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Abstract

Here we consider a particular class of stochastic geometric programs in which the
randomness occurs in the decision variables. Specifically we analyse a program in
which we specify a joint normal probability for the decision variables and require the
constraint set to be satisfied in the chance constrained mode. A numerical example is
given to illustrate the approach.

1. Introduction

Uncertainty is a common feature in problems to which mathematical programming
is applied. Indeed it is often assumed that the parameters are known exactly even
though it is known that they are a result of statistical estimation. By this means, one
eliminates the very significant technical problems that arise if the stochastic element
is treated explicitly. However there are numerous applications in areas such as
finance, engineering design and reliability [11, 12] where the stochastic element
cannot be ignored. In order to cope with such problems the field of stochastic
programming has evolved and considerable success has been obtained with the
chance constrained approach of Charnes and Cooper [2] and recourse program-
ming [11]. Typically these approaches allow some or all of the parameters of the
mathematical program to be random variables derived from known probability
density functions. In chance constrained programming, one permits constraint
violations up to specified probability limits. For such problems Prekopa [8] has
derived necessary and sufficient conditions for optimality for very general distri-
butions including the normal distribution. In addition, he converts the chance
constrained program into a solvable certainty equivalent.

Here we follow the chance-constrained philosophy but introduce randomness via
the decision variables. We term this a mathematical program with probabilistic
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decision variables. Specifically we consider a geometric program [4] in which the
decision variables are normally distributed and the linear constraint set is of the
chance-constrained variety. By approximating the normal distribution we trans-
form this into an equivalent deterministic posynomial program which may be
readily solved by conventional techniques.

By a posynomial program, we mean a mathematical program of the form:

(P) minimize go(t) (1)

subject to constraints

k=l,2,-,P, (2)

k = p+l,...,r, (3)

and positivity conditions

t ;>0, j=l,...,m. (4)

Here

and [/c], k — 0,1,..., r, is a collection of disjoint index sets which form a sequential
partition of the integers 1 to n (n is the total number of terms in the objective function
plus all the constraints). The a{j are arbitrary real exponents and the coefficients c,
are positive. The name posynomial is derived from the polynomial form of the
functions and the positivity of the coefficients and variables.

Posynomials arise naturally in the disciplines of economics and engineering.
Moreover as polynomials may be converted into posynomials, posynomials are of
wide applicability [7]. Posynomial programs form the original class of programs to
be analysed by geometric programming duality which provides the basis for efficient
computer codes [3, 9, 10].

As a result of the versatility of the polynomial form for modelling and the basis for
algorithms provided by geometric programming it is valuable if geometric programs
with probabilistic decision variables can be converted into deterministic posynomial
form. In Section 2, we carry this calculation through and give a computational
example in Section 3.

2. Certainty equivalent program

We consider a linearly constrained posynomial program of the form:

( I ) minimize go(t) (5)

subject to £ C;t , ( 0<l, k=l,...,p. (6)
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Here;(i) determines the variable) appearing in the ith term. Although the linear
constraints may appear to be a considerable restriction on the posynomial form, in
many design and scheduling problems all the nonlinearity appears in the objective
function. Let the variables r,- be independent normally distributed random variables
with mean /*, (a variable) and variance a2 (a constant) for all j that is N(jij, a2). Hence
the left hand side of each constraint is a normal variate with mean £;6pt] c,- nm and
variance 'Zimcio

2
m.

Initially we consider the problem with one constraint of the form (6). We require
the probability of the left-hand side to be less than 1 with at least probability q.
Hence

P(x^l)>q (7)

where x is

i€[k] ie\k]

Thus we seek /iJ(I), aJ(i) which minimize the objective function and such that a
realization from the distribution will satisfy the constraint with probability q. In
order to convert inequality (7) into a posynomial form we make use of a numerical
approximation due to Hastings [5] who approximates the integral

(8)

by

<D,(z)= l-l/{l + blz+b2z
2 + b3z

3 + b4zy (9)

to an accuracy of 0.5 x 10" 3 where bl = 0.278393, b2 = 0.230389, b3 = 0.000972,
bA = 0.078108. A closer approximation is

O2(z)= l-l/{l+dlz + d2z
2 + d3z

3 + d4z
A + d5z

5+d6z
6)16 (10)

to an accuracy of 0.3 x lO" 6 where d^ = 0.0705230784, d2 = 0.0422820123,
d3 = 0.0092705272, dA = 0.0001520143, d5 = 0.0002765672, d6 = 0.0000430638.

For the purposes of this paper, <J>,(z) will be employed. The use of tf>2(z) is
analogous.

Assuming that q is close to one we have that

n n v 2M P ( P ( Z ^ ; < o ) 7 ( 2 ( £ ci(r
2
(i)))}dx.

(211 2, C.°W J-oo iefk] iefk]
i€fk]

Setting

https://doi.org/10.1017/S0334270000002307 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002307


232 T. R. Jefferson and C. H. Scott [4]

can be approximated by

^(l-Z^^Ef,.^/ (11)
ie\k] iefk]

and

(12)

Substituting equation (9) into (12), it may be rewritten in the form

Z3 + i 4 z*)> l (13)

We are now able to develop the certainty equivalent posynomial program for
programs of the form
(SI) minimize gQ(E(t)) (14)

subject to P( £ C; tJ(i) < 1) Js q. (15)
is[l]

The equivalent deterministic program to (SI) is

(Cl) minimize <7O(AO

subject to £ c, nM + ( 2 Z c, <r?(0)* z < 1, (17)

+ ̂  + ^ z 4 ) ^ ! (18)

where the variables are the scalar z and vector p.
We are now in a position to consider the more interesting case of p constraints

where multivariate correlations play an important role. We consider the following
program:
(Sp) minimize go(E{t)) (19)

subject to P(T. C ( t m ^ l , k = l , . . . , p ) > q . (20)

In this generalization, the probability distribution is multivariate normal with
mean vector (of dimension p) with components Mk = Y.uik] ci<PjV)> k = I, ...,p, and
variance covariance matrix S = (CTW) where

.<=[*] i'E[l]

where <r? is the variance of the; variable and SJ(i)j(n is a Kronecker delta.
If we define A to be the triangular square root of Z " ' , then

y = A"1(x-Af) (22)

is N(0,1) for x, N(M, Z), that is, the transformation removes the correlation. In order
to employ the approximation ^(z), we require the transformation z = y/y/2 so that
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Program (Sp) can now be written as

(Cp) minimize go(n) (23)

p

subject to £ c,. nm + V2 £ AH Z, < 1, fc = 1,..., p, (24)
;<#] / = i

l + b 3 z \ + b A z k r > 1 , k = l , . . . , p , (25)

, k=\,...,p, (26)

«nv<i (27)

over the variables /i, u, W and z. Here inequality (24) arises analogously to (17), and
inequality (25) is the generalization of (18) which has been combined with (26) such
that (25) is in posynomial form. Inequality (27) is the joint probability constraint
which is factorizable since the correlations have been removed. If any of the \ , are
negative, equation (24) can be converted into posynomial form using the transform-
ations found in [7].

Program (Cp) will always have reversed constraints (constraints of the form
gk(t)^l) which means that the geometric program is not necessarily convex and
hence the Kuhn-Tucker conditions are not necessary and sufficient. Prekopa [8]
has shown that (Sp) is at least quasi-convex and the Kuhn-Tucker conditions are
necessary and sufficient. The key transformation for geometric programming is the
natural logarithm. Since dIn tjdtj = l/tj>0 for tj>0 the transformation is non-
singular. Thus, appealing to the following theorem, Kuhn-Tucker conditions are
necessary and sufficient for {Cp).

THEOREM. Assuming a constraint qualification holds, the Kuhn-Tucker conditions
are necessary and sufficient for mathematical programs if there exists a transformation
of the variable with non-zero Jacobian which transforms the program into a program
for which the Kuhn-Tucker conditions are both necessary and sufficient.

PROOF. Consider the mathematical program

(F) min fo(x)

subject to / ; (*)< 0, i=l,m

for which the Kuhn-Tucker conditions are necessary and sufficient. Thus x is
optimal for (F) if and only if

and there exists A, ^ 0 such that
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and

1 = 1

Let T be a transformation with non-zero Jacobian of y into x:

x = T(v).

Then (F) is equivalent to

min fo(T(y))

subject to fi(T(y))<0, i = 1,..., m.

The Kuhn-Tucker conditions for this program are

X, V/:(T(y)) T'(y) = 0 (28)
i = i

or

\vMT(y)) + Z h V/(r(y))J T(y) = 0. (29)

Since T'(y) is non-singular (29) holds if and only if

vfo(T(y))+T A, Y/xroo) = o
i = i

which proves the theorem.
The example in the next section demonstrates this approach.

3. Example

Consider the process of making a box of length tu width t2, depth t3 subject to the
constraints on t, +12 +13 being less than 140 cm and t2 +13 less than 80 cm. The box
which maximizes the volume is found by solving the geometric program

(VI) minimize ti"' t2 ' t3
 l

subject to ^+^<l

140 140 140
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The solution to (VI) is

(j = 60, t2 = 40, t3 = 40

Suppose now that there is some variation in the production process so that the final
dimensions are normally distributed with means Hi,n2,ti3 and variances a\,a\,a\.
For the example let the variances all be 5*5. If the boxes exceed the specifications of
140 cm and 80 cm they must be thrown away. Suppose we do not wish to reject
boxes more than 5% of the time. This problem gives the following stochastic
program:

(Se) minimize (E(tl t2t3))~
l

subject to ^± + ±^,± + ±
80 140 140

For this problem Mx = ^1+^2 + ^3 a n ( l M2 = Hi + A*2, a n ( i we have

v I f 2

3 /

The equivalent deterministic program is

(Ce) minimize Hi

subject to l

7 3 u2 U3 Hi .
14 Z2 140 140 140" '

*3 + fc4z£)>l, * = 1,2,

U ^ = 1,2,

The solution to (Ce) is

Ht = 60.29, n2 = 39.47, JI3 = 39.47,

w, = 0.989, w2 = 0.957.

Of interest is the fact that the setting for width and depth is reduced to 39.47 whereas
the length is increased to 60.29.
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