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SURFACE WATER WAVES BY A SHARP DISCONTINUITY IN THE
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Abstract

Closed-form analytical expressions are derived for the reflection and transmission coef-
ficients for the problem of scattering of surface water waves by a sharp discontinuity in
the surface-boundary-conditions, for the case of deep water. The method involves the use
of the Havelock-type expansion of the velocity potential along with an analysis to solve
a Carleman-type singular integral equation over a semi-infinite range. This method of
solution is an alternative to the Wiener-Hopf technique used previously.

1. Introduction

The problem of scattering of surface water waves in the two-dimensional linearised
theory has created several challenges to a large group of workers in applied math-
ematics (see Stoker [14], Newman [10], Ursell [15], etc.) interested in developing
analytical methods of handling a class of mixed boundary-value problems associ-
ated with Laplace’s equation in two dimensions under varieties of mixed boundary
conditions. Recently, Evans and Linton [2] examined the problem of determining the
reflection and transmission coefficients involving scattering of surface water wavesin a
finite depth fluid, on whose surface two different impedance-type boundary conditions
are prescribed on the two sides of a fixed position. The mathematical complexities
associated with such mixed boundary-value problems for elliptic-type partial differ-
ential equations have been known for a long time (see Weitz and Keller [17], Keller
and Weitz [7]).

In the present paper, we have described a method involving the Havelock-type
expansion (see Ursell [15]) of the velocity potential, for the case of water of infinite
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depth, on whose surface there exists a single point of discontinuity so that, on the
two sides of this point, two different impedance-type boundary conditions are to be
met. In order to visualize such boundary conditions, one may imagine that one half
of the surface is free to the atmosphere and the other half is covered by an inertial
surface of constant area density (see Gabov et al. [4]). We can also imagine, for the
sake of realizing the boundary conditions used here, that the surface of the fluid is
composed of two different types of distribution of floating ice particles (see Weitz and
Keller [17]) on either side of a fixed position on it and it may be remarked that, as
pointed out by Evans [1], though there are limitations on the use of such a model it
provides a useful check of limiting cases for more general boundary-value problems
involving Laplace’s equation. Different models involving ice-covered surfaces have
been proposed in an investigation by Fox and Squire [3] (see the other references cited
in [3] also).

The particular mixed boundary-value problem considered here also arises in the
study of propagation of interface waves (see Gabov et al. [4]) at the interface of two
immiscible fluids of infinite extent, where one half of the interface is covered by an
inertial surface of known constant area density and the other half is a free separation
boundary of the two fluids. Thus, the importance of the particular model chosen in the
present study is that the same boundary-value problem arises in many other situations.

The problem under consideration is reduced, in the present paper, to that of solving
a Carleman-type singular integral equation over a semi-infinite range, whose solution
is determined by utilizing the techniques available in the books of Muskhelishvili
[9] and Gakhov [5]. The full solution is finally determined in a neat analytical
form and the closed-form expressions for the reflection and transmission coefficients
are also presented. A solution has been obtained before, by Peters [11], using the
Wiener-Hopf technique. Whilst it is well-known that the Wiener-Hopf technique
is undoubtedly an extremely powerful method, capable of handling more general
boundary value problems than the one considered here, we here demonstrate the use
of Fourier analysis and Carleman-type singular integral equations, even though the
analysis is rather long-winded. The present work deals with the simplest case of
normally incident waves. The case of obliquely incident waves is yet to be examined
by the method described here.

As has already been mentioned, the problem of the present work involves fluid of
infinite depth as compared to the work of Evans and Linton [2], where the problem
for fluid of finite depth has been solved using the residue calculus method of Mitra
and Lee [8] to determine the reflection and transmission coefficients. The analysis of
Evans and Linton [2] can also be utilized, with care, for the problem of the present
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2. The statement of the problem and reduction to an integral equation

We shall assume that the flow of the fluid under our consideration is two-dimen-
sional, irrotational, inviscid, incompressible and time-harmonic (with time-depend-
ence e, j = —1, w > 0) in nature. Then, using Cartesian x, y coordinates,
with the x-axis in the horizontal direction and the positive y-axis in the downward
vertical direction respectively, so that the fluid occupies the semi-infinite region
y > 0, the mathematical problem is that of the determination of the velocity po-
tential ®(x, y, r) = Re {¢(x, y)e~*"}, in which ¢ satisfies the following equation and
conditions:

) 3%¢p 3% .
(i) the p.d.e. 5;; + B_yz =0,iny > 0;
(ii)) the impedance-type boundary conditions on the surface of deep water of

constant density

]

(a) ¥+K1¢=0, ony =0, forx < «,
y
a¢

(b) 5—+K2¢=0, ony =0, forx > «,
y

where o represents a fixed real number, with K,(> 0) and K,(> 0) representing the
wave numbers corresponding to surface waves on the two sides x < a and x > «,
respectively;

(iii) ¢, grad¢p — 0,as y — o0;

(iv) ¢ — KKy L RemiKix-Kiy a5 x — —00;
and

(V) ¢ > Te*> K a5 x — +o0,
where R and T denote the complex “reflection” and “transmission” coefficients of the
scattering problem under consideration.

The method of solution of the above mixed boundary-value problem is as follows.
We write ¢ = ¢, for the region (x < o,y > 0) and ¢ = ¢, for the region (x > «,
y > 0), respectively, and set, using Havelock-type expansions (see Ursell [15}),

¢l — e—K|y+iK|x + Re—K.y—ile

2 [ A@)

ECV(EcosEy — K sinéy)dE, forx <a,y >0
), @+ KD (§cos§y — Ky sin§y) dé§ y

and

¢2 — Te—sz-}-iK;x
L2 [T _B®

— 2t (E costy — K, sinEy)dE, forx > a,y > 0,
), @+ KD (§ cos&y — Ky singy) d§ y
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where A(§) and B(£) represent two unknown functions to be determined along with
the other two unknown complex constants R and 7.
The conditions of continuity of ¢ and d¢/dx across the line x = o give that

—-Ky+iKa -K\y—iKa zfoo __—A(E) — i
e kv + Re ™V + </, (§2+K,2)(€C08€y K,sin&y) d§

= Te Kotk / @ .;(.52(2) (cos&y — Ky sinEy) d& 2.1
and
oo

iK [eMriKie — RemKu—ikia] 4 %/0 @%(é coséy — Ky sin§y) dé
2 [ £BE)
nJo (24K}

The improper integrals appearing in the relations (2.1) and (2.2) and all such
integrals appearing in the rest of the analysis will be understood as the limits of
appropriately designed convergent integrals (see (2.6)).

We next use the following “Mixed Fourier Transform Pair” (see Sneddon [12]),
also known as Havelock’s expansion theorem (see Ursell [15]):

=iK, Te Keytikaa _

(Ecoséy — K,sinEy) dE. 2.2)

“If 3
/ f()(Ecosét — KsinEr)dt = F(), £>0, K>0,
then ’
2 [® F
fF@ = ~ B _}(_SI)(,Z (Ecos&t — KsinE)de + Coe™ ', t> 0, ! 2.3)
with
Co=2K | f@e*d,
where f(f) andoits derivative are continuous and integrable in the
range (0, c0).” J
Then, using (2.3), we determine, from (2.1) and (2.2), that
ik | (K2 — K1) §2+K1K2)
A(§) = Te [ e ]+( ax ) BO
uB(u)du
——(K;—K 2.4
(2 ,)s/ T e 2.4
and
— ik | (K2 — K1) _ £+ KK,
§A) = iK,Te [ TR ] ( £+ K2 )SB@)
2 ® u’B(u) du
+ ;(Kz - Kl)f/(; W + KD)(u? — £)’ 2.5)
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after interchanging the orders of integration and employing the “generalized” identi-
ties:

0 A

lim | e cosuy coséydy = %[a(g —u) + 8 + u)],
€—> 0
lir% e “sinuysinydy = %[6(&‘ —u) — 8(& + u)}, (2.6)
€—> 0
e u
li_{% A e sinuy cos Eydy = m, ‘

where §(x) denotes the well-known Dirac’s delta function.
We must keep in mind, in view of the expansion theorem (2.3), that the following
relations must also hold good:

b ke p-ikiey L€ 2 / EB(§)dE
i ¢+ RN = e+ K= K @rkErky 7
and .
Lo ik p -ikiay _ iKaTe™ / £2B(§)dE
A Y ere . @Y

The elimination of A () between (2.4) and (2.5) gives rise to the following equation
for the determination of the unknown function B(§):

£+ KK, 1 *© uB(wdu
( e >B(§)"F(K2"K‘)fo @B+ KD

(Ko — K))Tek
T Taevik) 0 T @

in which the singular integral is understood in the sense of its Cauchy principal
value (see Gakhov [5]). All singular integrals appearing in the paper are understood
similarly.

Reusing (2.9) in (2.4) gives

T(K; — KDe™ | (K~ K) /°° uB(u)du
2(§ - iKy) (u+8) + K}’

Thus, the problem of determination of the two unknowns A (§) and B(£) has been
reduced, basically, to the problem of solving a single Carleman-type singular integral
equation over a semi-infinite range, as given by (2.9), which can be cast into the form:

A) = £>0 (210

Aw)du Teke

COME) + — /0 O ey £70 @.11)
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where
_ uB(u)
Au) = ———(uz T Kzz) (2.12)
and
_ (P + K K)

We shall next solve the integral equation (2.11) and determine the full solution of
the problem under consideration.

3. The full solution

The singular integral equation (2.11) can be solved by using the techniques available
in the books of Muskhelishvili [9] and Gakhov [5]. We describe here the method of
solution rather briefly (see Spence [13] and Varley and Walker [16] also).

Introducing a sectionally analytic function A (), as defined by the relation

1 *® AMu)du
A@)Y=— , 3.1
©O=5=] =z 3.1)
and utilizing the Plemelj-Sokhotskii formulae as given by
0 A(u)du
A*(E) =+ A(&) + —f (3.2)
(2.11) can be expressed in the form
c &) - [C Tt 0 3
+iJA - —iJA ()= ——, >0, 3.
[CE) + AT (E) &) — 1A () 3E 1K) 3 (3.3)
which represents a Riemann-Hilbert problem for the determination of the function
A).
The solution of the problem (3.3) can be easily written down in the form

_ Tk i du/(u—1¢)
AGQ)=— A"(;)/o A W[CW) + il(u+iK,)' G4

where Aq(¢) represents the solution of the homogeneous problem (3.3) which is
analytic and non-zero in the complex ¢ —plane cut along the positive real axis and
which is such that Ae(Z) ~ O(1) as [¢] — oo, producing A(Z) ~ 0(1/]¢]) as
[¢] — o0, as is to be expected of the form (3.1) for the function A(Z).
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The solution of the integral equation (2.11) can be determined by reusing formula
(3.2), giving

MEY=ATE)~-ATE), £>0. (3.5)

By using (3.4), (3.5), (3.2), (2.12) and (2.13), we finally determine that the unknown
function B(¢) of our problem has the following representation:

_ _ ik (EZ + KlKZ)
B() =T(K, — Ky)e [2(5 +IK)E+ KD

_(Ki-Ky) (S ~ iKz) A+(§)/°° udu/(u—§&) ]
2 £E—iK, ) ° o AT+ KHu+iK)) ]’

3.6)

It is clear from this expression, that B(§) ~ 0(1/£) as &€ — oo, which is a necessity
for the validity of the analysis employed in the present work and provides a check at
this stage of the solution of the problem at hand.

Also, knowing B(§), we can determine the other unknown A(£) of the problem,
by using (2.10).

Thus, the full solution can be completed, once the two unknown constants R and
T are also determined. This task can be carried out successfully as described in the
next section, the basis of which lies in the pair of formulae (2.7) and (2.8).

4. The reflection and transmission coefficients

Solving (2.7) and (2.8) for the unknowns R and T, after utilizing (3.6) for the
function B(&), we arrive at the following results:

iK1 K 1
T=[e<l< K)]I:1+%(K2_K')2fom(5—+%%§%5:| @.D
and
2iKa (%) - (K, — K;)? N (E—;iKQ.()%ZLKﬁ
R = [e ] 1+ %(Kz - K,)? j‘o°° @T%(%ﬁ , (4.2)
where
0() = (¢* + KiK>) 4.3)

2(¢ +iK;)(E* + KD)

_ (K1 = K3) <§ - iKz) AF(E) /m uduf/(u—§)
2 £E—iK,) °7Jo AW+ KD(u+iKy)'
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with Ag (§) being the ‘plus’-limiting value of the function A¢(¢), in the usual notation.
Note that (cf. (3.6))

B(§) = T(K, — Kp)e'™™ Q(§). 4.4)

It is interesting to observe that all the integrals appearing in the results (4.1), (4.2)
and (4.3) can be evaluated in closed form by some clever use of Cauchy’s residue
theorem, along with the fact that A,(¢) solves the homogeneous problem (3.3), in
which C(§) is as given by (2.13).

At first we shall evaluate the integral in (4.3) by considering the contour integral

= dt
h= fr rNOGtikne—g SfT 4.5)

where T is a closed contour consisting of a large circular arc along with a loop around
the positive real axis. Then, by the aid of the residue theorem as well as the fact that
Ao(¢) is the solution of the homogeneous problem (3.3), we find that

¢ —iKy) [ A () ]
(& —iK)(E +iKy) L Ao(—iKy) |

Next, using the result (4.4), the two important integrals

1=2/°° EQ() dE and ,=2f°° £ Q(E) d&
2T %) @+ KDE +iK) T E+KDE-IK)

20¢) =

can be evaluated, by considering two more contour integrals

s Ao(T)dT
= /r C—OG+iknG +iky D

and

~ Ao(l’)dl’
I; = , L,
’ ./r G- —iKnG+iky °F

in which I is the same closed contour as used in (4.5).
We easily derive that

b4 |:A0(—iK1) ]
I = - - -1
i(Ky — K2)? L Ao(—iKy)
and (4.6)

I — b [1_ Ao(iKy) ]
T i(KT—KD) Ao(—iKy) |
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Finally, using (4.6) in (4.1) and (4.2), we find that

T= [M—_’Kz_)] JKi—Ke o4 R = (K. - Kz) [ Ao(iK) ]ezma.

Ao(—iK)) K, + K3 ) L Ao(—iKy)

It is, perhaps, worth mentioning that, up to this point of our analysis, no explicit
expression for the sectionally analytic function Ay () is required.

Now, for the particular problem at hand, and for the choice of the two wave numbers
K, and K,, for which K, > K,, we can determine the function A¢(¢) by using the
relation (see Muskhelishvili [9] and Varley and Walker [16]):

/00 (log (;;—,'gt) - 2m') dt
0

t—=¢

Ao(g) = exp oy

» ¢ €(0,00).

/oo (log (:—:’2) - 2711') dt
0

t—¢

Then, some standard and simple manipulations lead to the interesting results given by

Ao(—iK))|  2(K(K)'? K- K,
IT| = - = and IR| = |[———=|,
Ao(—lKl) K| +K2 K1+K2
which satisfy the requirement that
IR*+ TP =1.

The following two results were needed in the above manipulations (see Gradshteyn
and Rhyzik [6]):

n/2 T
/ log (sin8)df = ——log2
0 2
and

n/f2
f log (K? + K}tan’0)dé = m log (K + K3).
0
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