappings over
Invariants

Armin Rainer

Abstract. Let ρ : G → GL(V ) be a rational finite dimensional complex representation of a reductive

linear algebraic group G, and let σ1, . . . , σn be a system of generators of the algebra of invariant poly-

nomials C[V ]G. We study the problem of lifting mappings f : R
q ⊇ U → σ(V ) ⊆ C

n over the

mapping of invariants σ = (σ1, . . . , σn) : V → σ(V ). Note that σ(V ) can be identified with the cate-

gorical quotient V//G and its points correspond bijectively to the closed orbits in V . We prove that if f

belongs to a quasianalytic subclass C⊆ C∞ satisfying some mild closedness properties that guarantee

resolution of singularities in C, e.g., the real analytic class, then f admits a lift of the same class C after

desingularization by local blow-ups and local power substitutions. As a consequence we show that f

itself allows for a lift that belongs to SBVloc, i.e., special functions of bounded variation. If ρ is a real

representation of a compact Lie group, we obtain stronger versions.

1 Introduction

Let G be a reductive linear algebraic group defined over C and let ρ : G → GL(V ) be a

rational representation on a finite dimensional complex vector space V . The algebra

C[V ]G of G-invariant polynomials on V is finitely generated. Let V//G denote the

categorical quotient, i.e., the affine algebraic variety with coordinate ring C[V ]G, and

let π : V → V//G be the morphism defined by the embedding C[V ]G → C[V ].

Choose a system of homogeneous generators of C[V ]G, say σ1, . . . , σn. Then we can

identify π with the mapping σ = (σ1, . . . , σn) : V → σ(V ) ⊆ C
n and the categorical

quotient V//G with the image σ(V ). In each fiber of σ there lies exactly one closed

orbit.

Given a mapping f : R
q ⊇ U → V//G = σ(V ) ⊆ C

n possessing some type

of regularity F (as a mapping into C
n), it is natural to ask whether f can be lifted

regularly (maybe of some weaker type G) over the mapping of invariants σ. By a lift

of f we understand a mapping f̄ : U → V satisfying f = σ ◦ f̄ such that the orbit

G. f̄ (x) through f̄ (x) is closed for each x ∈ U . Lifting F-mappings over invariants is

independent of the choice of the generators σi as long as the set of F-functions forms

a ring under addition and multiplication, viz., any two choices of generators differ by

a polynomial diffeomorphism.

This question represents a generalization of the following perturbation problem

for polynomials which has important applications in PDEs and in the perturbation

theory of linear operators (see [22] and the references therein): How nicely can we
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choose the roots of a monic univariate polynomial whose coefficients depend on pa-

rameters in a regular way? Namely, for the standard representation of the symmetric

group Sn in C
n by permuting the coordinates (the roots), C[C

n]Sn is generated by the

elementary symmetric functions σ j(x) =
∑

i1<···<i j
xi1

· · · xi j
(the coefficients up to

sign, by Vieta’s formulas).

To our knowledge the lifting problem in full generality has not been studied be-

fore. Some results are known about lifting curves (q = 1) and about lifting mappings

over invariants of real compact Lie group representations. See the summary of the

most important known facts in Table 1. Lifting problems with slightly different scope

were treated in [3, 13, 16, 20, 23] (amongst others).

In this paper we prove that for subclasses (Cω ⊆) C ⊆ C∞ that admit resolution

of singularities (for instance the real analytic class Cω), C-mappings can be lifted

over invariants after desingularization. More precisely, let C be any quasianalytic

subalgebra of the C∞-functions that contains the real analytic functions and is stable

under composition, derivation, division by coordinates, and taking the inverse. Due

to Bierstone and Milman [5, 6] the category of C-manifolds and C-mappings admits

resolution of singularities. Let M be a C-manifold, f : M → V//G = σ(V ) ⊆ C
n a

C-mapping, and K ⊆ M compact. We show in Theorem 4.5 that there exist

(i) a neighborhood W of K,

(ii) a finite covering {πk : Uk → W} of W , where each πk is a composite of finitely

many mappings each of which is either a local blow-up with smooth center or

a local power substitution,

such that for all k, the mapping f ◦πk allows a C-lift on Uk. The analogous statement

holds for holomorphic mappings (see Theorem 4.6). If G is a compact Lie group, V a

real Euclidean vector space, and ρ : G → O(V ), then no local power substitutions are

needed (see Theorem 5.3). A local blow-up over an open subset U ⊆ M is a blow-up

over U composed with the inclusion of U in M. A local power substitution is the

composite of the inclusion of a coordinate chart W in M and a mapping V → W

given in local coordinates by

(x1, . . . , xq) 7→ ((−1)ǫ1 x
γ1

1 , . . . , (−1)ǫq x
γq
q )

for some γ = (γ1, . . . , γq) ∈ (N>0)q and ǫ = (ǫ1, . . . , ǫq) ∈ {0, 1}q. (See §§4.1 for a

precise explanation of these notions.)

This “C-lifting after desingularization” result enables us to show in Theorem 6.4

that a C-mapping f : U → V//G = σ(V ) ⊆ C
n (where U ⊆ R

q open) admits a lift

f̄ that is “piecewise Sobolev W
1,1
loc ”; more precisely, f̄ is of class C outside of a null set

E of finite (q − 1)-dimensional Hausdorff measure such that its classical derivative

is locally integrable (we shall write f̄ ∈ WC

loc, see 6.1). As a consequence, we deduce

in Theorem 6.7 that the lift f̄ belongs to SBVloc (SBV stands for special functions of

bounded variation, see 6.4). If ρ : G → GL(V ) is coregular, i.e., C[V ]G is generated by

algebraically independent elements, then we obtain as a corollary that the mapping

σ : V → V//G = σ(V ) = C
n admits local WC (resp. SBV) sections (see Corollaries

6.5 and 6.8). Note that the regularity of f̄ is best possible: in general there does not

exist a lift f̄ with classical derivative in L
p
loc for any 1 < p ≤ ∞. Moreover there is in

general (for q ≥ 2) no lift in W
1,1
loc and in VMO (see Remark 6.9).
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The question of optimal assumptions is open. For instance, it is unknown whether

a C∞-mapping f : U → V//G = σ(V ) ⊆ C
n admits a lift in SBVloc. That problem

requires different methods.

In §7 we prove for real polar representations of compact Lie groups that the WC

loc-

lift f̄ of a C-mapping f is actually “piecewise locally Lipschitz” (see Theorem 7.2),

i.e., the classical derivative of f̄ is locally bounded outside of the exceptional set E.

Notation We use N = N>0 ∪{0}. Let α = (α1, . . . , αq) ∈ N
q and x = (x1, . . . , xq)

∈ R
q. We write α! = α1! · · ·αq!, |α| = α1 + · · · + αq, xα = xα1

1 · · · x
αq
q , and ∂α =

∂|α|/∂xα1

1 · · · ∂x
αq
q . We shall also use ∂i = ∂/∂xi . If α, β ∈ N

q, then α ≤ β means

αi ≤ βi for all 1 ≤ i ≤ q.

Let U ⊆ R
q be open. We will use classes of real and complex valued functions

F(U ) possessing a certain regularity F (like C, L1, W 1,1, SBV , etc.). A complex valued

function f is of class F if and only if Re f and Im f are of class F. Mappings of class

F with values in R
p (or C

p) are defined by F(U ,R
p) := (F(U ,R))p. Each class F

we shall use will be invariant under linear coordinate changes. So we may consider

mappings F(U ,V ) with values in a finite dimensional vector space V .

All manifolds in this paper are assumed to be Hausdorff, paracompact, and finite

dimensional.

2 The Setting

Throughout the paper, we work in the following setting (unless otherwise stated).

2.1 Representations of Reductive Algebraic Groups

Let G be a reductive linear algebraic group defined over C and let ρ : G → GL(V ) be

a rational representation on a finite dimensional complex vector space V . It is well

known that the algebra C[V ]G of G-invariant polynomials on V is finitely generated.

We consider the categorical quotient V//G, i.e., the affine algebraic variety with co-

ordinate ring C[V ]G, and the morphism π : V → V//G defined by the embedding

C[V ]G → C[V ]. Let σ1, . . . , σn be a system of homogeneous generators of C[V ]G

with positive degrees d1, . . . , dn. Then we can identify π with the mapping of invari-

ants σ = (σ1, . . . σn) : V → σ(V ) ⊆ C
n and the categorical quotient V//G with the

image σ(V ) (which we shall do consistently). Each fiber of σ contains exactly one

closed orbit. If v ∈ V and the orbit G . v = {g . v : g ∈ G} through v is closed, then

the isotropy group Gv = {g ∈ G : g . v = v} is reductive. See [25].

2.2 Luna’s Slice Theorem

We state a version of Luna’s slice theorem [18]. Recall that U is a G-saturated subset

of V if π−1(π(U )) = U and that a mapping between smooth complex algebraic

varieties is étale if its differential is everywhere an isomorphism.

Theorem 2.1 ([23, 5.3]) Let G . v be a closed orbit, v ∈ V . Choose a Gv-splitting of
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q → V//G = σ(V ) ⊆ C
n. The table provides a (non-exhaustive) summary of the most important results concerning the existence of a lift

f̄ of some regularity of f , given that f fulfills certain conditions. The regularity of f̄ is in general best possible under the respective conditions on f , which

might partly not be optimal. By the attribute “complex” (resp. “real”) we refer to the setting in 2.1 (resp. 5.1). By C we mean a subclass of C∞ satisfying

(A1′)(A2)–(A6). For a definition of WC (resp. LC) see 6.1 (resp. 7.1). Normal nonflatness is defined in [17]. Let d = d(ρ) := max j deg σ j . If G is finite,

let k = k(ρ) := {d, |G|/|Gv j | : 1 ≤ j ≤ l}, where V = V1 ⊕ · · · ⊕ V l with V j irreducible and v j ∈ V j \ {0} such that Gv j is maximal. If ρ is polar (see

§§2.4), then k = k(ρΣ) for some Cartan subspace Σ and ρΣ : W (Σ) → GL(Σ).

Representation q Regularity of f =⇒ Regularity of f̄ Reference

complex, polar 1 continuous continuous [17, 8.2(1)]

complex 1 C∞ & normally nonflat local desingularization by x 7→ ±xγ (γ ∈ N>0), [17, 3.3, 5.4]

ACloc

complex ≥ 1 C (resp. holomorphic) local desingularization by finitely many Theorem 4.5 (resp. 4.6)

local blow-ups with smooth center and

local power substitutions (in the sense of 4.1),

WC

loc & SBVloc Theorems 6.4, 6.7

real 1 continuous continuous [19] (see also [10, 3.1])

real 1 Cω (resp. C) locally Cω (resp. C) [1] (resp. Corollary 5.4)

real 1 C∞ & normally nonflat C∞ [1]

real 1 Cd differentiable [10]

real, polar 1 Ck (resp. Ck+d) C1 (resp. twice differentiable) [11, 12]

real, polar, ≥ 1 continuous continuous e.g., [12]

G connected or a

finite reflection group

real, polar, ≥ 1 Ck locally Lipschitz [12]

G connected or a

finite reflection group

real ≥ 1 C local desingularization by finitely many Theorem 5.3

local blow-ups with smooth center

WC

loc & SBVloc Theorem 7.1

real, polar ≥ 1 C LC

loc Theorem 7.2
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V ∼= TvV as Tv(G . v) ⊕ Nv and let ϕ denote the mapping

G ×Gv
Nv → V, [g, n] 7→ g(v + n).

There is an affine open G-saturated subset U of V and an affine open Gv-saturated

neighborhood Sv of 0 in Nv such that

ϕ : G ×Gv
Sv → U and ϕ̄ : (G ×Gv

Sv)//G → U//G

are étale, where ϕ̄ is the mapping induced by ϕ. Moreover, ϕ and the natural mapping

G ×Gv
Sv → Sv//Gv induce a G-isomorphism of G ×Gv

Sv with U ×U//G Sv//Gv.

Corollary 2.2 ([23, 5.4]) Choose a G-saturated neighborhood Sv of 0 in Sv (classical

topology) such that the canonical mapping Sv//Gv → U//G is a complex analytic iso-

morphism, where U = π−1(ϕ̄((G×Gv
Sv)//G)). Then U is a G-saturated neighborhood

of v and ϕ : G ×Gv
Sv → U is biholomorphic.

A slice representation of ρ is a rational representation Gv → GL(V/Tv(G . v)),

where G . v is a closed orbit.

2.3 Luna’s stratification

Let v ∈ V and let Gv be the isotropy group of G at v. Denote by (Gv) its conjugacy

class in G, also called an isotropy class. If (L) is an isotropy class, let (V//G)(L) denote

the set of points in V//G corresponding to closed orbits with isotropy group in (L),

and put V(L) := π−1((V//G)(L)). Then the collection {(V//G)(L)} forms a finite strat-

ification of V//G into locally closed irreducible smooth algebraic subvarieties. The

isotropy classes are partially ordered, namely (H) ≤ (L) if H is conjugate to a sub-

group of L. If (V//G)(L) 6= ∅, then its Zariski closure is equal to
⋃

(M)≥(L)(V//G)(M) =

π(V L), where V L is the set of all v ∈ V fixed by L. There exists a unique minimal

isotropy class (H) corresponding to a closed orbit, the principal isotropy class. Closed

orbits G . v with Gv ∈ (H) are called principal. The subset (V//G)(H) ⊆ V//G is

Zariski open. If we set V〈H〉 := {v ∈ V : G . v closed and Gv = H}, then π re-

stricts to a principal (NG(H)/H)-bundle V〈H〉 → (V//G)(H), where NG(H) denotes

the normalizer of H in G. See [18, 23, 25].

2.4 Polar Representations

Let v ∈ V be such that the orbit G . v is closed and consider the subspace Σv = {x ∈
V : g . x ⊆ g . v}, where g is the Lie algebra of G and g . x = {X . x : X ∈ g} ∼=
Tx(G . x). Then for each x ∈ Σv the orbit G . x is closed. The representation ρ is

called polar if there is a v ∈ V with G . v closed such that dimΣv = dim C[V ]G.

In particular, representations of finite groups are polar. Such Σv is called a Cartan

subspace. Any two Cartan subspaces are conjugate. All closed orbits in V intersect

Σv. The generalized Weyl group

W (Σv) = {g ∈ G : g.Σv = Σv}/{g ∈ G : g . x = x for all x ∈ Σv}

is finite. Restriction to Σv induces an isomorphism C[V ]G → C[Σv]W (Σv). So we

have the identifications V//G = σ(V ) = σΣv
(Σv) = Σv//W (Σv). See [7].
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3 C∞ Classes That Admit Resolution of Singularities

Following [6, §3] we discuss classes of smooth functions that admit resolution of

singularities.

3.1 Classes C of C∞-Functions

Let us assume that for every open U ⊆ R
q, q ∈ N, we have a subalgebra C(U ) of

C∞(U ) = C∞(U ,R). Resolution of singularities in C requires only the following

assumptions (A1)–(A6) for any open U ⊆ R
q.

(A1) C contains the restrictions of polynomial functions. The algebra of restrictions to

U of polynomial functions on R
q is contained in C(U ).

(A2) C is closed under composition. If V ⊆ R
p is open and ϕ = (ϕ1, . . . , ϕp) : U →

V is a mapping with each ϕi ∈ C(U ), then f ◦ ϕ ∈ C(U ), for all f ∈ C(V ).

A mapping ϕ : U → V is called a C-mapping if f ◦ ϕ ∈ C(U ), for every f ∈ C(V ).

It follows from (A1) and (A2) that ϕ = (ϕ1, . . . , ϕp) is a C-mapping if and only if

ϕi ∈ C(U ), for all 1 ≤ i ≤ p.

(A3) C is closed under derivation. If f ∈ C(U ) and 1 ≤ i ≤ q, then ∂i f ∈ C(U ).

(A4) C is quasianalytic. If f ∈ C(U ) and for a ∈ U the Taylor series of f at a vanishes,

i.e., f̂a = 0, then f vanishes in a neighborhood of a.

(A5) C is closed under division by a coordinate. If f ∈ C(U ) is identically 0 along a

hyperplane {x : xi = ai}, then f (x) = (xi − ai)h(x), where h ∈ C(U ).

(A6) C is closed under taking the inverse. Let ϕ : U → V be a C-mapping between

open subsets U and V in R
q. Let a ∈ U , ϕ(a) = b, and suppose that the

Jacobian matrix (∂ϕ/∂x)(a) is invertible. Then there exist neighborhoods U ′ of

a, V ′ of b, and a C-mapping ψ : V ′ → U ′ such that ψ(b) = a and ϕ◦ψ = idV ′ .

Property (A6) is equivalent to the implicit function theorem in C:

Let U ⊆ R
q × R

p be open. Suppose that f1, . . . , fp ∈ C(U ), (a, b) ∈ U ,

f (a, b) = 0, and (∂ f /∂y)(a, b) is invertible, where f = ( f1, . . . , fp). Then

there is a neighborhood V × W of (a, b) in U and a C-mapping g : V → W

such that g(a) = b and f (x, g(x)) = 0, for x ∈ V .

It follows from (A6) that C is closed under taking the reciprocal: If f ∈ C(U ) van-

ishes nowhere in U , then 1/ f ∈ C(U ).

A complex valued function f : U → C is said to be a C-function, or to belong to

C(U ,C), if (Re f , Im f ) : U → R
2 is a C-mapping. It is immediately verified that

(A3)–(A5) hold for complex valued functions f ∈ C(U ,C) as well.

In the proof of Theorem 4.5 we shall need that C contains the real analytic class

Cω , so instead of (A1) we will presuppose the following stronger condition:

(A1 ′) C contains the real analytic functions; i.e., Cω(U ) ⊆ C(U ).

From now on, unless otherwise stated, let C denote a fixed, but arbitrary, class of

C∞-functions satisfying the conditions (A1 ′), (A2)–(A6) .

Examples 3.1 (Denjoy–Carleman classes ([15,24] and references therein)) Let M =

(Mk)k∈N be a non-decreasing sequence of real numbers with M0 = 1. For U ⊆ R
q
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open, the Denjoy–Carleman class CM(U ) is the set of all f ∈ C∞(U ) such that for

every compact K ⊆ U there are constants C, ρ > 0 with |∂α f (x)| ≤ Cρ|α||α|! M|α|

for all α ∈ N
q and x ∈ K. If M is logarithmically convex (M2

k ≤ Mk−1 Mk+1 for

all k), quasianalytic (
∑∞

k=0 Mk/((k + 1)Mk+1) = ∞), and closed under derivations

(supk∈N>0
(Mk+1/Mk)1/k < ∞), then the Denjoy–Carleman class C = CM has the

properties (A1 ′), (A2)–(A6) (see [6, §4]). In particular, this is true for the class of

real analytic functions C = Cω , since Cω
= C(1)k . If CM is not closed under deriva-

tions, then C =
⋃

j∈N
CM+ j

, where M
+ j
k := Mk+ j , has the required properties (A1 ′),

(A2)–(A6) .

3.2 Resolution of Singularities in C

One can use the open subsets U ⊆ R
q and the algebras of functions C(U ) as local

models to define a category C of C-manifolds and C-mappings. The dimension theory

of C follows from that of C∞-manifolds.

The implicit function property (A6) implies that a smooth (not singular) subset of

a C-manifold is a C-submanifold: Let M be a C-manifold. Suppose that U is open in

M, g1, . . . , gp ∈ C(U ), and the gradients ∇gi are linearly independent at every point

of the zero set X := {x ∈ U : gi(x) = 0 for all i}. Then X is a closed C-submanifold

of U of codimension p.

The category C is closed under blowing up with center a closed C-submanifold.

We shall use a simple version of the desingularization theorem of Hironaka [9]

for C-function classes due to Bierstone and Milman [5, 6]. We use the terminology

therein.

Theorem 3.2 ([6, 5.12]) Let M be a C-manifold, X a closed C-hypersurface in M,

and K a compact subset of M. Then there is a neighborhood W of K and a surjective

mapping ϕ : W ′ → W of class C, such that the following hold:

(i) ϕ is a composite of finitely many C-mappings, each of which is either a blow-up

with smooth center (that is nowhere dense in the smooth points of the strict trans-

form of X) or a surjection of the form
⊔

j U j →
⋃

j U j , where the latter is a finite

covering of the target space by coordinate charts.

(ii) The final strict transform X ′ of X is smooth, and ϕ−1(X) has only normal cross-

ings. (In fact ϕ−1(X) and det dϕ simultaneously have only normal crossings,

where dϕ is the Jacobian matrix of ϕ with respect to any local coordinate system.)

See [6, 5.9, 5.10] and [5] for stronger desingularization theorems in C.

3.3 Lifting C-Mappings over Invariants

Let M be a C-manifold. Let f : M → V//G = σ(V ) ⊆ C
n be a C-mapping, i.e., with

values in σ(V ) and of class C as mapping into C
n ∼= R

2n. A mapping f̄ : M → V

is called a lift of f (over invariants) to V , if f = σ ◦ f̄ and if the orbit G. f̄ (x) is

closed for each x ∈ M. Lifting C-mappings over invariants is independent of the

choice of generators of C[V ]G, as any two choices σi and τ j differ just by a polyno-

mial diffeomorphism T and the set of C-functions forms a ring under addition and
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multiplication (see [11, 2.2]):

V

σ

��

τ

##F
FF

FF
FF

FF

M
f

//

f̄
==z

z
z

z
z

σ(V )
T

// τ (V )

4 Lifting C Mappings over Invariants after Desingularization

We will prove that C-mappings admit C-lifts after desingularization by means of local

blow-ups and local power substitutions.

4.1 Local Blow-Ups and Local Power Substitutions

We introduce notation following [4, §4].

Let M be a C-manifold. A family of C-mappings {π j : U j → M} is called a locally

finite covering of M if the images π j(U j) are subordinate to a locally finite open cov-

ering {W j} of M, i.e., π j(U j) ⊆ W j for all j, and if for each compact K ⊆ M there

are compact K j ⊆ U j such that K =
⋃

j π j(K j) (the union is finite).

Locally finite coverings can be composed in the following way (see [4, 4.5]). Let

{π j : U j → M} be a locally finite covering of M, and let {W j} be as above. For

each j, suppose that {π ji : U ji → U j} is a locally finite covering of U j . We may

assume without loss of generality that the W j are relatively compact. (Otherwise,

choose a locally finite covering {V j} of M by relatively compact open subsets. Then

the mappings π j |π−1
j (Vi )

: π−1
j (Vi) → M for all i and j form a locally finite covering

of M.) Then for each j, there is a finite subset I( j) of the set of indices i such that the

C-mappings π j ◦π ji : U ji → M for all j and all i ∈ I( j) form a locally finite covering

of M.

We shall say that {π j} is a finite covering if j varies in a finite index set.

A local blow-up Φ over an open subset U of M means the composition Φ = ι ◦ ϕ
of a blow-up ϕ : U ′ → U with smooth center and of the inclusion ι : U → M.

We denote by local power substitution a mapping of C-manifolds Ψ : V → M of

the form Ψ = ι ◦ ψ, where ι : W → M is the inclusion of a coordinate chart W of M

and ψ : V → W is given by

(4.1) (y1, . . . , yq) = ψγ,ǫ(x1, . . . , xq) := ((−1)ǫ1 x
γ1

1 , . . . , (−1)ǫq x
γq
q ),

for some γ = (γ1, . . . , γq) ∈ (N>0)q and ǫ = (ǫ1, . . . , ǫq) ∈ {0, 1}q, where y1, . . . , yq

denote the coordinates of W (and q = dim M).

4.2 Normal Crossings

Let M be a C-manifold and let f be a real or complex valued C-function on M. We say

that f has only normal crossings if each point in M admits a coordinate neighborhood
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U with coordinates x = (x1, . . . , xq) such that

f (x) = xαg(x), x ∈ U ,

where g is a non-vanishing C-function on U , and α ∈ N
q.

Observation 4.1 Observe that if a product of functions has only normal crossings,

then each factor has only normal crossings. Indeed, let f1, f2, g be C-functions de-

fined near 0 ∈ R
q such that f1(x) f2(x) = xαg(x) and g is non-vanishing. By quasian-

alyticity (A4), f1 f2|{x j=0} = 0 implies f1|{x j=0} = 0 or f2|{x j=0} = 0. So the assertion

follows from (A5).

Observation 4.2 Let M be a C-manifold, K ⊆ M be compact, and f ∈ C(M,C).

Then there exists a neighborhood W of K and a finite covering {πk : Uk → W} of W

by C-mappings πk, each of which is a composite of finitely many local blow-ups with

smooth center, such that for each k, the function f ◦ πk has only normal crossings.

This follows from Theorem 3.2 applied to the real valued C-function | f |2 = f f and

Observation 4.1.

Lemma 4.3 ([6, 7.7], [4, 4.7]; a proof for C is in [22, 6.3]) Let α, β, γ ∈ N
q and let

a(x), b(x), c(x) be non-vanishing germs of real or complex valued functions of class C at

the origin of R
q. If

xαa(x) − xβb(x) = xγc(x),

then either α ≤ β or β ≤ α.

4.3 C-Lifting after Desingularization

Lemma 4.4 (Removing fixed points) Let V G be the subspace of G-invariant vectors,

and let V ′ be a G-invariant complementary subspace in V . Then V = V G ⊕ V ′,

C[V ]G
= C[V G] ⊗ C[V ′]G, and V//G = V G × V ′//G. Any C-lift of a C-mapping

f = ( f0, f1) in V G × V ′//G ⊆ C
n has the form f̄ = ( f0, f̄1), where f̄1 is a C-lift of f1

to V ′.

Proof This is obvious; see [1, 3.2].

Theorem 4.5 (C-lifting after desingularization) Let M be a C-manifold. Consider a

C-mapping f : M → V//G = σ(V ) ⊆ C
n. Let K ⊆ M be compact. Then there exist

(i) a neighborhood W of K,

(ii) a finite covering {πk : Uk → W} of W , where each πk is a composite of finitely

many mappings each of which is either a local blow-up with smooth center or a

local power substitution,

such that for all k the mapping f ◦ πk allows a C-lift on Uk.

Proof Since the statement is local, we may assume without loss of generality that M

is an open neighborhood of 0 ∈ R
q. Let v ∈ σ−1( f (0)) be such that G . v is a closed

orbit. We show that there exists a neighborhood of 0 ∈ R
q and a finite covering

{πk} of that neighborhood such that each f ◦ πk admits a C-lift f̄k through v, i.e.,
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if π−1
k (0) 6= ∅ then f̄k(π−1

k (0)) = {v}. Let us proceed by induction over isotropy

classes (slice representations).

If (Gv) = (H) is the principal isotropy class, then a C-lift f̄ of f to V〈H〉 with

f̄ (0) = v exists locally near 0 since V〈H〉 → (V//G)(H) is a principal (NG(H)/H)-

bundle (see §§2.3) (and by (A1 ′) and (A2)).

Let (Gv) > (H); in particular, f (0) is not principal. Assume that the assertion is

shown for all rational finite dimensional complex representations of L, where L = Gw

is a proper isotropy subgroup of G such that the orbit G .w is closed (with respect

to ρ). All such L are reductive.

If V G 6= {0}, we first remove fixed points, by Lemma 4.4. So we can assume that

V G
= {0}. Let us consider the slice representation Gv → GL(Nv). By Luna’s slice

Theorem 2.2 (and (A1 ′) and (A2)), the lifting problem reduces to the group Gv acting

on Nv. Closed Gv-orbits in Nv correspond to closed G-orbits in V . The stratification

of V//G in a neighborhood of f (0) is naturally isomorphic to the stratification of

Nv//Gv in a neighborhood of 0.

If f (0) 6= 0, then Gv is a proper subgroup of G, since V G
= {0}. In that case we

are done by induction.

Suppose that f (0) = 0. If f = 0 (identically), we choose the lift f̄ = 0 and are

done. Otherwise, we set D =
∏n

j=1 d j (with d j = degσ j , see §§2.1) and define the

C-functions (where f = ( f1, . . . , fn))

(4.2) F j(x) = f j(x)
D
d j , (for 1 ≤ j ≤ n).

By Theorem 3.2 (and Observation 4.2), we find a finite covering {πk : Uk → U} of

a neighborhood U of 0 by C-mappings πk, each of which is a composite of finitely

many local blow-ups with smooth center, such that for each k the non-zero F j◦πk (for

1 ≤ j ≤ n) and its pairwise non-zero differences Fi ◦πk −F j ◦πk (for 1 ≤ i < j ≤ n)

simultaneously have only normal crossings.

Let k be fixed and let x0 ∈ Uk. Then x0 admits a neighborhood Wk with suitable

coordinates in which x0 = 0 and such that (for 1 ≤ j ≤ n) either F j ◦ πk = 0 or

(F j ◦ πk)(x) = xα j Fk
j (x),

where Fk
j is a non-vanishing C-function on Wk, and α j ∈ N

q. The collection of the

multi-indices {α j : F j ◦ πk 6= 0, 1 ≤ j ≤ n} is totally ordered by Lemma 4.3. Let α
denote its minimum.

Ifα = 0, then (F j◦πk)(x0) = Fk
j (x0) 6= 0 for some 1 ≤ j ≤ n. So by (4.2), we have

( f ◦ πk)(x0) 6= 0. Let w ∈ σ−1(( f ◦ πk)(x0)) be such that the orbit G .w is closed.

The stabilizer Gw is a proper subgroup of G, since V G
= {0}. By the induction

hypothesis (and reduction to the slice representation Gw → GL(Nw)), there exists a

finite covering {πkl : Wkl → Wk} of Wk (possibly shrinking Wk) of the type described

in (ii) such that for all l, the mapping f ◦ πk ◦ πkl allows a C-lift through w on Wkl.

Let us assume that α 6= 0. Then there exist C-functions F̃k
j (some of them 0) such

that for all 1 ≤ j ≤ n

(4.3) (F j ◦ πk)(x) = xαF̃k
j (x),
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and F̃k
j (x0) = Fk

j (x0) 6= 0 for some 1 ≤ j ≤ n. Let us write

α

D
=

( α1

D
, . . . ,

αq

D

)

=

( β1

γ1
, . . . ,

βq

γq

)

,

where βi , γi ∈ N are relatively prime (and γi > 0) for all 1 ≤ i ≤ q. Put β =

(β1, . . . , βq) and γ = (γ1, . . . , γq). Then (by (4.2) and (4.3)) for each 1 ≤ j ≤ n and

ǫ ∈ {0, 1}q the C-function f j ◦ πk ◦ ψγ,ǫ is divisible by xd jβ , where ψγ,ǫ is defined by

(4.1). By (A5) there exist C-functions f
k,γ,ǫ
j such that

( f j ◦ πk ◦ ψγ,ǫ)(x) = xd jβ f
k,γ,ǫ
j (x), (for 1 ≤ j ≤ n).

By construction, for some 1 ≤ j ≤ n, we have f
k,γ,ǫ
j (0) 6= 0, independently of ǫ. So

there exist a local power substitution ψk : Vk → Wk given in local coordinates by ψγ,ǫ
(for ǫ ∈ {0, 1}q) and functions f k

j given in local coordinates by f
k,γ,ǫ
j (for ǫ ∈ {0, 1}q)

such that

( f j ◦ πk ◦ ψk)(x) = xd jβ f k
j (x), (for 1 ≤ j ≤ n).

Let us consider the C-mapping f k
= ( f k

1 , . . . , f k
n ). The image of f k lies in σ(V ),

since σ j is homogeneous of degree d j . Let y0 := ψ−1
k (x0) ∈ Vk. By construction

f k(y0) 6= 0. Let w ∈ σ−1( f k(y0)) such that the orbit G .w is closed. The stabilizer

Gw is a proper subgroup of G, since V G
= {0}. By the induction hypothesis (and

reduction to the slice representation Gw → GL(Nw)), there exists a finite covering

{πkl : Vkl → Vk} of Vk (possibly shrinking Vk) of the type described in (ii) such that

for all l, the mapping f k ◦ πkl admits a C-lift f̄ kl through w on Vkl. Since a lift of f k

provides a lift of f ◦ πk ◦ ψk by multiplying by the monomial factor m(x) := xβ , the

C-mapping x 7→ m(πkl(x)) · f̄ kl(x) forms a lift through 0 of x 7→ ( f ◦πk ◦ψk ◦πkl)(x)

for x ∈ Vkl.

Since k and x0 were arbitrary, the assertion of the theorem follows from §§ 4.1.

The same proof (with obvious minor modifications) applies to holomorphic map-

pings. In this situation a local power substitution is (in local coordinates) simply a

mapping (z1, . . . , zq) 7→ (z
γ1

1 , . . . , z
γq
q ) (without different sign combinations):

Theorem 4.6 (Holomorphic lifting after desingularization) Let M be a holomorphic

manifold. Consider a holomorphic mapping f : M → V//G = σ(V ) ⊆ C
n. Let K ⊆ M

be compact. Then there exist

(i) a neighborhood W of K,

(ii) a finite covering {πk : Uk → W} of W , where each πk is a composite of finitely

many mappings each of which is either a local blow-up with smooth center or a

local power substitution,

such that for all k the mapping f ◦ πk allows a holomorphic lift on Uk.

5 C-Lifting in the Real Case

If G is a compact Lie group and the representation ρ : G → O(V ) is real, then no

local power substitutions are needed.
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5.1 Representations of Compact Lie Groups

See [21, 23]. Let G be a compact Lie group and let G → O(V ) be an orthogo-

nal representation in a real finite dimensional Euclidean vector space V with inner

product 〈 | 〉. The algebra R[V ]G of invariant polynomials on V is finitely gener-

ated. So let σ1, . . . , σn be a system of homogeneous generators of R[V ]G with pos-

itive degrees d1, . . . , dn; without loss of generality assume that σ1(v) = 〈v | v〉. The

image σ(V ) of the mapping σ = (σ1, . . . , σn) : V → R
n is a semialgebraic set in

Z := {y ∈ R
n : P(y) = 0 for all P ∈ I}, where I is the ideal of relations among

σ1, . . . , σn. Since G is compact, σ is proper, open, and separates orbits of G. It thus

induces a homeomorphism between the orbit space V/G and the image σ(V ). Note

that here each orbit is closed.

Let 〈 | 〉 denote also the G-invariant dual inner product on V ∗. The differentials

dσi : V → V ∗ are G-equivariant, and the polynomials v 7→ 〈dσi(v) | dσ j(v)〉 are

G-invariant. They are entries of an n × n symmetric matrix-valued polynomial

B(v) :=







〈dσ1(v) | dσ1(v)〉 · · · 〈dσ1(v) | dσn(v)〉
...

. . .
...

〈dσn(v) | dσ1(v)〉 · · · 〈dσn(v) | dσn(v)〉






.

There is a unique matrix-valued polynomial B̃ on Z such that B = B̃ ◦ σ.

Theorem 5.1 (Procesi and Schwarz [21]) We have

σ(V ) = {z ∈ Z : B̃(z) is positive semidefinite}.

This theorem provides finitely many equations and inequalities describing σ(V ).

Changing the choice of generators may change the equations and inequalities, but

not the set they describe.

The isotropy classes in G induce a stratification of the orbit space V/G, analo-

gously to §§ 2.3, which is isomorphic to the primary Whitney stratification of the

semialgebraic set σ(V ) via the homeomorphism of V/G and σ(V ) induced by σ, by

[3]. These facts are essentially consequences of the differentiable slice theorem; see

[23].

5.2 C-Liftings after Desingularization—Real Version

Lemma 5.2 Let ρ : G → O(V ) be an orthogonal finite dimensional representation

of a compact Lie group G with V G
= {0}. Let U ⊆ R

q be an open neighborhood

of 0. Consider a C-mapping f : U → V/G = σ(V ) ⊆ R
n. Assume that f1 6= 0

(identically) and that for all j, f j 6= 0 implies f j(x) = xα j g j(x), where g j ∈ C(U ,R)

is non-vanishing and α j ∈ N
q. Then there exists a δ ∈ N

q such that α1 = 2δ and

α j ≥ d jδ for those j with f j 6= 0.

Proof We have α1 = 2δ for some δ ∈ N
q, since σ1(v) = 〈v | v〉 and thus f1 ≥ 0. If

δ = 0 the assertion is trivial. Let us assume that δ 6= 0.
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Set µ = (µ1, . . . , µq), where

(5.1) µi := min
{ (α j)i

d j
: f j 6= 0

}

.

For contradiction, assume that there is an i0 such that µi0
< δi0

. Consider

f̃ (x) := (x−d1µ f1(x), . . . , x−dnµ fn(x)).

If all xi ≥ 0, then f̃ is continuous (by (5.1)), and if all xi > 0, then f̃ (x) ∈ σ(V ) (by

the homogeneity of the σ j). Since σ(V ) is closed (by Theorem 5.1), f̃ (x) ∈ σ(V ) if

all xi ≥ 0. Since (α1)i0
− d1µi0

= (α1)i0
− 2µi0

= 2δi0
− 2µi0

> 0, we find that the

first component of f̃ vanishes on {xi0
= 0}. Thus f̃ must vanish on {xi0

= 0}, since

σ1(v) = 〈v | v〉. This is a contradiction for those j with (α j)i0
= d jµi0

.

Theorem 5.3 (C-lifting after desingularization — real version) Let ρ : G → O(V )

be an orthogonal finite dimensional representation of a compact Lie group G. Let M be

a C-manifold. Consider a C-mapping f : M → V/G = σ(V ) ⊆ R
n. Let K ⊆ M be

compact. Then there exist

(i) a neighborhood W of K,

(ii) a finite covering {πk : Uk → W} of W , where each πk is a composite of finitely

many local blow-ups with smooth center,

such that for all k the mapping f ◦ πk allows a C-lift on Uk.

Proof It suffices to modify the proof of Theorem 4.5 so that no local power substi-

tution is needed. No changes are required up to the case that f (0) = 0.

So assume that V G
= {0} and f (0) = 0. We may suppose that f1 6= 0 (otherwise

f = 0, as σ1(v) = 〈v | v〉, and the lifting problem is trivial). By Theorem 3.2, we find

a finite covering {πk : Uk → U} of a neighborhood U of 0 by C-mappings πk, each

of which is a composite of finitely many local blow-ups with smooth center such that

for each k the non-zero f j ◦ πk (for 1 ≤ j ≤ n) simultaneously have only normal

crossings.

Let k be fixed and let x0 ∈ Uk. Then x0 admits a neighborhood Wk with suitable

coordinates in which x0 = 0 and such that (for 1 ≤ j ≤ n) either f j ◦ πk = 0 or

( f j ◦ πk)(x) = xα j f k
j (x),

where f k
j is a non-vanishing C-function on Wk, and α j ∈ N

q. By Lemma 5.2, there

exists a δ ∈ N
q such that α1 = 2δ.

If δ = 0, then ( f1 ◦ πk)(x0) = f k
1 (x0) 6= 0 and hence ( f ◦ πk)(x0) 6= 0. Let w ∈

σ−1(( f ◦ πk)(x0)). The stabilizer Gw is a proper subgroup of G, since V G
= {0}. By

the induction hypothesis (and reduction to the slice representation Gw → GL(Nw)),

there exists a finite covering {πkl : Wkl → Wk} of Wk (possibly shrinking Wk) of the

type described in (ii) such that for all l, the mapping f ◦πk◦πkl allows a C-lift through

w on Wkl.
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Assume then that δ 6= 0. By Lemma 5.2, we have α j ≥ d jδ for those 1 ≤ j ≤ n

with f j ◦ πk 6= 0. Then

f̃ k(x) := (x−d1δ f1(πk(x)), . . . , x−dnδ fn(πk(x)))

is a C-mapping whose image lies in σ(V ). Since α1 = 2δ = d1δ and f k
1 (x0) 6= 0, we

have f̃ k(x0) 6= 0. Let w ∈ σ−1( f̃ k(x0)). The stabilizer Gw is a proper subgroup of G,

since V G
= {0}. By the induction hypothesis (and reduction to the slice representa-

tion Gw → GL(Nw)), there exists a finite covering {πkl : Wkl → Wk} of Wk (possibly

shrinking Wk) of the type described in (ii) such that for all l, the mapping f̃ k ◦ πkl

admits a C-lift f̄ kl through w on Wkl. Since a lift of f̃ k provides a lift of f ◦πk by mul-

tiplying by the monomial factor m(x) := xδ , the C-mapping x 7→ m(πkl(x)) · f̄ kl(x)

forms a lift through 0 of x 7→ ( f ◦ πk ◦ πkl)(x) for x ∈ Wkl.

Since k and x0 were arbitrary, the assertion of the theorem follows from §§ 4.1.

Corollary 5.4 (C-lifting of curves — real version) A C-curve c : R → V/G =

σ(V ) ⊆ R
n admits a C-lift c̄ locally near each x0 ∈ R. If ρ is polar, there exists a

global orthogonal C-lift which is unique up to the action of a constant in G.

Proof The local statement follows immediately from Theorem 5.3. (Each local blow-

up is the identity map, and, in fact, each non-zero component c j of c automatically

has only normal crossings.)

The proof of the remaining assertions is (almost literally) the same as in [1, 4.2]

where the real analytic case is treated.

6 Weak Lifting over Invariants

Let M be a C-manifold of dimension q equipped with a C∞ Riemannian metric.

Consider a C-mapping f : M → V//G = σ(V ) ⊆ C
n. We show in this section that f

admits a lift f̄ that is “piecewise Sobolev W
1,1
loc ”, i.e., there exists a closed nullset E ⊆ M

of finite (q−1)-dimensional Hausdorff measure such that f̄ belongs to W 1,1(K\E,V )

for all compact subsets K ⊆ M. In particular, the classical derivative d f̄ exists almost

everywhere and belongs to L1
loc, which is best possible among Lp spaces (see Remark

6.9). The distributional derivative of f̄ may not be locally integrable. In fact, in

general f does not allow for W
1,1
loc -lifts (by example [22, 7.17]). However, we shall

conclude that the lift f̄ belongs to SBVloc, i.e., special functions of bounded variation

(see §§6.4).

We denote by Hk the k-dimensional Hausdorff measure. It depends on the metric

but not on the ambient space. For a Lipschitz mapping f : R
q ⊇ U → R

p we have

Hk( f (E)) ≤ (Lip( f ))kHk(E), for all E ⊆ U ,

where Lip( f ) denotes the Lipschitz constant of f . The q-dimensional Hausdorff mea-

sure Hq and the q-dimensional Lebesgue measure Lq coincide in R
q. If B is a subset

of a k-plane in R
q, then Hk(B) = Lk(B).
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6.1 The Class WC

Let M be a C-manifold of dimension q equipped with a C∞ Riemannian metric g.

We denote by WC(M) the class of all real or complex valued functions f with the

following properties:

(W1) f is defined and of class C on the complement M \ EM, f of a closed set EM, f

with Hq(EM, f ) = 0 and Hq−1(EM, f ) <∞.

(W2) f is bounded on M \ EM, f .

(W3) ∇ f belongs to L1(M \ EM, f ) = L1(M).

For example, the Heaviside function belongs to WC((−1, 1)), but the function

f (x) := sin 1/|x| does not. A WC-function f may or may not be defined on EM, f .

Note that if the volume of M is finite, then

(6.1) f ∈ WC(M) =⇒ f ∈ L∞(M \ EM, f ) ∩W 1,1(M \ EM, f ).

We shall also use the notations WC

loc(M) and WC(M,C
n) = (WC(M,C))n with the

obvious meanings. Since WC is preserved by linear coordinate changes, we can con-

sider WC(M,V ) for vector spaces V .

In general WC(M) depends on the Riemannian metric g. It is easy to see that

WC(U ) is independent of g for any relatively compact open subset U ⊆ M. Thus

WC

loc(M) is also independent of g. If (U , u) is a relatively compact coordinate chart

and gu
i j is the coordinate expression of g, then there exists a constant C such that

(1/C)δi j ≤ gu
i j ≤ Cδi j as bilinear forms.

From now on, given a C-manifold M, we tacitly choose a C∞ Riemannian metric

g on M and consider WC(M) with respect to g.

6.2 Notations

Let us introduce the following notation: For ρ = (ρ1, . . . , ρq) ∈ (R>0)q, γ =

(γ1, . . . , γq) ∈ (N>0)q, and ǫ = (ǫ1, . . . , ǫq) ∈ {0, 1}q, set

Ω(ρ) := {x ∈ R
q : |x j | < ρ j for all j},

Ωǫ(ρ) := {x ∈ R
q : 0 < (−1)ǫ j x j < ρ j for all j}.

The power transformation

ψγ,ǫ : R
q → R

q : (x1, . . . , xq) 7→ ((−1)ǫ1 x
γ1

1 , . . . , (−1)ǫq x
γq
q )

maps Ωµ(ρ) onto Ων(ργ), where ν = (ν1, . . . , νq) is such that ν j ≡ ǫ j +γ jµ j mod 2

for all j. The range of the j-th coordinate behaves differently depending on whether

γ j is even or odd. So let us consider

ψ̄γ,ǫ : Ωǫ(ρ) → Ωǫ(ρ
γ) : (x1, . . . , xq) 7→ ((−1)ǫ1 |x1|

γ1 , . . . , (−1)ǫq |xq|
γq ),

and its inverse mapping

ψ̄−1
γ,ǫ : Ωǫ(ρ

γ) → Ωǫ(ρ) : (x1, . . . , xq) 7→ ((−1)ǫ1 |x1|
1
γ1 , . . . , (−1)ǫq |xq|

1
γq ).
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Then we have ψ̄γ,ǫ ◦ ψ̄
−1
γ,ǫ = idΩǫ(ργ) and ψ̄−1

γ,ǫ ◦ ψ̄γ,ǫ = idΩǫ(ρ) for all γ ∈ (R>0)q and

ǫ ∈ {0, 1}q. Note that

(6.2) {ψ̄γ,ǫ : ǫ ∈ {0, 1}q} ⊆ {ψγ,µ|Ωǫ(ρ) : ǫ, µ ∈ {0, 1}q}.

Let us define ψ̄−1
γ : Ω(ργ) → Ω(ρ) by setting ψ̄−1

γ |Ωǫ(ργ) := ψ̄−1
γ,ǫ , for ǫ ∈ {0, 1}q, and

by extending it continuously to Ω(ργ). Analogously, define ψ̄γ : Ω(ρ) → Ω(ργ) such

that ψ̄γ ◦ ψ̄
−1
γ = idΩ(ργ) and ψ̄−1

γ ◦ ψ̄γ = idΩ(ρ).

6.3 WC-Lifting

Lemma 6.1 ([22, 7.6]) If f ∈ WC(Ω(ρ)), then f ◦ ψ̄−1
γ ∈ WC(Ω(ργ)).

Lemma 6.2 ([22, 7.9]) Let ϕ : M ′ → M be a blow-up of a C-manifold M with center

a closed C-submanifold C of M. If f ∈ WC

loc(M ′), then f ◦(ϕ|M ′\ϕ−1(C))
−1 ∈ WC

loc(M).

Lemma 6.3 ([22, 7.10]) Let M be a C-manifold. Let K ⊆ M be compact, let

{(U j , u j) : 1 ≤ j ≤ N} be a finite collection of connected relatively compact coor-

dinate charts covering K, and let f j ∈ WC(U j). Then after shrinking the U j slightly

so that they still cover K, there exists a function f ∈ WC(
⋃

j U j) satisfying the fol-

lowing condition: if x ∈
⋃

j U j , then either x ∈ E⋃
j U j

or f (x) = f j(x) for some

j ∈ {i : x ∈ Ui}.

Theorem 6.4 (WC-lifting) Let M be a C-manifold. Consider a C-mapping f : M →
V//G = σ(V ) ⊆ C

n. For any compact subset K ⊆ M there exists a relatively compact

neighborhood W of K and a lift f̄ of f on W which belongs to WC(W,V ). In particular,

we have that d f̄ is L1.

Proof By Theorem 4.5, there exists a neighborhood W of K and a finite covering

{πk : Uk → W} of W , where each πk is a composite of finitely many mappings, each

of which is either a local blow-up Φ with smooth center or a local power substitution

Ψ (see §§4.1) such that for all k the mapping f ◦ πk allows a C-lift on Uk.

In view of Lemma 6.3 the proof of the theorem will be complete once the following

assertions are proved:

(i) Let Ψ = ι ◦ ψ : W ′ → W → M be a local power substitution. If f ◦Ψ allows a

lift of class WC

loc, then so does f |W .

(ii) Let Φ = ι ◦ ϕ : U ′ → U → M be a local blow-up with smooth center. If f ◦ Φ
allows a lift of class WC

loc, then so does f |U .

Assertion (ii) follows easily from Lemma 6.2. To prove (i), let f̄ Ψ = f̄ ψγ,ǫ (for

some γ ∈ (N>0)q and all ǫ ∈ {0, 1}q, see §§4.1) be a lift of f ◦ Ψ which belongs to

WC

loc(W ′,V ).

We can assume without loss of generality (possibly shrinking W ′) that for some

ρ ∈ (R>0)q we have W ′
= Ω(ρ), W = Ω(ργ), and f̄ ψγ,ǫ ∈ WC(Ω(ρ),V ). Let us

define a mapping f̄ ψ̄γ ∈ WC(Ω(ρ),V ) by setting (in view of (6.2))

f̄ ψ̄γ |Ωǫ(ρ) := f̄ ψ̄γ,ǫ |Ωǫ(ρ), ǫ ∈ {0, 1}q.
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On the set {x ∈ Ω(ρ) :
∏

j x j = 0}, we may define f̄ ψ̄γ arbitrarily such that it forms

a lift of f ◦ ι ◦ ψ̄γ . By Lemma 6.1,

f̄ := f̄ ψ̄γ ◦ ψ̄−1
γ ∈ WC(Ω(ργ),V ) = WC(W,V ).

Clearly, f̄ forms a lift of f |W . Thus the proof of (i) is complete.

Corollary 6.5 (Local WC-sections) Assume that ρ : G → GL(V ) is coregular, i.e.,

C[V ]G is generated by algebraically independent elements. Then σ : V → V//G =

σ(V ) = C
n admits local WC-sections (which map into the union of the closed orbits),

for C any class of C∞-functions satisfying (A1 ′), (A2)–(A6).

Proof Apply Theorem 6.4 to the identity mapping on V//G = σ(V ) = C
n
= R

2n

(which is of class C by (A1 ′)).

6.4 Special Functions of Bounded Variation

Let U ⊆ R
q be open. A real valued function f ∈ L1(U ) is said to have bounded

variation, or to belong to BV(U ), if its distributional derivative is representable by a

finite Radon measure D f in U . (See [2].) For f ∈ BV(U ) we have the decomposition

D f = Da f +D j f +Dc f in the absolutely continuous part Da f , the jump part D j f , and

the Cantor part Dc f . We say that f ∈ BV(U ) is a special function of bounded variation,

and we write f ∈ SBV(U ), if the Cantor part of its derivative Dc f is zero. This notion

is due to [8]. A complex valued function f : U → C is in BV(U ,C) (resp. SBV(U ,C)),

if (Re f , Im f ) ∈ (BV(U ))2 (resp. (SBV(U ))2); similarly for vector valued functions.

6.5 SBV-Lifting

Proposition 6.6 ([2, 4.4]) Let U ⊆ R
q be open and bounded, E ⊆ R

q closed, and

Hq−1(E ∩ U ) < ∞. Then any function f : U → R that belongs to L∞(U \ E) ∩
W 1,1(U \ E) belongs also to SBV(U ).

Theorem 6.7 (SBV -lifting) Let U ⊆ R
q be open. Consider a C-mapping f : U →

V//G = σ(V ) ⊆ C
n. For any compact subset K ⊆ U there exists a relatively compact

neighborhood W of K and a lift f̄ of f on W that belongs to SBV(W,V ).

Proof It follows immediately from Theorem 6.4, Proposition 6.6, and (6.1).

Corollary 6.8 (Local SBV -sections) Assume that ρ : G → GL(V ) is coregular. Then

σ : V → V//G = σ(V ) = C
n admits local SBV-sections (which map into the union of

the closed orbits).

Proof Combine Corollary 6.5 with Proposition 6.6 or apply Theorem 6.7 to the

identity mapping on V//G = σ(V ) = C
n
= R

2n.

Remark 6.9 In general a C (even polynomial) mapping f into V//G = σ(V ) does

not allow a lift f̄ with d f̄ ∈ L
p
loc for any 1 < p ≤ ∞ (see [22, 7.13]). Moreover, there

is in general (for q ≥ 2) no lift in W
1,1
loc and in VMO (see [22, 7.17 and 7.18]). If q = 1,

then locally absolutely continuous lifts exist, even under milder conditions [17].

https://doi.org/10.4153/CJM-2011-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-049-0


426 A. Rainer

7 Weak Lifting in the Real Case

For the sake of completeness, in Theorem 7.1 we list the conclusions for WC (resp.

SBV) lifting over invariants of compact Lie group representations. For polar repre-

sentations of compact Lie groups in Theorem 7.2 we show that C-mappings actually

admit lifts that are “piecewise locally Lipschitz”. We do not know whether that is true

when the representation is not polar.

Theorem 7.1 (Weak lifting — real version) Let ρ : G → O(V ) be an orthogonal

finite-dimensional representation of a compact Lie group G. Let M be a C-manifold.

Consider a C-mapping f : M → V/G = σ(V ) ⊆ R
n. For any compact subset K ⊆ M

there exists a relatively compact neighborhood W of K and a lift f̄ of f on W such that:

(i) f̄ belongs to WC(W,V ).

(ii) If M is open in R
q, then f̄ belongs to SBV (W,V ).

Proof The proofs are essentially the same as in §6; instead of Theorem 4.5 we use

Theorem 5.3 and we do not have to deal with local power substitutions.

Due to [12], if G is finite, then any continuous lift f̄ of f is actually locally Lips-

chitz, given that f is Ck with k sufficiently large (namely, k = k(ρ) in Table 1). But

continuous lifts do not exist in general (for instance, if G is a finite rotation group).

Sufficient for the existence of continuous and thus locally Lipschitz lifts is that G is a

finite reflection group or that G is connected and ρ is polar.

Evidently, if there are no continuous lifts, we cannot hope for locally Lipschitz

lifts. However, there might exist lifts that are “piecewise locally Lipschitz”.

7.1 The Class LC

Let M be a C-manifold equipped with a C∞ Riemannian metric g. We denote by

LC(M) the class of all real functions f with the properties (W1), (W2) from §§6.1

and

(L3) ∇ f is bounded on M \ EM, f .

For example, the Heaviside function belongs to LC((−1, 1)) (as does any step

function), but the function f (x) := |x|α, for 0 < α < 1, does not. If the volume of

M is finite, then LC(M) ⊆ WC(M). An LC-function f may or may not be defined

on EM, f . We shall also use LC

loc(M), LC(M,R
n) = (LC(M,R))n, and LC(M,V ) for

vector spaces V with the obvious meanings.

For relatively compact open subsets U ⊆ M, the set LC(U ) is independent of g.

7.2 LC-Lifting—Real Version

Theorem 7.2 (LC-lifting — real version) Let ρ : G → O(V ) be a polar orthogonal

real finite dimensional representation of a compact Lie group G. Let M be a C-manifold.

Consider a C-mapping f : M → V/G = σ(V ) ⊆ R
n. For any compact subset K ⊆ M

there exists a relatively compact neighborhood W of K and a lift f̄ of f on W which

belongs to LC(W,V ).
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Proof Without loss of generality we may assume that G is finite, since, by §§2.4, we

can reduce to the representation W (Σ) → O(Σ) for a Cartan subspace Σ.

By Theorem 7.1 there exists a lift f̄ of f on W that belongs toWC(W,V ). We claim

that f̄ is actually in LC(W,V ). We have to check that d f̄ is bounded on W \EW, f̄ . For

contradiction suppose that there exists a sequence (xk) ⊆ W \ EW, f̄ with xk → x∞ ∈

EW, f̄ such that d f̄ (xk) is unbounded. Without loss of generality we may assume that

W is open in R
q, (by passing to a subsequence) that xk converges fast to x∞, i.e., for

all n the sequence kn(xk−x∞) is bounded, and that there is a sequence (vk) ⊆ R
q that

converges fast to 0 such that ‖dvk
f̄ (xk)‖ → ∞. By the general curve lemma [14, 12.2],

for sk ≥ 0 reals with
∑

k sk <∞ there exist a C∞-curve c and a converging sequence

of reals tk such that c(t + tk) = (xk − x∞) + tvk for |t| < sk for all k. For the shifted

curve c̃(t) := c(t) + x∞, we thus have

‖( f̄ ◦ c̃) ′(tk)‖ = ‖dvk
f̄ (xk)‖ → ∞.

Now f̄ ◦ c̃ represents a lift of the C∞-curve f ◦ c̃. By [11, 4.2, 8.1], f ◦ c̃ admits a C1-lift

f ◦ c̃, and, by [11, 3.4], there exist gk ∈ G such that ( f̄ ◦ c̃) ′(tk) = gk.( f ◦ c̃) ′(tk). So

‖( f̄ ◦ c̃) ′(tk)‖ = ‖( f ◦ c̃) ′(tk)‖ is bounded, which is a contradiction.
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