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Abstract. We determine the rings of invariants SG where S is the symmetric
algebra on the dual of a vector space V over �2 and G is the orthogonal group
preserving a non-singular quadratic form on V . The invariant ring is shown to have a
presentation in which the difference between the number of generators and the number
of relations is equal to the minimum possibility, namely dim V , and it is shown to be
a complete intersection. In particular, the rings of invariants computed here are all
Gorenstein and hence Cohen-Macaulay.
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1. Strategy for calculating invariants. Let S be the symmetric algebra on V∗, the
dual of a finite dimensional vector space V . For any finite subgroup G of GL(V ) we
can consider the invariant ring SG. This article concerns explicit calculations of SG

which are described in §6. In very broad outline, the strategy for doing calculations
comprises the following steps:

� Find some reasonably large but finite collection of invariants of G using a variety
of methods.

� Consider the subring of T which they generate. If we found enough invariants in
the first step then T will be SG and we are done. The strategy cannot be doomed to
failure because SG is a finitely generated ring.

� Prove that T = SG.
The last step may fail. If it does, then we hope to discover new invariants. We throw
these in to the generating set, enlarge T and try again. The proof is easy enough:

� Show that S is integral over T .
� Show that T has the right field of fractions.
� Show that T is integrally closed.

Only the third item here causes any real concern. In fact, we shall be working on
examples which are known a priori to be unique factorization domains and we’ll
establish this for our T as the route to integral closure. Over �2 invariant rings are always
unique factorization domains by a result of Nakajima, see Corollary 3.9.3 of [2].
This is not true in odd characteristic as illustrated by the very simple example 1 of
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Chapter 1 of [13]. It is also not true in general for fields of characteristic 2 which have
more than two elements. The following elementary result turns out to be decisive in
every case considered in this paper:

PROPOSITION 1.1. Let R be a commutative Noetherian ring and suppose that α, β is
a regular sequence in R such that

(i) the localization R[α−1] is a unique factorization domain;
(ii) α generates a prime ideal in the ring R[β−1].

Then R is a unique factorization domain.

Proof. First, α being a non-zero divisor, the map R → R[α−1] is injective and so we
know that R is a domain. Since α is prime in R[β−1], the quotient R[β−1]/αR[β−1]
is a domain. Now β is a non-zero-divisor modulo α and so the map R/αR →
R[β−1]/αR[β−1] is injective. Therefore α generates a prime ideal in R, and this together
with the fact that R[α−1] is a unique factorization domain implies that R is a unique
factorization domain. The last step requires the assumption that R is Noetherian,
otherwise one might envisage a situation in which an element of R is repeatedly and
infinitely divisible by α but becomes irreducible in R[α−1]. �

We are indebted to the referee for pointing out that the Noetherian assumption
is necessary here. All the rings we consider are of course Noetherian. Alternatively,
the Noetherian assumption can be disposed of when the ring R is �-graded and α

and β are homogeneous elements of positive degree. Again, this is the case in our
applications. A similar result holds in which one replaces the term unique factorization
domain by integrally closed domain. This version has much the same effect but does not
depend on the Noetherian assumption.

2. Introduction. In this paper we shall focus attention on an odd-dimensional
vector space V over the field �2 of two elements which is endowed with a non-singular
quadratic form ξ0. We write S = S(V∗) for the symmetric algebra on the dual V∗ of
V . The symmetric algebra is the polynomial ring in any chosen basis of V∗, and it
inherits a natural action of GL(V ). The orthogonal group of automorphisms of V
which preserve ξ0 is denoted by O(V ). Our main objective is to compute the ring
of invariants of O(V ). The results extend work [11, 12] of the second author on the
rational invariants of orthogonal groups.

The reader familiar with quadratic forms in characteristic 2, the associated finite
orthogonal groups, the rudiments of the mod 2 Steenrod algebra and the Dickson
invariants for the general linear group may now wish to skip straight to §6 for a
statement of results.

We begin with some remarks which apply to any non-zero vector space V over any
field K . A quadratic form q is a function

q : V → K

which satisfies the two conditions
� the polarization

b : V × V → K

defined by

b(u, v) = q(u + v) − q(u) − q(v)

is bilinear; and
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� for all scalars λ and all v ∈ V ,

q(λv) = λ2q(v).

The polarization b is always a symmetric form. If the characteristic of K is not 2 then the
quadratic form q can be recovered from its polarization by the formula q(v) = 1

2 b(v, v)
and there is a bijective correspondence between quadratic forms and symmetric bilinear
forms. If K has characteristic 2 then the polarization is an alternating form from which
the quadratic form cannot be recovered. If K = �2, the case of interest in this paper,
then the definition of quadratic form simplifies: a function q : V → �2 such that

� the polarization

b : V × V → �2

defined by

b(u, v) = q(u + v) + q(u) + q(v)

is bilinear.
In this case, every alternating form arises as the polarization of 2m different quadratic
forms, where m = dim V , and the symmetric forms which are not alternating never
arise as polarizations. Thus polarization yields a map between quadratic forms and
symmetric bilinear forms which is neither injective nor surjective.

3. The Steenrod Algebra and Chern polynomials. Henceforth we assume that V
is a vector space over �2. The symmetric algebra S = S(V∗) is naturally isomorphic to
the cohomology ring H∗(BV, �2) of the classifying space BV of the additive group V ,
drawing attention to the fact that S admits an unstable action of the Steenrod Algebra
A2. The reader is referred to the books [13, 15] for details about the Steenrod Algebra.

Here the matter is simple enough. The Steenrod algebra is an �2-algebra generated
by elements Sqi, for i ≥ 0, called Steenrod squares. Sqi is homogeneous of degree i.

3.1. The action on S is determined by the following facts:
� Sq0 acts as the identity operation on S;
� Sq1 acts as a derivation on S;
� for all x ∈ V∗, Sq1(x) = x2 and Sqn(x) = 0 for n ≥ 2;
� the Cartan formula holds: for all s and t in S,

Sqn(st) =
∑

i+j=n

(Sqis)(Sqjt).

� for any homogeneous element s of S of degree d, Sqd(s) = s2 and Sqj(s) = 0 if j > d.
� The total Steenrod operation Sq• := Sq0 + Sq1 + Sq2 + · · · acts as a ring

endomorphism of S.

Now suppose that S is a non-empty subset of V∗ which contains d elements. The
Chern polynomial associated to S is the polynomial∏

x∈S

(X + x).
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Let’s write fi for the coefficient of Xd−i so that∏
x∈S

(X + x) = f0Xd + f1Xd−1 + · · · + fd .

Then it is easy to see that

LEMMA 3.2. For each i in the range 0 ≤ i ≤ d,

Sqi( fd) = fd fi.

This is a special case of the Wu formulae [7, 16, 20] for the action of the Steenrod
algebra on the cohomology ring H∗(BO, �2) of the classifying space for real vector
bundles which carries the generic Stiefel-Whitney classes. Arguably the name “Stiefel-
Whitney polynomial” would be more appropriate in this paper than our choice: Chern
polynomial. On the other hand, in modular invariant theory the similarity between the
characteristic 2 theory and the odd characteristic theory is close and we stick with the
name Chern polynomial.

4. Quadratic forms over �2. Each element of the symmetric algebra S determines
a function from V to �2 and in this way the homogeneous elements of degree two in S
determine quadratic forms on V . Conveniently, it is the case that this correspondence
between S2 and the set of quadratic forms on V is a bijection. We identify quadratic
forms with the corresponding elements of S2.

LEMMA 4.1. Let q and q′ be quadratic forms on V. Then the following are equivalent:
(i) q and q′ have the same polarization;

(ii) Sq1(q) = Sq1(q′);
(iii) q + q′ = x2 for some x ∈ V∗.

Proof. The details of this easy lemma are left to the reader. Note that the Steenrod
operation Sq1 is determined by virtue of being a derivation such that Sq1(x) = x2 for
all x ∈ V∗. �

Two alternating forms b and b′ on V are equivalent iff there exists g ∈ GL(V ) such
that b′(u, v) = b(gu, gv) for all u, v. Alternating forms are determined up to equivalence
by rank, and the rank is always even. Let b be an alternating form on V . The radical
Rad(b) of b is defined to be

{v ∈ V ; b(v, ) = 0}.
If q is a quadratic form which polarizes to b then the radical Rad(q) of q is defined to
be

{v ∈ Rad(b); q(v) = 0}.
Since the restriction of q to Rad(b) is a linear functional, one finds that Rad(q) is
either equal to Rad(b) or has codimension 1 in Rad(b). A quadratic form q is called
non-singular if and only if Rad(q) = 0.

We consider quadratic forms always in the presence of a fixed alternating form
to which they polarize. We shall use the term symplectic space to refer to a finite
dimensional vector space endowed with an alternating form of maximum possible
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rank. The group of automorphisms of a symplectic space is called the symplectic
group. Non-singular quadratic forms live on symplectic spaces. On a symplectic space,
we say that two quadratic forms q and q′ are equivalent iff there exists g in the symplectic
group such that q′(v) = q(gv) for all v.

On a non-zero even dimensional symplectic space there are two types of non-
singular quadratic form up to equivalence, called +type and −type. In dimension
2n ≥ 2

� 22n−1 + 2n−1 of these forms have +type,
� 22n−1 − 2n−1 of these forms have −type.

These quadratic forms are also classified by the Arf invariant which is determined by
Browder’s democracy: the Arf invariant is the value of the quadratic form taken by a
majority of vectors. The forms of +type have Arf invariant 0 and the forms of −type
have Arf invariant 1.

If V is an odd dimensional symplectic space, then there is only one kind of non-
singular quadratic form up to equivalence. If ξ0 is such a form and b is its polarization,
then each form having the same polarization is equal to ξ0 + x2 for some x ∈ V∗ and
there are three kinds: the non-singular forms (all equivalent to ξ0), the singular forms
of +type, and the singular forms of −type.

In this case, the polarization b is degenerate and its radical contains a vector e0 �= 0.
Correspondingly there is a subspace U∗ of V∗ of codimension one and the forms of
non-singular type are exactly the forms ξ0 + x2 for x ∈ U∗.

If dim V = 2n + 1 ≥ 3 then
� 22n of these forms are non-singular, and each is equal to ξ0 + x2 for some x ∈ V∗

such that Ker x ⊇ Rad(b);
� 22n−1 + 2n−1 of these forms have +type, and each is equal to ξ0 + x2 for certain

x ∈ V∗ such that Ker x ∩ Rad(b) = 0;
� 22n−1 − 2n−1 of these forms have −type, and each is equal to ξ0 + x2 for certain

x ∈ V∗ such that Ker x ∩ Rad(b) = 0.

Note that for a + or −type form q, this implies that q = ξ0 + x2 is actually in
S(U∗). Note also that the Arf invariant is not defined for the non-singular forms.

The analysis of non-singular quadratic spaces can be made using Witt’s Theorem:

THEOREM 4.2 (Witt’s Theorem). Let (V, q) be a non-singular quadratic space and
let f : U1 → U2 be an isometric isomorphism between two subspaces U1 and U2. Then f
extends to an isometry of V.

For example, suppose that V is a symplectic space of dimension 2n + 1 with
symplectic form b and U is the 2n-dimensional quotient of V by the radical of b. Then
any compatible quadratic form q of −type on V has the same radical and passes to
a non-singular quadratic form on U . The one-dimensional subspaces of U fall into
two kinds according as the form q vanishes or does not vanish on their non-zero
vectors. By Witt’s Theorem, the orthogonal group on U therefore has two orbits on the
non-zero vectors of U . Since the polarization b is non-degenerate, it induces a natural
isomorphism between U and its dual U∗, so the orthogonal group also has two orbits
on the non-zero vectors in U∗. Thus there are two kinds of maximal subspace in U .
For example, if n = 2 and

q = x2
1 + x1x2 + x2

2 + x3x4
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on U then q has −type, and its restriction to the subspace Ker x1 is equivalent to

x2
2 + x3x4

which is non-singular on the 3-dimensional space Ker x1 ⊂ U , whereas its restriction
to Ker x3 is equivalent to

q = x2
1 + x1x2 + x2

2

which is singular of −type on Ker x3. Thus x1 and x3 lie in different orbits under the
action of the orthogonal group preserving q. Since there are only two orbits, these
are representative. Notice that there are therefore no maximal subspaces on which q
restricts to a form of +type.

There is another way of describing the orbits on non-zero vectors x in U∗. They
fall into different kinds according to the type of the quadratic form q + x2. In the
examples above, notice that q + x2

1 has +type and q + x2
3 has −type. In summary:

LEMMA 4.3. If q is a form of −type on V and x is a non-zero element of U∗ then
q + x2 has −type if and only if q restricts to a −type form on Ker x and q + x2 has +type
if and only if q restricts to a non-singular form on Ker x.

A similar result applies to forms q of +type: simply interchange + and −
throughout this statement.

5. Definitions. In this section we state our definitions of symplectic and
orthogonal groups and those of their representations that we consider.

Let n be a positive integer. Henceforth we suppose that V has dimension 2n + 1
over �2 and that ξ0 is a non-singular quadratic form on V . Let b denote the polarization
of ξ0. The radical of b is one dimensional. Choose a basis e0, . . . , e2n of V where e0 is
the non-zero vector in the Rad(b).

The reader is referred to Cameron’s notes [4] for the background to the following
lemma and definition.

LEMMA 5.1. It is possible to choose the ei for i ≥ 1 so that the matrix B with (i, j)-entry
Bi,j = b(ei, ej) is 

0
0 1
1 0

0 1
1 0

. . .
0 1
1 0


filled out with zeroes.

We write B0 for the non-singular alternating matrix obtained by omitting the first
row and column of B.

DEFINITION 5.2. (i) O(V ) denotes the (orthogonal) group of automorphisms of V
which preserve the quadratic form ξ0.
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(ii) Sp(V ) denotes the (symplectic) group of automorphisms of V which preserve
the alternating form b.

O(V ) ⊂ Sp(V ).

(iii) U denotes the quotient V/〈e0〉. This space inherits the alternating form, but it
does not inherit any natural quadratic form.

(iv) Sp(U) denotes the (symplectic) group of automorphisms of U which preserve
the inherited alternating form.

Let x0, . . . , x2n be the basis of V∗ which is dual to our chosen basis of V . We remark
that when the basis ei is chosen in accordance with Lemma 5.1, then the quadratic
form is given by

ξ0 = x2
0 + x1x2 + x3x4 + · · · + x2n−1x2n.

The canonical surjection V → U induces an injection U∗ → V∗. We identify U∗

with its image in V∗: thus U∗ is the subspace of V∗ spanned by x1, . . . , x2n. The
symmetric algebra on U∗ is the subring of S generated by x1, . . . , x2n. Every symplectic
automorphism of V induces a symplectic automorphism of U , and every symplectic
automorphism of U arises this way. In this way there is a surjective homomorphism

Sp(V ) → Sp(U).

The kernel of this homomorphism consists of transvections: it is the elementary abelian
2-group of rank 2n comprising the linear automorphisms of V which fix e0 and induce
trivial action on U , and can be naturally identified with hom(U, 〈e0〉) ∼= U∗. The
homomorphism between the symplectic groups restricts to an isomorphism

O(V ) ∼= Sp(U).

DEFINITION 5.3. The sequence ξ1, ξ2, ξ3, . . . is defined recursively by

ξn = Sq2n−1
(ξn−1).

When the basis ei is chosen in accordance with Lemma 5.1, then

ξj = x2j

1 x2 + x1x2j

2 + x2j

3 x4 + x3x2j

4 + · · · + x2j

2n−1x2n + x2n−1x2j

2n

for each j ≥ 1.
In general, for i ≥ 1, each ξi belongs to the symmetric algebra on U∗ (i.e. it does

not involve x0) and is an invariant of Sp(U). For each i ≥ 0, ξi has degree 2i + 1. The
following results are important:

LEMMA 5.4.

Sq•(ξ0) = ξ0 + ξ1 + ξ 2
0 ,

Sq•(ξ1) = ξ1 + ξ2 + ξ 2
1 ,

Sq•(ξi) = ξi + ξ 2
i−1 + ξi+1 + ξ 2

i (i ≥ 2).

Proof. It is easy given that Sq• is a ring homomorphism and Sq•x = x + x2 for
x ∈ V∗. �
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COROLLARY 5.5. For any j and any m ≥ 0,
� Sqj (�2[ξ0, . . . , ξm]) ⊆ �2[ξ0, . . . , ξm+1];
� Sqj (�2[ξ1, . . . , ξm]) ⊆ �2[ξ1, . . . , ξm+1].

DEFINITION 5.6. Elements c0, . . . , c2n of S(U∗) are defined to be the unique
elements of S such that

∏
x∈U∗

(X + x) =
2n∑

j=0

cjX2j
.

These are the Dickson invariants:

S(U∗)GL(U) = �2[c2n−1, . . . , c0].

We write D(X) for the Dickson polynomial.

Notice that the Dickson polynomial is the Chern polynomial associated to the
subset S := U∗. Using Lemma 3.2 we have that

LEMMA 5.7. For 0 ≤ i ≤ 2n,

Sq22n−2i
(c0) = c0ci

and Sqj(c0) is zero in all other cases.

Dickson’s original paper [5] introduced these invariants: for a more modern
treatment see Wilkerson [18]. Crucially, c0D(X) is equal to the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X x1 x2 x3 . . . x2n

X2 x2
1 x2

2 x2
3 . . . x2

2n

X4 x4
1 x4

2 x4
3 . . . x4

2n

X8 x8
1 x8

2 x8
3 . . . x8

2n

...
...

...
...

. . .
...

X22n
x22n

1 x22n

2 x22n

3 . . . x22n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let C0 denote the matrix

x1 x2 x3 . . . x2n

x2
1 x2

2 x2
3 . . . x2

2n

x4
1 x4

2 x4
3 . . . x4

2n

x8
1 x8

2 x8
3 . . . x8

2n

...
...

...
. . .

...

x22n−1

1 x22n−1

2 x22n−1

3 . . . x22n−1

2n


.

Then C0 has determinant c0 and the matrix equation below simply expresses the fact
that D(xi) vanishes for each i.
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LEMMA 5.8.

CT
0


c0

c1

c2
...

c2n−1

 =



x22n

1

x22n

2

x22n

3
...

x22n

2n


.

For later use, we write C for the (2n + 1) × 2n-matrix

x1 x2 x3 . . . x2n

x2
1 x2

2 x2
3 . . . x2

2n

x4
1 x4

2 x4
3 . . . x4

2n

x8
1 x8

2 x8
3 . . . x8

2n

...
...

...
. . .

...

x22n−1

1 x22n−1

2 x22n−1

3 . . . x22n−1

2n

x22n

1 x22n

2 x22n

3 . . . x22n

2n


,

and we write Ĉ for the (2n + 1) × (2n + 1)-matrix

x0 x1 x2 x3 . . . x2n

x2
0 x2

1 x2
2 x2

3 . . . x2
2n

x4
0 x4

1 x4
2 x4

3 . . . x4
2n

x8
0 x8

1 x8
2 x8

3 . . . x8
2n

...
...

...
...

. . .
...

x22n

0 x22n

1 x22n

2 x22n

3 . . . x22n

2n


.

LEMMA 5.9. Suppose that f0, . . . , f2n are elements of S with the property that for all
i in the range 1 to 2n,

f2nx22n

i + f2n−1x22n−1

i + · · · + f2x4
i + f1x2

i + f0xi = 0.

Then

fj = f2ncj

for all j.

Proof. The polynomial

f (X) = f2nX22n + f2n−1X22n−1 + · · · + f2X4 + f1X2 + f0X
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vanishes on all xi. The additivity of the Frobenius map enables us to conclude that f (X)
vanishes on any linear combination of the xi: that is, f (X) vanishes on U∗. Therefore
f (X) is divisible by the Dickson polynomial, and the result follows. �

6. Statement of Results for the Orthogonal Groups. We give a summary of the
conclusions of the calculations.

Assume that n ≥ 2 and that V is a (2n + 1)-dimensional �2-space endowed with
a non-singular quadratic form ξ0. The cases n ≤ 1 will be treated later and are quite
elementary by comparison.

THEOREM 6.1. Let T† be an abstract polynomial ring on generators

ξ0, . . . , ξ2n−2, d2n−1, . . . , dn

where ξi has degree 2i + 1 and dj has degree 22n−1 − 2j−1. Define the degree preserving
map

T† → S

by sending ξ0 to the quadratic form of the same name, sending ξi to Sq2i−1
Sq2i−2

. . . Sq1ξ0

and sending dj to the symmetric polynomial of the same degree in the set of vectors in V∗

of −type (i.e. the elements x of V∗ such that ξ0 + x2 has −type in S). Then the image of
T† in S is equal to the ring SO(V ) of invariants of the orthogonal group of automorphisms
preserving ξ0. The kernel of the map is generated by a regular sequence of n − 2 elements
which are homogeneous of degrees 22n−1 + 2j for 1 ≤ j ≤ n − 2.

The n − 2 relations can be expressed in matrix form as the sum of four column vectors
not all of which are easily described at this stage. When they are expressed this way, we
use an additional (redundant) generator ξ2n−1 and impose an additional relation at the
beginning which amounts to an expression for ξ2n−1 in terms of the chosen generators:

Sn−1

 dn
...

d2n−2

 +

ξ2n−1
...

ξ 2n−2

n+1

 +
√(

L′
nEn + (

L′
nKn + R′

n

)
Fn

) + Gn−1d2n−1.

Here, the matrices and vectors Sn−1, L′
n, R′

n, En, Fn, Gn−1 are defined subsequently and
all involve only polynomials in the ξ ’s. Matrices Ln, Rn are defined in the next section and
the symbol ′ above indicates the matrices obtained from these by deleting the first row.
The matrix Kn and column vector En are also introduced in the next section. The column
vector Fn arises as part of a connection (Lemma 13.8) between the symmetric polynomial
invariants determined by d2n−1, . . . , dn and the Dickson invariants c2n−1, . . . , cn for the
2n-dimensional quotient of V which inherits a natural alternating form. The matrix Sn−1

has determinant equal to �2n−2, a certain polynomial which is intimately related to the
Dickson algebra for a vector space of dimension 2n − 2. The √ symbol here is used to
indicate the matrix obtained by replacing each entry of the matrix to which it is applied by
its square root. We shall see that every entry of

(
L′

nEn + (
L′

nKn + R′
n

)
Fn

)
is a square in T†.

The second of the four column vectors has ith entry ξ 2i−1

2n−i and the ith relation can be
interpreted as saying that ξ 2i−1

2n−i can be expressed in terms of other generators and lower
powers of ξ2n−i. This relation cannot be deduced from any of the other relations.
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The regular sequence of relations in T† can be extended to a regular sequence of
length equal to 3n − 1, the Krull dimension of T†, by taking the further 2n + 1 elements

ξ0, . . . , ξn, d2n−1, . . . , dn.

The ring of invariants SO(V ) is a complete intersection as described in §21 of [8].

Notice that we use symmetric polynomials arising from vectors of −type rather
than +type to describe the invariants dj. The reason for this is purely pragmatic: there
are fewer vectors of −type.

In general for any symmetric algebra S on the dual of a finite vector space we know
the following. The Hilbert series of any ring of invariants SG has a Laurent expansion
about t = 1 which begins with

1
|G|

1
(1 − t)m

+ r
2|G|

1
(1 − t)m−1

+ · · ·

where m is the Krull dimension of S (i.e. the dimension of V ) and r is determined by the
reflections (i.e. elements fixing a hyperplane in V pointwise) using a ramification for-
mula. The interpretation of the second coefficient in terms of reflections is the content
of the Benson–Crawley-Boevey–Neeman theorem. This was first proved by Benson and
Crawley-Boevey, see [3]. Subsequently, Neeman published a line of reasoning which
uses the Riemann–Roch theorem, [9]. Evidence that the Riemann–Roch theorem is
involved was observed much earlier in unpublished work [17] of Felipe Voloch.

Since our invariant ring is presented by means of a regular sequence the Hilbert
series is very simply determined. The Hilbert series of the ring T† is

1

(1 − t2)(1 − t3) · · · (1 − t22n−2+1
) · (

1 − t22n−1−22n−2
) · · · (1 − t22n−1−2n−1

) .

There is a contribution (1 − ta) in the denominator for a generator of degree a. Each
time a relation of degree b is imposed we simply multiply this Hilbert series by (1 − tb)
because the relation is a non-zero-divisor modulo its predecessors. We can therefore
draw the following conclusions:

COROLLARY 6.2. The ring of invariants SO(V ) has Hilbert polynomial(
1 − t22n−1+2

) · · · (1 − t22n−1+2n−2)
(1 − t2)(1 − t3) · · · (1 − t22n−2+1

) · (
1 − t22n−1−22n−2

) · · · (1 − t22n−1−2n−1
) .

Proof. There is a contribution (1 − tb) in the numerator for a relation of
degree b. �

Noting that the Laurent power series expansion of∏k
i=1(1 − tbi )∏�
j=1(1 − tai )

about t = 1 begins∏
bj∏
ai

(
1

(1 − t)m
+

∑
(ai − 1) − ∑

(bj − 1)
2

1
(1 − t)m−1

+ · · ·
)

where m = � − k, we can draw the following statistical data for our group O(V ):
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COROLLARY 6.3. The order of O(V ) is 2n2 ∏n
j=1(22j − 1) and O(V ) contains 22n − 1

transvections. There is exactly one transvection corresponding to each hyperplane in V
which contains the radical vector e0, (i.e. e0 is the non-zero vector in the polarization of ξ0.)

Proof. This follows directly from the Benson–Crawley-Boevey–Neeman theorem.
Note that for a vector space over �2, the only possible reflections are transvections, and
it is easy to see that any transvection in O(V ) must fix the radical vector e0. Since only
transvections are involved, the ramification formula for r in the Hilbert series simplifies
to

r =
∑
W

αW

where W runs through the hyperplanes of V and αW = log2 |GW | where GW is the
pointwise stabiliser of W . Since O(V ) acts transitively on the set of hyperplanes
containing e0, a simple counting argument tells us that there is exactly one transvection
associated to each. �

We turn next to the ring of invariants S(U∗)O−
for an orthogonal group O− which

is the group of automorphisms of a 2n-dimensional vector space U endowed with a
quadratic form ξ− of −type (Arf invariant 1).

THEOREM 6.4. Let T† be an abstract polynomial ring on generators

ξ0, . . . , ξ2n−2, d2n−1, . . . , dn+1

where ξi has degree 2i + 1 and dj has degree 22n−1 − 2j−1. Define the degree preserving
map

T† → S(U∗)

by sending ξ0 to the quadratic form ξ−, sending ξi to Sq2i−1
Sq2i−2

. . . Sq1ξ0 and sending dj

to the symmetric polynomial of the same degree in the set of vectors in V∗ of −type (i.e.
the elements x of V∗ such that ξ− + x2 has −type). Then the image of T† in S(U∗) is equal
to the ring of invariants S(U∗)O−

of the orthogonal group of automorphisms preserving
ξ−. The kernel of the map is generated by a regular sequence of n − 2 elements which are
homogeneous of degrees 22n−1 + 2j for 1 ≤ j ≤ n − 2.

The n − 2 relations can be expressed in matrix form as the sum of three column
vectors. When they are expressed this way, we use an additional (redundant) generator
ξ2n−1 and impose an additional relation at the beginning which amounts to an expression
for ξ2n−1 in terms of the chosen generators:

Tn−1

 dn+1
...

d2n−1

 +

ξ2n−1
...

ξ 2n−2

n+1

 +
√(

L′
nEn + (

L′
nKn + R′

n

)
Fn

)
.

The matrix Tn−1 involves only the ξ ’s and has determinant equal to �−
2n−2(ξ−), a certain

polynomial which is intimately related to the sets of quadratic forms of −type on spaces
of dimensions 2n − 2 and 2n. The second of the three column vectors has ith entry ξ 2i−1

2n−i
and the ith relation can be interpreted as saying that in the ring S, ξ 2i−1

2n−i can be expressed
in terms of other generators and lower powers of ξ2n−i. This relation cannot be deduced
from any of the other relations.
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The regular sequence of relations in T† can be extended to a regular sequence of
length equal to 3n − 1, the Krull dimension of T†, by taking the further 2n + 1 elements

ξ0, . . . , ξn, d2n−1, . . . , dn+1.

The ring of invariants S(U∗)O−
is a complete intersection.

We can read off corollaries about the Hilbert series as before.

COROLLARY 6.5. The Hilbert series of the ring S(U∗)O−
is(

1 − t22n−1+2
) · · · (1 − t22n−1+2n−2)

(1 − t2)(1 − t3) · · · (1 − t22n−2+1
) · (

1 − t22n−1−22n−2
) · · · (1 − t22n−1−2n

) .

COROLLARY 6.6. The order of O− is 2n2−n+1(2n + 1)
∏n−1

j=1 (22j − 1) and O− contains
22n−1 + 2n−1 transvections. There is exactly one transvection corresponding to each
hyperplane in U which is the kernel of a +type vector x ∈ U∗ (i.e. ξ− + x2 has +type.)

Finally we have the groups of +type. Let U be a 2n-dimensional vector space
endowed with a quadratic form ξ+ of +type (Arf invariant 0). Notice that we still use
vectors of −type to describe the generators dj even though this is the +type case!

THEOREM 6.7. Let T† be an abstract polynomial ring on generators

ξ0, . . . , ξ2n−2, d2n−1, . . . , dn

where ξi has degree 2i + 1 and dj has degree 22n−1 − 2j−1. Define the degree preserving
map

T† → S(U∗)

by sending ξ0 to the quadratic form ξ+, sending ξi to Sq2i−1
Sq2i−2

. . . Sq1ξ+ and sending dj

to the symmetric polynomial of the same degree in the set of vectors in V∗ of −type (i.e.
the elements x of V∗ such that ξ+ + x2 has −type). Then the image of T† in S(U∗) is equal
to the ring of invariants S(U∗)O+

of the orthogonal group of automorphisms preserving
ξ+. The kernel of the map is generated by a regular sequence of n − 1 elements which are
homogeneous of degrees 22n−1 + 2j for 1 ≤ j ≤ n − 1.

The n − 1 relations can be expressed in matrix form as the sum of three column
vectors. When they are expressed this way, we use an additional (redundant) generator
ξ2n−1 and impose an additional relation at the beginning which amounts to an expression
for ξ2n−1 in terms of the chosen generators:

Mn

 dn
...

d2n−1

 +


ξ2n−1

...
ξ 2n−2

n+1

ξ 2n−1

n

 +


√

L′
nEn + (

L′
nKn + R′

n

)
Fn

ξ 2n−1

n + fn

 .

The matrix Mn involves only polynomials in the ξ ’s and its determinant is �+
2n−2(ξ+), a

certain polynomial which is intimately related to the sets of quadratic forms of +type on
spaces of dimensions 2n − 2 and 2n. The polynomial fn is also a polynomial involving only
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the ξ ’s. The second of the three column vectors has ith entry ξ 2i−1

2n−i and the ith relation
can be interpreted as saying that in the ring S, ξ 2i−1

2n−i can be expressed in terms of other
generators and lower powers of ξ2n−i. This relation cannot be deduced from any of the
other relations.

The regular sequence of relations in T† can be extended to a regular sequence of
length equal to 3n − 1, the Krull dimension of T†, by taking the further 2n elements

ξ+, . . . , ξn−1, d2n−1, . . . , dn.

The ring of invariants S(U∗)O+
is a complete intersection.

COROLLARY 6.8. The Hilbert series of the ring S(U∗)O+
is(

1 − t22n−1+2
) · · · (1 − t22n−1+2n−1)

(1 − t2)(1 − t3) · · · (1 − t22n−2+1
) · (

1 − t22n−1−22n−2
) · · · (1 − t22n−1−2n−1

) .

COROLLARY 6.9. The order of O+ is 2n2−n+1(2n − 1)
∏n−1

j=1 (22j − 1) and O+ contains
22n−1 − 2n−1 transvections. There is exactly one transvection corresponding to each
hyperplane in U which is the kernel of a −type vector x ∈ U∗ (i.e. ξ+ + x2 has −type.)

7. Connection with work of Domokos and Frenkel. There is a potentially
interesting connection between our calculations and those in [6]. If �2 denotes the
algebraic closure of �2 then we can consider the space V ⊗ �2 and its coordinate
ring �2[V ] ∼= S(V∗) ⊗ �2. Here we can look at the invariants of the full orthogonal
group, the subgroup of GL(V ⊗ �2) preserving the quadratic form on V . Then the
only invariant is the quadratic form itself. In this context, Domokos and Frenkel work
with invariants of several vectors, that is, they study the invariants in the coordinate
ring of a direct sum V ⊗ �2 ⊕ · · · ⊕ V ⊗ �2 of several copies of V . This coordinate
ring can be identified with the tensor product

�2[V ] ⊗ · · · ⊗ �2[V ]

and one can now consider the �2-linear map to �2[V ] given by

s1 ⊗ s2 ⊗ s3 ⊗ . . . �→ s1s2
2s4

3 . . . .

Using this it can be seen that the invariants of several vectors for the algebraic group give
rise to the invariants ξj for our finite group. This raises the possibility of extracting new
information about invariants in our setting from the results of [6]. For examle, Domokos
and Frenkel show how to define an invariant which distinguishes the orthogonal group
from the special orthogonal group and it seems reasonable to expect that this will map
to an element of S which distinguishes O(V ) from SO(V ): note that in characteristic
2, the determinant does not distinguish these groups. We do not carry through these
investigations here. We thank Steve Donkin and Matias Domokos for drawing attention
to this connection.

8. Invariants in the symplectic case. The invariant ring S(U∗)Sp(U) is known. This
was first calculated by Carlisle and Kropholler. Useful accounts have been published
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by Benson (see Section 8.3 of [2]) and Neusel [10]. We shall have considerable need of
this knowledge.

PROPOSITION 8.1. The ring S(U∗)Sp(U) is generated by ξ1, . . . , ξ2n−1, c2n−1, . . . , cn.
This ring is a unique factorization domain. In terms of the stated generators, it has a
presentation given by a regular sequence r1, . . . , rn−1.

To understand the relations, observe first that on multiplying both sides of the
matrix identity of Lemma 5.8 by C0B0 we obtain the matrix identity

0 ξ1 ξ2 ξ3 . . . ξ2n−1

ξ1 0 ξ 2
1 ξ 2

2 . . . ξ 2
2n−2

ξ2 ξ 2
1 0 ξ 4

1 . . . ξ 4
2n−3

ξ3 ξ 2
2 ξ 4

1 0 . . . ξ 8
2n−4

...
...

...
...

. . .
...

ξ2n−1 ξ 2
2n−2 ξ 4

2n−3 ξ 8
2n−4 . . . 0





c0

c1

c2

c3

...

c2n−1


=



ξ2n

ξ 2
2n−1

ξ 4
2n−2

ξ 8
2n−3

...

ξ 22n−1

1


.

This matrix equation records 2n relations which hold in the ring S(U∗)Sp(U). The
first of these provides a formula for ξ2n in terms of lower degree ξi and the Dickson
invariants, so telling us that ξ2n may be omitted from the list of generators of S(U∗)Sp(U).
The next n − 1 of these are, in disguise, the relations r1, . . . , rn−1. More mysteriously, it
turns out that the Dickson invariants cn−1, . . . , c0 of higher degree can all be expressed
as linear combinations of the Dickson invariants c2n−1, . . . , cn of lower degree with
coefficients in the ring �2[ξ1, . . . , ξ2n−1].

LEMMA 8.2. There is an n × n matrix Kn such that c0
...

cn−1

 = Kn

 cn
...

c2n−1

 + En.

The entries of Kn and En are all expressible as polynomials in the ξ ’s. The top entry of
the column vector En is a certain polynomial �2n in ξ1, . . . , ξ2n−1 which we review in the
next section and which is equal to the Dickson invariant c0 in the ring S. The matrix Kn

has zeroes on and above the anti-diagonal. The matrix and column vector are related by
the recursive block matrix formula

Kn =
0 · · · 0 0

K∗2
n−1 E∗2

n−1


where the notation K∗2

n−1 denotes the matrix obtained by squaring every element of Kn−1.

This was proved by induction, and the proof is recorded unaltered in the accounts
of Benson and Neusel. It remains of some interest to acquire a conceptual insight into
this aspect of the ring S(U∗)Sp(U). The key relations in the symplectic case are the first n
equations from the matrix equation exhibited following Proposition 8.1. Partition the
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matrix into four n × n blocks. We are only concerned with the two blocks at the top
which we denote by Ln and Rn. The relations can now be expressed in matrix form as

Ln

 c0
...

cn−1

 + Rn

 cn
...

c2n−1

 =

 ξ2n
...

ξ 2n−1

n+1


We now make the substitutions for the redundant Dickson invariants cn−1, . . . , c0 using
Lemma 8.2. We then have

8.3. The fundamental relations for the symplectic invariants S(U∗)Sp(U):

(LnKn + Rn)

 cn
...

c2n−1

 =

 ξ2n
...

ξ 2n−1

n+1

 + LnEn.

Here, the first relation simply gives expression for ξ2n in terms of other generators, so
we can omit this relation and discard the redundant generator ξ2n. The remaining n − 1
relations are the relations r1, . . . , rn−1 referred to in Proposition 8.1.

From here it is easy to establish the ring of invariants of Sp(V ).

LEMMA 8.4. The ring of invariants of Sp(V ) is generated by S(U∗)Sp(U) together with
the single additional element

η :=
∏

x∈V∗
�U∗

x.

Abstractly this is a polynomial ring in one variable of degree 22n over S(U∗)Sp(U).

Proof. As we remarked following Definition 5.2 the natural surjection

Sp(V ) → Sp(U)

has kernel an elementary abelian 2-group E of transvections. This subgroup acts
trivially on U∗ and clearly also fixes η. Hence

SE ⊇ �2[x1, . . . , x2n, η],

and a simple Galois theoretic argument shows that equality holds. Now, the action of
Sp(V ) on S induces an action of Sp(U) on SE . The new element η is fixed by Sp(U)
and the action of Sp(U) on the polynomials in x1, . . . , x2n is simply the classical action
studied by Carlisle and Kropholler. Hence the result follows. �

LEMMA 8.5. The elements ξ0, . . . , ξ2n are algebraically independent.

Proof. Since ξ1, . . . , ξ2n all belong to S(U∗) while ξ0 involves the additional variable
x0, we need only show that ξ1, . . . , ξ2n are algebraically independent elements of S(U∗).
The determinant of the Jacobian matrix ( ∂ξi

∂xj
)1≤i,j≤2n is det C0 = c0 �= 0 and the result

follows from Proposition 5.4.2 of [2]. �
By contrast, the elements ξ0, . . . , ξ2n+1 are obviously not algebraically independent

since they live in the ring S of Krull dimension 2n + 1 and they are 2n + 2 in number.
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At the risk of causing untold confusion we shall bravely work on the assumption that
the ring

�2[ξ0, ξ1, ξ2, . . . ]

really is an abstract polynomial ring in the stated generators. The reason why we can
get away with this apparent travesty is that in any given situation we shall only be
concerned with the ξ up to ξ2n. On the other hand we shall be proving our results in
many cases by induction on n.

9. Some families of polynomials arising from determinants. Let m be a positive
integer. In the abstract commutative polynomial ring

�[X, ξ1, ξ2, ξ3, . . . ],

consider the polynomial

Hm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2X ξ1 ξ2 ξ3 . . . ξm

ξ1 2X2 ξ 2
1 ξ 2

2 . . . ξ 2
m−1

ξ2 ξ 2
1 2X4 ξ 4

1 . . . ξ 4
m−2

ξ3 ξ 2
2 ξ 4

1 2X8 . . . ξ 8
m−3

...
...

...
...

. . .
...

ξm ξ 2
m−1 ξ 4

m−2 ξ 8
m−3 . . . 2X2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This is the determinant of a symmetric matrix. On passing to the quotient ring

�2[X, ξ1, ξ2, ξ3, . . . ],

the matrix is alternating. Since alternating matrices have even rank, it follows that the
determinant is zero modulo 2 whenever m is even, and we can make the following
definition:

DEFINITION 9.1. For each even integer m ≥ 0, we write �m(X) for the image of the
polynomial 1

2 Hm in �2[X, ξ1, ξ2, ξ3, . . . ].

This observation has also been made by Domokos and Frenkel, see Proposition
4.11 of [6]. As an example, in case m = 2 we find that

�2(X) = ξ 2
1 X4 + ξ 2

2 X2 + ξ 4
1 X + ξ 3

1 ξ2.

When m is odd, the image of Hm in �2[X, ξ1, ξ2, ξ3, . . . ] is non-zero and does not
involve X . In fact it is the square of a polynomial in �2[ξ1, ξ2, ξ3, . . . ]. The determinant
of any alternating matrix over a commutative ring is a square; namely the square of
the Pfaffian. The determinant of an alternating matrix over a commutative �2-algebra
is more obviously square because the only contributing terms come from diagonally
symmetric choices of elements from the matrix. So we make the definition

DEFINITION 9.2. For each even integer m, we write �m for the square root of the
image of the polynomial Hm−1 in �2[ξ1, ξ2, ξ3, . . . ], that is, the Pfaffian of the matrix
defining Hm−1.
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For example,

�2 = ξ1

�4 = ξ 5
1 + ξ 3

2 + ξ 2
1 ξ3

�6 = ξ5ξ
2
3 ξ 4

1 + ξ5ξ
6
2 + ξ5ξ

10
1 + ξ 3

4 ξ 4
1 + ξ 2

4 ξ3ξ
4
2

+ ξ 2
4 ξ2ξ

8
1 + ξ4ξ

4
3 ξ 2

2 + ξ4ξ
8
2 ξ 2

1 + ξ 7
3 + ξ 4

3 ξ 9
1

+ ξ 2
3 ξ 9

2 + ξ3ξ
18
1 + ξ 12

2 ξ1 + ξ 3
2 ξ 16

1 + ξ 21
1

In general, �2n has (2n)!
2nn! terms, this being the number of permutations in the symmetric

group on {1, 2, . . . , 2n} which are products of n disjoint transpositions. If

(i1 i2)(i3 i4) · · · (i2n−1 i2n)

is such a permutation then there is a corresponding contribution

ξ 2min{i1 ,i2}−1

|i1−i2| ξ 2min{i3 ,i4}−1

|i3−i4| · · · ξ 2min{i2n−1,i2n}−1

|i2n−1−i2n| .

For example, �8 has 105 terms of which the leading term (giving ξ7 the highest priority
and ξ1 the lowest) ξ7ξ

2
5 ξ 4

3 ξ 8
1 arises from the contribution of the permutation

(1 8)(2 7)(3 6)(4 5).

10. How to understand �m. Working in S, recall that the matrix C0, defined in
Section 5, has determinant equal to the Dickson invariant c0.

The extended matrix C delivers a sequence of square matrices D0, D1 . . . ,

D2n−1, D2n = C0 where Di is obtained by omitting the ith row of C. It is known that
Di has determinant c0ci.

As in Section 5, B0 denotes the 2n × 2n matrix with (i, j)-entry b(ei, ej), i, j ≥ 1.
Then B0 is a non-singular alternating matrix and so it has determinant 1. Moreover

CT
0 B0C0 =



0 ξ1 ξ2 ξ3 . . . ξ2n−1

ξ1 0 ξ 2
1 ξ 2

2 . . . ξ 2
2n−2

ξ2 ξ 2
1 0 ξ 4

1 . . . ξ 4
2n−3

ξ3 ξ 2
2 ξ 4

1 0 . . . ξ 8
2n−4

...
...

...
...

. . .
...

ξ2n−1 ξ 2
2n−2 ξ 4

2n−3 ξ 8
2n−4 . . . 0


On taking determinants, noting that det B0 = 1, we find that

det
(
CT

0 B0C0
) = c2

0

can be expressed as a polynomial in the Sp(U)-invariants ξ1, . . . , ξ2n−1. As this matrix
is clearly congruent to the matrix of H2n−1 modulo 2, it follows that �2n = c0 in S and
that c0 itself can be expressed in terms of the ξi.
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Playing this game with C in place of C0, we have

CB0CT =



0 ξ1 ξ2 ξ3 . . . ξ2n−1 ξ2n

ξ1 0 ξ 2
1 ξ 2

2 . . . ξ 2
2n−2 ξ 2

2n−1

ξ2 ξ 2
1 0 ξ 4

1 . . . ξ 4
2n−3 ξ 4

2n−2

ξ3 ξ 2
2 ξ 4

1 0 . . . ξ 8
2n−4 ξ 8

2n−3

...
...

...
...

. . .
...

...

ξ2n−1 ξ 2
2n−2 ξ 4

2n−3 ξ 8
2n−4 . . . 0 ξ 22n

1

ξ2n ξ 2
2n−1 ξ 4

2n−2 ξ 8
2n−3 . . . ξ 22n

1 0


DEFINITION 10.1. We define polynomials �2n,i for each n ≥ 2 and 0 ≤ i ≤ 2n by

�2n,i = Sq22n−2i
(�2n) .

LEMMA 10.2. (i) For each i in the range 0 ≤ i ≤ 2n, we have �2n,i = c0ci. Each �2n,i

can also be interpreted as Pfaffians coming from the appropriate 2n × 2n matrix obtained
by omitting a row and corresponding column from CT B0C.

(ii) �2n belongs to the ring �2[ξ1, . . . , ξ2n−1], and here it is irreducible and also linear
in ξ2n−1:

�2n = ξ2n−1 (�2n−2)2 + terms involving ξ1, . . . , ξ2n−2.

Moreover,

�2n,2n = �2n,

and

�2n,0 = (�2n)2
.

(iii) For 1 ≤ i ≤ 2n − 1, the polynomial �2n,i belongs to the ring �2[ξ1, . . . , ξ2n] and is
linear in ξ2n:

�2n,i = ξ2n (�2n−2,i−1)2 + terms involving ξ1, . . . , ξ2n−1.

Moreover, �2n,i is not divisible by �2n for these values of i.

Proof. (i) We noted above that �2n = c0. By Lemma 5.7 it follows that �2n,i = c0ci.
(ii) The nature of �2n as a polynomial in ξ1, . . . , ξ2n−1 is easily deduced from

its definition as the square root of a determinant. Since the symplectic group acts
transitively on the vectors of U∗

� {0}, it follows that in the invariant ring, �2n = c0 is
irreducible and hence �2n is irreducible when viewed as a polynomial in the symplectic
invariants ξi.

(iii) From Lemma 5.4 and its Corollary we know that when a Steenrod operation is
applied to �2n the only way in which ξ2n can become involved is through the application
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�2 = ξ1

�2,1 = ξ2

�2,0 = ξ 2
1

�4 = ξ3ξ
2
1 + ξ 3

2 + ξ 5
1

�4,3 = ξ4ξ
2
1 + ξ 2

3 ξ2 + ξ 4
2 ξ1

�4,2 = ξ4ξ
2
2 + ξ 3

3 + ξ 9
1

�4,1 = ξ4ξ
4
1 + ξ3ξ

4
2 + ξ2ξ

8
1

�4,0 = ξ 2
3 ξ 4

1 + ξ 6
2 + ξ 10

1

�6 = ξ5ξ
2
3 ξ 4

1 + ξ5ξ
6
2 + ξ5ξ

10
1 + ξ 3

4 ξ 4
1 + ξ 2

4 ξ3ξ
4
2

+ ξ 2
4 ξ2ξ

8
1 + ξ4ξ

4
3 ξ 2

2 + ξ4ξ
8
2 ξ 2

1 + ξ 7
3 + ξ 4

3 ξ 9
1

+ ξ 2
3 ξ 9

2 + ξ3ξ
18
1 + ξ 12

2 ξ1 + ξ 3
2 ξ 16

1 + ξ 21
1

�6,5 = ξ6ξ
2
3 ξ 4

1 + ξ6ξ
6
2 + ξ6ξ

10
1 + ξ 2

5 ξ4ξ
4
1 + ξ 2

5 ξ3ξ
4
2

+ ξ 2
5 ξ2ξ

8
1 + ξ 5

4 ξ 2
2 + ξ 4

4 ξ 3
3 + ξ 4

4 ξ 9
1 + ξ4ξ

8
3 ξ 2

1

+ ξ 10
3 ξ2 + ξ 8

3 ξ 4
2 ξ1 + ξ3ξ

16
2 ξ 2

1 + ξ 19
2 + ξ 16

2 ξ 5
1

�6,4 = ξ6ξ
2
4 ξ 4

1 + ξ6ξ
4
3 ξ 2

2 + ξ6ξ
8
2 ξ 2

1 + ξ 3
5 ξ 4

1 + ξ 2
5 ξ 5

3

+ ξ 2
5 ξ 9

2 + ξ5ξ
4
4 ξ 2

2 + ξ5ξ
8
3 ξ 2

1 + ξ 6
4 ξ3 + ξ 4

4 ξ 8
2 ξ1

+ ξ 2
4 ξ 8

3 ξ2 + ξ 12
3 ξ1 + ξ3ξ

34
1 + ξ 3

2 ξ 32
1 + ξ 37

1

�6,3 = ξ6ξ
2
4 ξ 4

2 + ξ6ξ
6
3 + ξ6ξ

18
1 + ξ 3

5 ξ 4
2 + ξ 2

5 ξ4ξ
4
3

+ ξ 2
5 ξ2ξ

16
1 + ξ5ξ

4
4 ξ 2

3 + ξ5ξ
16
2 ξ 2

1 + ξ 7
4 + ξ 4

4 ξ 17
1

+ ξ 2
4 ξ 17

2 + ξ4ξ
34
1 + ξ 4

3 ξ 16
2 ξ1 + ξ 2

3 ξ2ξ
32
1 + ξ 4

2 ξ 33
1

�6,2 = ξ6ξ
2
4 ξ 8

1 + ξ6ξ
2
3 ξ 8

2 + ξ6ξ
2
2 ξ 16

1 + ξ 3
5 ξ 8

1 + ξ 2
5 ξ4ξ

8
2

+ ξ 2
5 ξ3ξ

16
1 + ξ5ξ

10
3 + ξ5ξ

18
2 + ξ 3

4 ξ 8
3 + ξ 2

4 ξ3ξ
16
2

+ ξ4ξ
2
2 ξ 32

1 + ξ 8
3 ξ 17

1 + ξ 3
3 ξ 32

1 + ξ 24
2 ξ1 + ξ 41

1

�6,1 = ξ6ξ
4
3 ξ 8

1 + ξ6ξ
12
2 + ξ6ξ

20
1 + ξ5ξ

4
4 ξ 8

1 + ξ5ξ
8
3 ξ 4

2

+ ξ5ξ
16
2 ξ 4

1 + ξ 5
4 ξ 8

2 + ξ 4
4 ξ3ξ

16
1 + ξ4ξ

12
3 + ξ4ξ

36
1

+ ξ 8
3 ξ2ξ

16
1 + ξ 5

3 ξ 16
2 + ξ3ξ

4
2 ξ 32

1 + ξ 25
2 + ξ2ξ

40
1

Figure 1. Examples of the �2n,i

of Sq22n−1
to ξ2n−1, and taking this together with the Cartan formula, we calculate

�2n,i = Sq22n−2i
�2n

= Sq22n−2i (
ξ2n−1�

2
2n−2,i−1 + terms involving ξ1, . . . , ξ2n−2

)
= Sq22n−1

ξ2n−1 · Sq22n−1−2i (
�2

2n−2,i−1

) + terms involving ξ1, . . . , ξ2n−1

= ξ2n ·
(

Sq22n−2−2i−1
�2n−2,i−1

)2
+ terms involving ξ1, . . . , ξ2n−1

= ξ2n�
2
2n−2,i−1 + terms involving ξ1, . . . , ξ2n−1.

The last remarks now follow easily. �
Examples of the �2n,i are given in Figure 1.
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We are indebted to the referee for correcting our original formulation of the
following Lemma. As now stated, it is just what is required for subsequent application
in the proof of 14.4.

LEMMA 10.3. Let 1 ≤ i ≤ 2n − 1. Let Ji = {s ∈ �2[ξ0, . . . , ξ2n]; sci ∈ �2[ξ0, . . . ,

ξ2n]}. Then Ji is the principal ideal of �2[ξ0, . . . , ξ2n] generated by �2n.

Proof. Fix i. Let t ∈ Ji. Then we have t · �2n.i = t · c0ci = tci · �2n and this is an
equation in �2[ξ0, . . . , ξ2n]. Since �2n does not divide �2n,i, it must divide t. �

LEMMA 10.4. (i) If s ∈ S has the property that s2 can be expressed as a polynomial
in at most 2n of ξ0, . . . , ξ2n, then s itself is a polynomial generated by the same ξi.

(ii) If f is a polynomial of degree 22n+1 in F2[ξ0, . . . , ξ2n] which is a square in the
ambient ring S and which involves ξ2n then ∂f

∂ξi
= c0ci for each i in the range 0 to 2n.

Proof. (i) An element f of S is a square if and only if

∂f
∂xi

= 0

for each i in the range 0 to 2n. In the light of the first part of this lemma, we also know
that if f belongs to the subring �2[ξ0, . . . , ξ2n] then f is intrinsically a square within this
ring if and only if

∂f
∂ξi

= 0

for each i in the range 0 to 2n. The transition between these two conditions is made via
the Jacobian identity



∂f
∂x0

∂f
∂x1

∂f
∂x2

∂f
∂x3

...

∂f
∂x2n



=



∂ξ0

∂x0

∂ξ1

∂x0

∂ξ2

∂x0

∂ξ3

∂x0
. . .

∂ξ2n

∂x0

∂ξ0

∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x1
. . .

∂ξ2n

∂x1

∂ξ0

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x2
. . .

∂ξ2n

∂x2

∂ξ0

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∂x3
. . .

∂ξ2n

∂x3
...

...
...

...
. . .

...

∂ξ0

∂x2n

∂ξ1

∂x2n

∂ξ2

∂x2n

∂ξ3

∂x2n
. . .

∂ξ2n

∂x2n





∂f
∂ξ0

∂f
∂ξ1

∂f
∂ξ2

∂f
∂ξ3

...

∂f
∂ξ2n



.

The Jacobian matrix is equal to

BĈT .

Hence, if f is a square in S then the Jacobian identity tells us that for each i in the range
1 to 2n,

∂f
∂ξ2n

x22n

i + ∂f
∂ξ2n−1

x22n−1

i + · · · + ∂f
∂ξ1

x2
i + ∂f

∂ξ0
xi = 0.
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From Lemma 5.9 we deduce that

∂f
∂ξi

= ∂f
∂ξ2n

ci

for each i ≥ 0. The hypotheses here guarantee that there is at least one choice of i
for which ∂f

∂ξi
= 0 and the above equations now show that all ∂f

∂ξi
vanish. Thus f is an

intrinsic square as required.
(ii) From the proof of the last part, we know that ∂f

∂ξi
= ∂f

∂ξ2n
ci. Multiplying both

sides of this equation by c0 = �2n in S, recalling that �2n,i = c0ci, gives an equality in
F2[ξ0, . . . , ξ2n]:

�2n
∂f
∂ξi

= ∂f
∂ξ2n

�2n,i.

Since f involves ξ2n and has degree less than that of ξ 2
2n we know that it is linear in ξ2n

and that ∂f
∂ξ2n

is the coefficient of ξ2n. Since �2n does not divide �2n,i unless i = 0 or 2n
we deduce that �2n divides ∂f

∂ξ2n
and on grounds of degree, the result follows. �

11. The Chern Polynomials. In this section we define Chern polynomials whose
coefficients can be plainly seen to be invariants of the orthogonal group O(V )
and “quadratic Chern polynomials” whose coefficients are plainly invariants of the
symplectic group Sp(U).

DEFINITION 11.1. Let A+ denote the set

{x ∈ V∗; ξ0 + x2 has +type}

and let A− denote the set

{x ∈ V∗; ξ0 + x2 has −type}.

Let A = A+ ∪ A−. Note that A = V∗
� U∗. Polynomials P+(t) and P−(t) in the

polynomial ring S[t] in one variable t of degree 1 are defined as follows:

P+(t) :=
∏

x∈A+
(t + x), P−(t) :=

∏
x∈A−

(t + x),

P(t) :=
∏
x∈A

(t + x).

We define n particular invariants d2n−1, . . . , dn by picking certain coefficients of P−(t):

dj is the coefficient of P−(t) of degree 22n−1 − 2j−1

for j in the range n ≤ j ≤ 2n − 1.

The orthogonal group O(V ) permutes the elements of A+ and A−, so it is clear
that the coefficients of P+(t) and P−(t) belong to the invariant ring SO(V ). Note also
that P(t) = P+(t)P−(t).

The quadratic Chern polynomials are closely related:
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DEFINITION 11.2. Let B+ be the set of all quadratic forms on V of +type and B−

the set of all of −type. Let B = B+ ∪ B−. Note that the elements of B belong to S(U∗).
Note that, from the discussion in §4 we know that B = {ξ0 + x2

0 + x2; x ∈ U∗}. We
define quadratic Chern polynomials Q+(X), Q−(X) and Q(X) in the polynomial ring
S[X ] in one variable X of degree 2 as follows:

Q+(X) :=
∏

q∈B+
(X + q), Q−(X) :=

∏
q∈B−

(X + q),

Q(X) :=
∏
q∈B

(X + q).

The symplectic group Sp(U) permutes the elements of B+ and B−. Thus the
coefficients of Q+(X) and Q−(X) are invariants of the symplectic group Sp(V ). Note
also that Q(X) = Q+(X)Q−(X).

We’ll begin by illustrating these polynomials in the low dimensional cases:

EXAMPLE 11.3. The Case n = 1 and dim V = 3.

If n = 1 then

Q+(X) = X3 + c1X2 + ξ 2
1 ,

Q−(X) = X + c1.

In this case c1 = x2
1 + x1x2 + x2

2 happens to be the unique quadratic from of −type,
and we also have the relation c0 = ξ1. Thus Q+ is also given by

Q+(X) = X3 + c1X2 + c2
0,

reflecting the coincidence

Sp(U) = GL(U).

The invariant ring S(U∗)Sp(U) is generated by ξ1 = c0 and c1: it is the ring of Dickson
invariants.

Further, with respect to a suitable basis, ξ0 = x2
0 + x1x2 and

P+(t) = t3 + (x0 + x1 + x2)t2 + ξ0t + ξ0(x0 + x1 + x2) + ξ1,

= t3 + d1t2 + ξ0t + ξ0d1 + ξ1,

P−(t) = t + x0 + x1 + x2,

= t + d1.

The ring SO(V ) is a polynomial ring with generators x0 + x1 + x2, ξ0 and ξ1. In fact
O(V ) is isomorphic to the symmetric group on 3 letters and its action on V permutes
the basis e1, e2, e0 + e1 + e2. On V∗, it permutes the dual basis x0 + x1, x0 + x2, x0,
and the invariants x0 + x1 + x2, ξ0 and ξ1 + ξ0d1 are the corresponding elementary
symmetric polynomials.
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EXAMPLE 11.4. The Case n = 2 and dim V = 5.

If n = 2 then

Q+(X) := X10 + ξ 2
1 X7 + (c3 + ξ1ξ2)X6 + ξ 2

2 X5

+ (
c2 + ξ1ξ3 + ξ 4

1

)
X4 + ξ 2

1 ξ 2
2 X2 + ξ 6

1 X + (
ξ 4

1 c3 + ξ 5
1 ξ2 + ξ 4

2

)
Q−(X) := X6 + ξ 2

1 X3 + (c3 + ξ1ξ2)X2 + ξ 2
2 X + (c2 + ξ1ξ3)

We have also computed the polynomials P−(t) and P+(t) in this case, at least in terms
of the two coefficients d3, d2 of P−(t). We have

P−(t) = t6 + ξ0t4 + ξ1t3 + d3t2 + (ξ2 + ξ1ξ0)t + d2,

P+(t) = t10 + ξ0t8 + ξ1t7 + (
d3 + ξ 2

0

)
t6 + (ξ2 + ξ1ξ0)t5 + (

d2 + ξ 2
1 + ξ 3

0

)
t4 + ξ1ξ

2
0 t3

+ (
ξ 2

0 d3 + ξ2ξ1
)
t2 + (

ξ2ξ
2
0 + ξ1ξ

3
0 + ξ 3

1

)
t + (

ξ 2
0 d2 + ξ 2

1 d3 + ξ 2
2 + ξ2ξ1ξ0

)
.

In this case there are 6 quadratic forms of minus type and so Q−(X) has degree 12.
Since the ring of invariants of Sp(U) is generated by ξ1, ξ2, ξ3, c3, c2 subject to the single
relation

ξ 2
1 c2 + ξ 2

2 c3 + ξ 3
1 ξ3 + ξ1ξ

3
2 + ξ 2

3 + ξ 6
1 = 0,

we see that there is no ambiguity in expressing the coefficients of Q− as polynomials
in ξ1, ξ2, ξ3, c3, c2. There are the following expressions for the other two Dickson
invariants and for ξ4 in terms of the minimal generating set.

c1 = ξ 2
1 c3 + ξ3ξ2 + ξ2ξ

3
1 ,

c0 = �4,

ξ4 = (
ξ3 + ξ 3

1

)
c3 + ξ2c2 + ξ3ξ2ξ1 + ξ2ξ

4
1 .

When we introduce the orthogonal invariants d3 and d2 we find that

c3 = d2
3 + ξ2ξ1 + ξ 2

1 ξ0 + ξ 4
0

c2 = d2
2 + ξ 2

0 d2
3 + ξ3ξ1 + ξ 2

2 ξ0

ξ3 = ξ1d2 + (ξ2 + ξ1ξ0)d3 + ξ2ξ
2
0 + ξ 3

1

The orthogonal group O(V ) has invariant ring generated by ξ0, ξ1, ξ2, d3, d2. Note that
in this case, O(V ) is isomorphic to the symmetric group on 6 letters and so admits an
action on a 6 dimensional space permuting a basis. We can then take V to be the 5
dimensional space consisting of the zero-sum vectors in the chosen basis and this gives
the present representation of O(V ).

LEMMA 11.5. The following identities hold in S[t]:

(P+(t))2 = Q+(t2 + ξ0)

(P−(t))2 = Q−(t2 + ξ0)

P(t) = P−(t)P+(t) = D(t + x0) = D(t) + D(x0)
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Proof. For the first two equalities, note that

(P±(t))2 =
( ∏

x∈A±
(t + x)

)2

=
∏

x∈A±
(t2 + x2)

=
∏

q∈B±
(t2 + ξ0 + q)

= Q±(t2 + ξ0)

as q ∈ B± precisely when q = ξ0 + x2 with x ∈ A±.
For the third,

P−(t)P+(t) =
( ∏

x∈A−
(t + x)

) ( ∏
x∈A+

(t + x)

)
=

∏
x∈A

(t + x)

=
∏

x∈U∗
(t + x0 + x)

= D(t + x0).

Further D(X) is a polynomial in powers of 2, so is additive. �
LEMMA 11.6. (i) The coefficients of Q−(X) belong to the subring of S generated by

ξ1, . . . , ξ2n−1, c2n−1, . . . , cn.

Moreover, they are linear in the Dickson invariants c2n−1, . . . , cn.

(ii) The polynomial c0Q−(X) has all coefficients in the ring �2[ξ1, . . . , ξ2n].
(iii) The coefficients of Q+(X) belong to the subring of S generated by

ξ1, . . . , ξ2n−1, c2n−1, . . . , cn.

Moreover, the only conceivable terms which are not linear in the Dickson invariants are
terms involving c2

2n−1.
(iv) The polynomial c2

0Q+(X) has all coefficients in the ring �2[ξ1, . . . , ξ2n].
(v) The squares of the coefficients of P−(t) and of P+(t) belong to the subring of S

generated by �2[ξ0, ξ1, . . . , ξ2n−1, c2n−1, . . . , cn].

Proof. (i) The coefficients of Q− are symplectic invariants and so, using our
knowledge of the invariant ring for that case, Proposition 8.1, these coefficients lie
in the subring �2[ξ1, . . . , ξ2n−1, c2n−1, . . . , cn]. Since there are 22n−1 − 2n−1 quadratic
forms of −type, the degree of Q− is 2(22n−1 − 2n−1) = 22n − 2n. On the other hand, the
least degree of an element of �2[ξ1, . . . , ξ2n−1, c2n−1, . . . , cn] which is quadratic in the
Dickson invariants is deg c2

2n−1 = 22n and this is greater than the degree of Q−. Hence
the coefficients of Q− are at worst linear in the cj.

(ii) We know that for each j, c0cj belongs to �2[ξ1, . . . , ξ2n] by Lemma 10.2(i). Part
(i) here says that the coefficients are linear in the cj and so the result follows.

(iii) As in (i) we can use Proposition 8.1. For n = 1 or 2 we can see from the examples
following Definition 11.2 that the result holds. For n ≥ 3, the degree argument of
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(i) yields only the weaker stated result because there are more (22n−1 + 2n−1) quadratic
forms of +type.

(iv) Again, Lemma 10.2(i) applies, but for the moment we need the factor c2
0 because

of the weaker conclusion of (iii).
(v) This follows from parts (i) and (iii) and Lemma 11.5. �
Note that D(X) vanishes on U∗ and is constant on V∗

� U∗ = A. So the value
D(x0) is not in fact dependent on x0 and equally, not dependent on any particular
choice of e1, . . . , e2n. In fact

D(x0) =
∏

A

x

is the special additional invariant η of Sp(V ) introduced in Lemma 8.4. Lemma 11.5
shows that

D(x0) = P+(0)P−(0),

and so D(x0) also has its square in the subring

�2[ξ0, ξ1, . . . , ξ2n−1, c2n−1, . . . , cn].

We conclude this section with a remark about Q− which is needed later. Let W
be a maximal b-isotropic subspace of U . Such a subspace of U has dimension n.
Any quadratic form polarizing to b restricts to a linear functional on W because its
polarization vanishes on W . The quadratic forms of −type restrict to non-zero linear
functionals on W and every such linear functional on W arises in this way. Since every
automorphism of W arises as the restriction of some symplectic automorphism of V
it follows that the restriction of Q−(t2) to W is a power of the Dickson polynomial for
W . On grounds of degree we therefore have

LEMMA 11.7. The image of Q−(t2) in S(W ∗)[t] is ∏
0�=x∈W∗

(t + x)

2n

.

12. How to understand �m(X). We shall study the image of �m(X) in the
polynomial ring S[X ] over our symmetric algebra S, using the specialization

�2[X, ξ1, ξ2, ξ3, . . . ] → S[X ]

defined by X �→ X and ξi �→ ξi.

LEMMA 12.1. (i) �2n(X) = ∑2n
i=0 (�2n,i)

2 X2i + δ where δ ∈ �2[ξ1, ξ2, . . . , ξ2n].
(ii) In the ring S we have �2n(X) = c2

0Q(X).
(iii) �2n(X) = c2

0Q−(X)Q+(X), and c0, Q−(X) and Q+(X) are irreducible elements of
the ring S(U∗)Sp[U ][X ].

(iv) c0Q−(X) and c0Q+(X) both belong to �2[X, ξ1, . . . , ξ2n].

Proof. (i) Looking at the standard expansion of the determinant A2n we see first
that any term involving a product of two or more of the diagonal entries will have a
coefficient divisible by 4. So these make zero contribution to �2n. For 0 ≤ i ≤ 22n, we
see that the coefficient of X2i

in �2n is precisely the determinant of the matrix A2n,i

https://doi.org/10.1017/S0017089504002198 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002198


INVARIANT RINGS OF ORTHOGONAL GROUPS OVER �2 33

obtained by omitting the ith row and column (counting from 0 to 2n) from CT B0C.
This determinant is equal to (�2n,i)2 as noted in the proof of Lemma 10.2(i).

(ii) Recall Definition 11.2 that Q(X) = ∏
q∈B(X + q) where B = {ξ0 + x2

0 + x2; x ∈
U∗}. Using Dickson’s Theorem (see Definition 5.6), we know that the polynomial
D′(X) := ∑2n

i=0 c2
i X2i

has zero set precisely {x2; x ∈ U∗}. (Note that D′(x2) = D(x)2.)
Thus

Q(X) = D′(X + ξ0 + x2
0

) = D′(X) + D′(ξ0 + x2
0

)
.

We claim that �2n = c2
0Q(X). First, it follows from Lemma 10.2(i) that c2

0D′(X) =∑2n
i=0(�2n,i)2X2i

and by part (i), this coincides with the part of �2n(X) which involves
X . Therefore

c2
0Q(X) + �2n(X)

does not involve X and to prove that it is zero it suffices to prove that

�2n
(
ξ0 + x2

0

) = 0.

To this end we need to work over � rather than �2 and we shall temporarily work with
two abstract polynomial rings and the ring homomorphism as follows:

α : �[X, ξ1, ξ2, ξ3, . . . ] → �[x1, x2, . . . , x2n]

where

α(ξi) =
n∑

�=1

(
x2i

2�−1x2� + x2�−1x2i

2�

)
,

and

α(X) =
n∑

�=1

x2�−1x2�.

Consider the matrices C and B0CT over �, and insert respectively a row and a column
of zeros to make the matrices square. Then clearly they have determinant equal to zero,
and further we have the matrix equation:



x1 x2 x3 . . . x2n 0

x2
1 x2

2 x2
3 . . . x2

2n 0

x4
1 x4

2 x4
3 . . . x4

2n 0

...
...

...
. . .

...
...

x22n

1 x22n

2 x22n

3 . . . x22n

2n 0





x2 x2
2 x4

2 . . . x22n

2

x1 x2
1 x4

1 . . . x22n

1

x4 x2
4 x8

4 . . . x22n

4

...
...

...
. . .

...

x2n−1 x2
2n−1 x4

2n−1 . . . x22n

2n−1

0 0 0 . . . 0



= α



2X ξ1 ξ2 ξ3 . . . ξ2n

ξ1 2X2 ξ 2
1 ξ 2

2 . . . ξ 2
2n−1

ξ2 ξ 2
1 2X4 ξ 4

1 . . . ξ 4
2n−2

ξ3 ξ 2
2 ξ 4

1 2X8 . . . ξ 8
2n−3

...
...

...
...

. . .
...

ξ2n ξ 2
2n−1 ξ 4

2n−2 ξ 8
2n−3 . . . 2X22n


.
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On taking determinants we find that α(H2n) = 0 and hence α( 1
2 H2n) = 0. (Recall from

the remarks preceding Definition 9.1 that H2n is divisible by 2.) By definition, �2n(X) :=
( 1

2 H2n) mod 2. Now the image of α( 1
2 H2n) under the map � → �2 is �(ξ0 + x2

0) and
hence �(ξ0 + x2

0) = 0 as required.
(iii) By part (ii), �2n = c2

0Q(X) = c2
0Q−(X)Q+(X). The Dickson element c0 and the

quadratic Chern polynomials Q±(X) are irreducible as the symplectic group transitively
permutes their factors.

(iv) Lemma 11.6(ii) deals with the case of c0Q−(X). Part (iv) of that Lemma says
that c2

0Q+(X) belongs to our target ring. Thus we have

c3
0Q+(X)Q−(X) = c2

0Q+(X) · c0Q−(X)

= c0 · �2n(X),

and this 2-way factorization happens in the polynomial ring �2[X, ξ1, . . . , ξ2n]. In
this ring, c0 is prime. Hence either c0 divides c0Q−(X) or c0 divides c2

0Q+(X) in
�2[X, ξ1, . . . , ξ2n].

Suppose that c0 | c0Q−(X), so that Q−(X) ∈ �2[X, ξ1, . . . , ξ2n]. By Lemma 11.5
and Lemma 11.7, the restriction of Q−(X) to a maximal isotropic subspace W of V
involves Dickson invariants for W . As each ξi restricts to zero on W , it follows that
Q−(X) involves Dickson invariants of U . This contradicts the assumption, so it must
be the case that c0 | c2

0Q+(X) in �2[X, ξ1, . . . , ξ2n], and c0Q+(X) ∈ �2[X, ξ1, . . . , ξ2n] as
claimed. �

DEFINITION 12.2. Motivated by the previous Lemma, we define polynomials
�+

2n(X) and �−
2n(X) in �2[X, ξ1, . . . , ξ2n] by

�+
2n(X) := c0Q+(X), �−

2n(X) := c0Q−(X).

Part (iii) of the Lemma says that �2n(X) = �+
2n(X)�−

2n(X).

LEMMA 12.3. These polynomials have the following properties.
(i) �−

2n(X) and �+
2n(X) are irreducible in the polynomial ring �2[X, ξ1, . . . , ξ2n].

(ii) �±
2n(X) are both linear in ξ2n with coefficients (�±

2n−2(X))2.

Proof. (i) Lemma 12.1 part (iv) says that �±
2n(X) ∈ �2[X, ξ1, . . . , ξ2n], and part (iii)

that c0, Q+(X) and Q−(X) are irreducible elements of the ring

S(U∗)Sp(U)[X ] = �2[X, ξ1, . . . , ξ2n, c2n−1, . . . , cn].

Thus if �±
2n(X) were reducible in the smaller ring �2[X, ξ1, . . . , ξ2n] it would factorize

as c0 · Q±(X). By the argument in Lemma 12.1 part (iv) we know however that Q±(X)
is not in �2[X, ξ1, . . . , ξ2n], so �±

2n(X) is irreducible in that ring as claimed.
(ii) View �2n(X) as a polynomial in ξ2n with coefficients in �2[X, ξ1, . . . , ξ2n−1]. From

the Definition 9.1 of �2n(X) via the determinant H2n we see that �2n(X) is quadratic
in ξ2n and

�2n(X) = ξ 2
2n�2n−2(X)2 + ξ2n-linear terms.

By Lemma 12.1 part (iii), the quadratic term is ξ 2
2n(�−

2n−2(X))2(�+
2n−2(X))2. By

part (i), each of ξ2n, �+
2n−2(X) and �−

2n−2(X) is irreducible in the polynomial ring
�2[X, ξ1, . . . , ξ2n]. Further, �2n(X) = �+

2n(X)�−
2n(X), and a degree argument now

delivers the result. �
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LEMMA 12.4. (i) If q is any quadratic form of −type then

�−
2n(q) = 0

�+
2n(q) = c0

∏
q+x2 has +type

x2

�−
2n−2(q) =

∏
x �=0 & q+x2 has −type

x

(ii) If q is any quadratic form of +type then

�−
2n(q) = c0

∏
q+x2 has −type

x2

�+
2n(q) = 0

�+
2n−2(q) =

∏
x �=0 & q+x2 has +type

x

(iii) The following is an identity:

(�+
2n−2(X))2�−

2n(X) + (�−
2n−2(X))2�+

2n(X) = �3
2n.

Proof. (i) Fix a q of −type. By definition �−
2n(X) = c0

∏
r∈B− (X + r) and we

immediately have the first equation �−
2n(q) = 0. For the second equation, notice that

for any form r of +type, q + r = x2 for some x ∈ U∗ with r = q + x2, so we have

�+
2n(q) = c0

∏
r∈B±

(q + r) = c0

∏
q+x2∈B+

(x2).

Turning to the third equation, let x be a non-zero element of U∗ such that q + x2

has −type. Let W = Ker x be the codimension one subspace of U on which x vanishes.
As in the discussion in Secion 4, following the statement of Witt’s Theorem, we know
that the restriction of q to W is either non-singular or it is of −type. Since q + x2 has
−type, Lemma 4.3 states that q restricts to a −type form on W . Therefore by applying
the first equation we have here to the lower dimensional space W , we deduce that
�−

2n−2(X) vanishes on q|W , and therefore

�−
2n(q)

is divisible by x. This is true for all x �= 0 such that q + x2 has −type and therefore
�−

2n(q) is divisible by the product of all such x. The result now follows by a degree
argument.

(ii) Similar to part (i). At this stage, the +type case runs entirely in parallel to
the −type case.

(iii) The left side of the equation is a polynomial with degree in X at most equal to

2 deg(�+
2n−2(X)) + deg(�−

2n(X)) = 2(22n−3 − 2n−2) + (22n−1 + 2n−1)

= (22n−1 + 22n−2)

( = 2 deg(�−
2n−2(X)) + deg(�+

2n(X)) )
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which is less than 22n, the number of quadratic forms of + or − type. Thus if the
equality holds when evaluated on every such form, it is an identity.

Now let q be a form, say of +type. By parts (i) and (ii), the second summand of the
left hand side is zero, and the first is equal to

(�+
2n−2(q))2�−

2n(q) =
 ∏

x �=0 & q+x2 has +type

x

2 c0

∏
q+x2 has −type

x2


= c0

∏
x∈U∗, x �=0

x2

= c3
0

which is equal to �3
2n by Lemma 10.2 (i).

The calculation is similar if q is a form of −type, so as noted above we are done. �
This has important consequences for the Chern polynomials P±(t).

COROLLARY 12.5. The coefficient of t in P±(t) is �±
2n−2(ξ0).

Proof. We deal with the −case, the proof in the +case being obtained simply by
replacing + by − throughout the argument. Let s be the coefficient of t in P−(t). Let
x− ∈ A− be any vector of −type (i.e. ξ0 + x2

− has −type). On restricting to the subspace
Ker x− we have

P−(t)|Ker x− = t ·
∏
x′

(t + x′)

where x′ runs through the non-zero vectors in Ker x− such that ξ0 + x2
− + x′2 has −type.

Equating coefficients of t we see that

s|Ker x− =
∏
x′

x′ = �−
2n−2(ξ0 + x2

−),

by Lemma 12.4(i). Hence s ≡ �−
2n−2(ξ0) modulo x−. This is true for all x− ∈ A− and

hence s ≡ �−
2n−2(ξ0) modulo

∏
x− = P−(0). Now P−(0) has degree greater than s, and

so in fact we have

s = �−
2n−2(ξ0)

as claimed. �
LEMMA 12.6. Viewing �±

2n(X) as a polynomial in X:
(i) �2n(X) = (�2n)2 X22n + terms involving lower powers of X.

(ii) �+
2n(X) = �2nX22n−1+2n−1 + terms involving lower powers of X.

(iii) �−
2n(X) = �2nX22n−1−2n−1 + terms involving lower powers of X.

The proof of this is trivially a consequence of the Definition 12.2.

LEMMA 12.7. (i) �+
2n−2(t2 + ξ0)P−(t) + �−

2n−2(t2 + ξ0)P+(t) = �2n,

(ii) �2nP−(t) = �+
2n−2(t2 + ξ0)Q−(t2 + ξ0) + �−

2n−2(t2 + ξ0) (D(t) + D(x0)) ,

(iii) �2nP+(t) = �−
2n−2(t2 + ξ0)Q+(t2 + ξ0) + �+

2n−2(t2 + ξ0) (D(t) + D(x0)) .
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Proof. The first equation follows immediately from Lemma 12.4 (iii), putting
X = t2 + ξ0, dividing by �2n and taking the square root. The second follows from the
first through multiplying by P−(t) and using the third equality of Lemma 11.5. �

We conclude this section with statements of our calculations of the �±
2n for small

values of n.

EXAMPLE 12.8. For n = 1 we have

�2(X) = ξ 2
1 X4 + ξ 2

2 X2 + ξ 4
1 X + ξ 3

1 ξ2

�+
2 (X) = ξ1X3 + ξ2X2 + ξ 3

1

�−
2 (X) = ξ1X + ξ2

For n = 2,

�4(X) = �2
4X16 + �2

4,3X8 + �2
4,2X4 + �2

4,1X2 + �4
4X

+ (
ξ 4

1 �4,3 + (
ξ 4

2 + ξ2ξ
5
1

)
�4

)
(�4,2 + ξ1ξ3�4)

�+
4 (X) = �4X10 + ξ 2

1 �4X7 + (�4,3 + ξ1ξ2�4)X6 + ξ 2
2 �4X5

+ (
�4,2 + (

ξ1ξ3 + ξ 4
1

)
�4

)
X4 + ξ 2

2 ξ 2
1 �4X2 + ξ 6

1 �4X

+ ξ 4
1 �4,3 + (

ξ 4
2 + ξ2ξ

5
1

)
�4

�−
4 (X) = �4X6 + ξ 2

1 �4X3 + (�4,3 + ξ1ξ2�4)X2 + ξ 2
2 �4X + (�4,2 + ξ1ξ3�4)

For n = 0 it makes sense to define �+
0 (X) := X and �−

0 (X) := 1.

When n = 3 the calculation is formidable. The factors �−
6 (X) and �+

6 (X) have
degrees 119 and 135 respectively. The calculation was carried out directly from our
definition of �6(X) by Allan Steel using the Magma computer algebra package. His
results are available on the first author’s web site, [14].

13. The recursive calculation of �−(X) and �+(X). Here we begin with two results
which enormously improve our understanding of �±(X). Their proofs rely on a line
of reasoning first used by Carlisle and Kropholler in dealing with the symplectic case
and which we briefly review. Consider the inclusion of rings

�2[ξ1, . . . , ξ2n] → S = �2[x1, . . . , x2n]

We know that this is an inclusion by Lemma 8.5. We also know that this inclusion
carries �2n to the Dickson invariant c0 as noted in the preamble to Section 10. If we
take any non-zero element x of V∗, that is, a non-zero linear combination of the xi

then the composite

�2[ξ1, . . . , ξ2n] → S → S/xS

is not an inclusion because clearly, under the second map, c0 is carried to zero. Therefore
�2n lies in the kernel I of this composite. Note, crucially, �2n does not involve ξ2n.

Now consider the restriction of this composite to the ring in which ξ2n is omitted:

�2[ξ1, . . . , ξ2n−1] → S/xS.
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Again, by Lemma 8.5 (this time applied to the 2n − 2 dimensional case) we know
that the images of ξ1, . . . , ξ2n−2 are algebraically independent. Moreover, �2n remains
present as an element of the kernel. Since �2n is irreducible by Lemma 10.2(ii), it
follows on simple Krull dimension grounds that the kernel of our restricted composite
is exactly the principal ideal on �2n.

In conclusion: if an element of �2[ξ1, . . . , ξ2n] does not involve ξ2n but its image in
S is divisible by c0 then such an element lies in the kernel of the map to S/xS for any
choice of x as above; therefore it is an element of the restricted kernel and hence it is
intrinsically a multiple of �2n within the ring �2[ξ1, . . . , ξ2n].

By contrast, notice that we cannot draw the same conclusion about such an element
when it does involve ξ2n. Indeed the conclusion fails in many relevant cases: for example,
we know that c0ci is always expressible within �2[ξ1, . . . , ξ2n] and is patently a multiple
of c0 in the ambient ring S. But for 1 ≤ i ≤ 2n − 1 these elements are never multiples
of �2n intrinsically.

In the first part of the following Proposition, and again in its companion
Proposition 13.2, we need the above conclusion. We arrange the inductive hypothesis
so that, at a key point, the polynomial we are dealing with does not involve ξ2n.

PROPOSITION 13.1. In the abstract polynomial ring �2[X, ξ1, ξ2, . . . ] there is a
sequence of polynomials α+

n (X) for n ≥ 0 with the following properties:
(i) For each n ≥ 0, α+

n (X) belongs to �2[X, ξ1, . . . , ξ2n−1] and

�+
2n(X) =

n∑
�=0

�2n,n+�(α+
� (X))2n−�

.

(ii) α+
n (X) is monic in X with X-degree 22n−1 + 2n−1.

(iii)

α+
0 (X) = X

α+
1 (X) = X3 + ξ 2

1

α+
2 (X) = X10 + ξ 2

1 X7 + ξ2ξ1X6 + ξ 2
2 X5

+ (
ξ3ξ1 + ξ 4

1

)
X4 + ξ 2

2 ξ 2
1 X2 + ξ 6

1 X + ξ 4
2 + ξ2ξ

5
1 .

(iv) α+
n (X) ≡ ξ 2n

n modulo X, ξ1, . . . , ξn−1.
(v) For n ≥ 1, the summand of α+

n (X) comprising all those terms of odd degree in X
is equal to (�+

2n−2(X))2X.

Proof. (i) We construct the α+
n (X) inductively. Notice first that �2,1 = ξ2, �2,2 =

�2 = ξ1, and therefore

�+
2 (X) = ξ1X3 + ξ2X2 + ξ 3

1 = �2,1(α+
0 (X))2 + �2α

+
1 (X)

confirming our formula when n = 1. We could be a little more economical by observing
that the formula is also consistent with the case n = 0 given the definitions �+

0 (X) = X
and �0 = 1. Now suppose that n ≥ 2 and that the α+

j (X) have been chosen for j < n
so that

�+
2n−2(X) =

n−1∑
�=0

�2n,n+�(α+
� (X))2n−�

.
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Then the coefficient of ξ2n in f (X) := �+
2n(X) − ∑n−1

�=0 �2n,n+�(α+
� (X))2n−�

is

(�+
2n−2(X))2 −

n−1∑
�=0

(�2n−2,n+�−1)2(α+
� (X))2n−�

which is zero by induction. In other words, f (X) does not involve ξ2n and the opening
remarks of this section can be applied to the coefficient of each power of X . We see
that f (X) is a polynomial in X, ξ1, . . . , ξ2n−1 and since the coefficients of f (X) as a
polynomial in X are divisible by c0 = �2n when we pass to their images in the ambient
ring S it follows from the conclusion to the preamble, that f (X) is also divisible by �2n

in the ring �2[X, ξ1, . . . , ξ2n−1]. Therefore we can (and must) set α+
n (X) := f (X)/�2n.

(ii) This follows from Lemma 12.6. Working by induction on n we may suppose
that α+

� (X) is monic of X-degree 22�−1 + 2�−1 for � < n. Lemma 12.6 says that �+
2n(X)

has X-degree 22n−1 + 2n−1 which is greater than any of the contributions coming from
(α+

� (X))2n−�

for � < n in our new formula. Therefore only the term involving α+
n (X)

contributes to the highest power of X and Lemma 12.6 verifies our assertion that
α+

n (X) is monic.
(iii) This can be checked by direct calculation.
(iv) The total degree of α+

n (X) of is 22n + 2n because X has degree 2. Modulo
X, ξ1, . . . , ξn−1, only monomials in ξn, . . . , ξ2n−1 can contribute. For such a monomial
ξ an

n · · · ξ a2n−1
2n−1 to exist we need natural numbers an, . . . , a2n−1 such that

an(2n + 1) + · · · + a2n−1(22n−1 + 1) = 22n + 2n.

Hence

an + · · · + a2n−1 ≡ 0 modulo 2n.

Moreover we can also see that aj ≤ 2n−j for each j and therefore

an + · · · + a2n−1 ≤ 2n + 2n−1 + · · · + 2 < 2n+1.

If the ai are not all zero then the displayed information above implies that

an + · · · + a2n−1 = 2n,

and therefore

2n(2n + 1) = (an + · · · + a2n−1)(2n + 1)

≤ an(2n + 1) + · · · + a2n−1(22n−1 + 1)

= 22n + 2n.

Thus the inequality above must be equality. Hence ai = 0 for i > n and it follows
that an = 2n and ξ an

n · · · ξ a2n−1
2n−1 = ξ 2n

n . From this we can conclude that α+
n (X) ≡ 0 or ξ 2n

n
modulo X, ξ1, . . . , ξn−1. In particular, it follows that α+

� (X) ≡ 0 modulo X, ξ1, . . . , ξn−1

whenever � < n − 1, and so the recursive formula in (i) gives

�+
2n(0) ≡ �2nα

+
n (X) mod X, ξ1, . . . , ξn−1.

https://doi.org/10.1017/S0017089504002198 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002198


40 P. H. KROPHOLLER, S. MOHSENI RAJAEI AND J. SEGAL

It can be seen directly from its definition that �2n(X) involves the monomial ξ 2n−1
n+1 ξ 2n+1−1

n
and therefore �2n(X) �≡ 0, �+

2n(X) �≡ 0, and α+
n (X) �≡ 0. Thus α+

n (X) ≡ ξ 2n

n modulo
X, ξ1, . . . , ξn−1 as claimed.

(v) From the identity we have proved in (i), we see that the terms of odd degree
within �+

2n(X) are exactly the terms of odd degree within �2nα
+
n (X). Since �+

2n(X) =
�2nQ+(X) it follows that α+

n (X) and Q+(X) have the same odd degree part.
Let X · g(X) denote the odd degree component of Q+(X). It now suffices to prove

that g(X) = (�+
2n−2(X))2. This follows from Corollary 12.5, together with the first

identity of Lemma 11.5: (P+(t))2 = Q+(t2 + ξ0). Corollary 12.5 says that (�+
2n−2(ξ0))2

is equal to the coefficient of t2 in (P+(t))2. Through Lemma 11.5, this in turn is equal
to the coefficient of t2 in Q+(t2 + ξ0) and since it is precisely the odd powers of t2 which
contribute to this, the coefficient is g(ξ0). Thus (�+

2n−2(ξ0))2 = g(ξ0) and, in view of the
generic nature of ξ0, the result follows. �

PROPOSITION 13.2. In the abstract polynomial ring �2[X, ξ1, ξ2, . . . ] there is a
sequence of polynomials α−

n (X) for n ≥ 0 with the following properties:
(i) For each n ≥ 0, α−

n (X) belongs to �2[X, ξ1, . . . , ξ2n−1] and

�−
2n(X) =

n∑
�=0

�2n,n+�(α−
� (X))2n−�

.

(ii) α−
n (X) is monic in X with X-degree 22n−1 − 2n−1.

(iii)

α−
0 (X) = 1

α−
1 (X) = X

α−
2 (X) = X6 + ξ 2

1 X3 + ξ2ξ1X2 + ξ 2
2 X + ξ3ξ1.

(iv) For n ≥ 1, α−
n (X) ≡ 0 modulo X, ξ1, . . . , ξn−1.

(v) For n ≥ 1, the part of α−
n which has odd degree in X is equal to (�−

2n−2(X))2X.

Proof. The proof proceeds in just the same way as for the α+. We leave the details
to the reader. Just one remark: the degree argument for part (iv) goes along rather
more swiftly in this case but notice that while the conclusion is stronger for n ≥ 1 the
case n = 0 is a significant exception to the rule. �

COROLLARY 13.3. For each n ≥ 1, we have that �+
2n(X) ≡ ξ 2n+1−1

n and �−
2n(X) ≡ �2n,n

modulo X, ξ1, . . . , ξn−1. Also, �−
2n(X) ≡ ξ 2n−1

n+1 modulo ξ1, . . . , ξn.

Proof. Using the above Propositions we find that

�+
2n(X) ≡ �2nα

+
n (X) ≡ �2nξ

2n

n

and

�−
2n(X) ≡ �2n,nα

−
0 (X) = �2n,n

modulo X, ξ1, . . . , ξn−1. This demonstrates the result for �−. It is also straightforward
to see from its definition that �2n ≡ ξ 2n−1

n and the result for �+ now follows as
well. Working modulo ξ1, . . . , ξn for the last part, it is straightforward to use degree
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arguments to see that �2n,n+j ≡ 0 for j ≥ 1 and by direct calculation that �2n,n ≡ ξ 2n−1
n+1 .

These facts yield the third stated equivalence. �
COROLLARY 13.4. Let j ≥ 0 be a natural number and let Pj be the coefficient of

degree j in P−(t), (i.e. Pj is the coefficient of t22n−1−2n−1−j). Let P′
j be the coefficient of

degree j − 1 in �−
2n−2(t2 + ξ0), (i.e. P′

j is the coefficient of t22n−1−2n−1−j). Then

Sqj�−
2n−2(ξ0) = �−

2n−2(ξ0)Pj + P′
jP

−(0).

Proof. If j = 0 then P0 = 1 and we define P′
0 := 0. Assume that j ≥ 1. Using

Lemma 12.5 together with Lemma 3.2 we have

Sqj�−
2n−2(ξ0) ≡ �−

2n−2(ξ0)Pj

modulo x− for all x− ∈ A−. Hence P−(0) = ∏
x− divides Sqj�−

2n−2(ξ0) + �−
2n−2(ξ0)Pj

and there is an invariant P′
j such that

Sqj�−
2n−2(ξ0) = �−

2n−2(ξ0)Pj + P′
jP

−(0).

Since �−
2n−2(ξ0) involves only ξ0, . . . , ξ2n−2, when we apply the Steenrod operation Sqj

the result is a polynomial in ξ0, . . . , ξ2n−1. Therefore if we square the above displayed
equation and multiply by �2n the left hand side does not involve ξ2n whilst the right
hand side simplifies to the expression

(�−
2n−2(ξ0))2�2n(Pj)2 + (P′

j)
2�2n(P−(0))2

= (�−
2n−2(ξ0))2

[
n∑

�=0

�2n,n+�(α−
� (t2 + ξ0))2n−�

]
[2j+22n−1]

+ (P′
j)

2�−
2n(ξ0),

where the notation [ ][2j+22n−1] means “pick out the coefficient of degree 2j + 22n − 1”
from the polynomial in t. Thus, equating coefficients of ξ2n we have

0 = (�−
2n−2(ξ0)[�−

2n−2(t2 + ξ0)][j−1] + P′
j�

−
2n−2(ξ0))2

Taking square roots and dividing by �−
2n−2(ξ0) we conclude that

P′
j = [�−

2n−2(t2 + ξ0)][j−1]

as required. �
COROLLARY 13.5. (�−

2n−4(ξ0))2ξ2n−1 + �−
2n−2(ξ0)d2n−1 + �2n−2dn belongs to the

subring generated by ξ0, . . . , ξ2n−2

Proof. Take j := 22n−2 in Corollary 13.4. Since

�−
2n−2(X) = ξ2n−2(�−

2n−4(X))2 + terms in X, ξ1, . . . , ξ2n−3

it follows from Lemma 5.4 and its Corollary that

Sq22n−2
(�−

2n−2(X)) = ξ2n−1(�−
2n−4(X))2 + terms in X, ξ1, . . . , ξ2n−2.
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Therefore by Corollary 13.4 we have

ξ2n−1(�−
2n−4(X))2 + terms in X, ξ1, . . . , ξ2n−2 = �−

2n−2(ξ0)P22n−2 + P′
22n−2 dn,

where P′
22n−2 is the coefficient of degree 22n−2 − 1 in �−

2n−2(t2 + ξ0). Using Lemma 12.6
we can see that P′

22n−2 = �2n−2 and the desired conclusion follows. �

COROLLARY 13.6. The coefficients of �−
2n−2(ξ0)P−(t) lie in �2[ξ0, . . . , ξ2n−1, dn].

The 2n + 1 elements ξ0, . . . , ξ2n−1, dn are algebraically independent in S and the
2n + 2 elements ξ0, . . . , ξ2n−1, dn, d2n−1 satisfy a single relation in S which is linear in
ξ2n−1, dn, d2n−1.

Proof. The first part is immediate from Corollary 13.4. Now we know that S is
integral over the ring generated by the coefficients of P−(t) at least for n ≥ 2. It follows
that S is algebraic over �2[ξ0, . . . , ξ2n−1, dn] and so on grounds of Krull dimension,
ξ0, . . . , ξ2n−1, dn must be algebraically independent. The last part now follows at once.
The relation is as described in Corollary 13.5 �

COROLLARY 13.7. Let R denote the subring �2[ξ0, . . . , ξ2n−2].
(i) {s ∈ R; sd2n−1 ∈ ξ2n−1R + dnR} = �−

2n−2(ξ0)R,

(ii) {s ∈ R; sdn ∈ ξ2n−1R + d2n−1R} = �2n−2R,

(iii) {s ∈ R; sξ2n−1 ∈ d2n−1R + dnR} = �−
2n−4(ξ0)2R.

Proof. This follows in a manner similar to the proof of Lemma 10.3 using the
fact that �−

2n−2(ξ0),�2n−2,�
−
2n−4(ξ0) are distinct irreducible elements of �2[ξ0, . . . ,

ξ2n−2]. �

We have the following consequence which is crucial in our calculations:

LEMMA 13.8. There is a matrix Jn and column vector Fn so that cn
...

c2n−1

 = J∗2
n

 d2
n
...

d2
2n−1

 + Fn.

Here, J∗2
n denotes the matrix whose entries are the squares of the entries of the matrix Jn.

The matrix Jn is upper uni-triangular with entries in the subring generated by ξ0, . . . , ξ2n−3

and Fn is a column of polynomials in ξ0, . . . , ξ2n−2.

Proof. From the formula

(P−(t))2 = Q−(t2 + ξ0) =
n∑

�=0

cn+�(α−
� (t2 + ξ0))2n−�

we see that on equating appropriate powers of t,

d2
j = cj + terms involving and linear in cj+1, . . . , c2n−1, c2n.

Note that c2n = 1. Moreover the coefficients of ck here are all squares for j + 1 ≤ k ≤
2n − 1. So there is an upper uni-triangular matrix Un and a column Vn both having

https://doi.org/10.1017/S0017089504002198 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002198


INVARIANT RINGS OF ORTHOGONAL GROUPS OVER �2 43

polynomial entries in the ξ ’s such that d2
n
...

d2
2n−1

 = U∗2
n

 cn
...

c2n−1

 + Vn.

We obtain the required form of result by setting Jn := U−1
n and then Fn := J∗2

n Vn. �
COROLLARY 13.9. The subring of S generated by ξ0, . . . , ξ2n−1 together with

d2n−1, . . . , dn contains all the coefficients of P−(t).

Proof. Let Pj be the coefficient of P−(t) of degree j. The formula

P−(t)2 =
n∑

�=0

cn+�(α−
� (t2 + ξ0))2n−�

shows that P2
j can be expressed as a linear combination of cn, . . . , c2n−1, c2n = 1 with

coefficients in the subring �2[ξ0, . . . , ξ2n−1] and for � < n, the coefficient of cn+� in this
expression is a square. From this, together with the Lemma above, we see that there is
a linear combination

λ2n−1d2n−1 + · · · + λndn

with each λi belonging to �2[ξ0, . . . , ξ2n−1] such that

P2
j = (λ2n−1d2n−1 + · · · + λndn)2 + λ

for some λ ∈ �2[ξ0, . . . , ξ2n−1]. Clearly λ is a square in the ambient ring S and therefore
it is a square in the subring �2[ξ0, . . . , ξ2n−1] by Lemma 10.4. So

Pj = λ2n−1d2n−1 + · · · + λndn +
√

λ,

as required. �
COROLLARY 13.10. The coefficients of P+(t) also belong to the subring specified by

the corollary above.

Proof. This can be proved in just the same way, using the formula

P+(t)2 =
n∑

�=0

cn+�(α+
� (t2 + ξ0))2n−�

.
�

14. The invariants of O(V ). Define T to be the subring of S generated by
ξ0, ξ1, . . . , ξ2n−1, d2n−1, . . . , dn. This section is devoted to proving that T is the ring
of invariants of O(V ). If n ≥ 2 then the set A− of vectors in V∗ of −type spans V∗

and hence S is an integral and separable extension of the subring generated by the
coefficients of P−(t). When n = 0 or 1, A− does not span V∗, but in these cases the A+

spans V∗ and so at least we can say that S is integral and separable over the subring
generated by the coefficients of P+(t). The Corollaries following Lemma 13.8 say that
our chosen subring T contains the coefficients of both P−(t) and P+(t). Therefore
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LEMMA 14.1. S is integral and separable over T and the field of fractions ff(T) of T
is the fixed field ff(S)O(V ).

Proof. Only the remark about fields of fractions remains to be proved. We chose
the generators of T to be invariant and so ff(T) ⊆ ff(S)O(V ). Let G be the Galois group
of the extension ff(T) ⊆ ff(S). (The first part of this Lemma shows that the extension
is Galois.) Then G fixes ξ0 ∈ ff(T) and so G ⊆ O(V ). Also ff(T) ⊆ ff(S)O(V ) and so
G ⊇ O(V ). Therefore G = O(V ) and ff(T) = ff(S)O(V ). �

From this Lemma we see that the integral closure of T is the fixed ring for O(V ).
In fact T is integrally closed. To prove this we consider a presentation of T as the
quotient of a certain abstract polynomial ring T∗.

14.2. Working in T∗. Let T∗ denote an abstract polynomial ring on 3n generators
with weighted degrees in accordance with our chosen generators of T . We consider the
surjection T∗ → T defined by mapping the abstract generators to the corresponding
generators of T . We shall call the generators of T∗ by the obvious names:

ξ0, . . . , ξ2n−1, d2n−1, . . . , dn

in order to economize on notation. In practice this means keeping very clear the
distinction between working in T∗ and working in T . We shall identify a regular
sequence r1, . . . , rn−1 of elements of T∗ which lie in the kernel of the map T∗ → T . We
shall therefore find that there is an induced map

T∗/(r1, . . . , rn−1) → T.

The polynomials �−
2n−2(ξ0) and �2n−2 are polynomials in the ξ ’s which can be viewed as

elements of T∗ in the obvious way. We shall show that their images in T∗/(r1, . . . , rn−1)
satisfy the hypotheses of Proposition 1.1 and hence T∗/(r1, . . . , rn−1) is a unique
factorization domain and the map

T∗/(r1, . . . , rn−1) → T

is an isomorphism. Now clearly T is contained in the ring of invariants SO(V ) and since
it is integrally closed one only has to check the elementary Galois theory to conclude
that

T = SO(V ).

Note that T contains the Dickson invariants for U∗ and the coefficients of both P−(t)
and P+(t). Therefore T also contains η = P−(0)P+(0) and so

SSp(V ) ⊂ T.

This puts the Galois theory in place, and since any subgroup of GL(V ) which fixes
the quadratic form ξ0 is a subgroup of the orthogonal group we reach the desired
conclusion.

We use the notation M∗2 to indicate the matrix obtained from a matrix M by
squaring all its entries. In case M = N∗2 for some N we also use the notation

√
M to

denote the matrix N which is uniquely determined by M when it exists. We write M′

for the matrix obtained from M by omitting the first row.
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14.3. The subring of S generated by ξ0, . . . , ξ2n together with d2n−1, . . . , dn. We begin
by considering the subring of S generated by ξ0, . . . , ξ2n, d2n−1, . . . , dn. This makes a
total of 3n + 1 generators. Recall (8.3): the fundamental relations for the symplectic
invariants S(U∗)Sp(U)

(LnKn + Rn)

 cn
...

c2n−1

 =

 ξ2n
...

ξ 2n−1

n+1

 + LnEn

The following observations are significant:

LEMMA 14.4. (i) The (n − 1) × (n − 1) matrix obtained by omitting the first row and
last column of LnKn + Rn is (Ln−1Kn−1 + Rn−1)∗2.

(ii) Working modulo ξ1, . . . , ξn−1, we have Ln ≡ 0 and Rn is upper triangular with
diagonal entries ξn, ξ

2
n , . . . , ξ 2n−1

n .
(iii)

det (LnKn + Rn) = �2n

Proof. (i) This follows from the definitions and Lemma 8.2.
(ii) This is entirely straightforward.

(iii) Let δ denote the determinant. From (ii) we can deduce that δ ≡ ξ 2n−1
n modulo

ξ1, . . . , ξn−1, and in particular it follows that δ is non-zero. Since our relations are
homogeneous it follows that δ is a homogeneous polynomial, and we see that it
has degree 22n − 1. Multiplying both sides of the matrix equation 8.3 by the matrix
(LnKn + Rn)cof of cofactors we see that

 δcn
...

δc2n−1

 = (LnKn + Rn)cof


 ξ2n

...
ξ 2n−1

n+1

 + LnEn


This shows that for any i with n ≤ i ≤ 2n − 1, the element δ belongs to the ideal Ji of
Lemma 10.3 and consequently, on grounds of degree, δ = �2n. �

We also have Lemma 13.8, relating the Dickson invariants c2n−1, . . . , cn and the
squares d2

2n−1, . . . , d2
n of our fundamental orthogonal invariants. We use this in order to

replace all the c’s with d’s. Using Lemma 13.8, we obtain the following matrix equation
of relations:

(LnKn + Rn) J∗2
n

 d2
n
...

d2
2n−1

 =

 ξ2n
...

ξ 2n−1

n+1

 + LnEn + (LnKn + Rn) Fn

At this stage, the first relation simply gives expression for ξ2n in terms of other
generators. So we throw away this relation and throw away the redundant ξ2n. In
matrix form the situation can be summarized by omitting the first rows of chosen
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matrices.

(
L′

nKn + R′
n

)
J∗2

n

 d2
n
...

d2
2n−1

 =

ξ 2
2n−1
...

ξ 2n−1

n+1

 + L′
nEn + (

L′
nKn + R′

n

)
Fn.

Notice that the only entries of L′
n which are not squares are the entries in the first

column. Since Kn begins with a row of zeroes, the first column of L′
n makes no impact

on the product L′
nKn and this matrix has square entries. More precisely we have

L′
nKn = (

L∗2
n−1K∗2

n−1 L∗2
n−1E∗2

n−1

)
Moreover, R′

n also has square entries. Therefore the left hand side of our matrix
equation consists entirely of squares. On the right hand side, the first vector comprises
squares. We understand much less about the remaining vector

L′
nEn + (L′

nKn + R′
n)Fn,

but it must of course consist of elements which are squares in the ambient ring S. Since
this mysterious vector is a column of polynomials in ξ0, . . . , ξ2n−1 it follows that its
entries are squares within the ring �2[ξ0, . . . , ξ2n−1] by Lemma 10.4(i). Hence we can
take the square root of our matrix equation to obtain what we shall call

14.5. The fundamental system of relations for SO(V ):

((Ln−1Kn−1 Ln−1En−1) + √
R′

n)Jn

 dn
...

d2n−1

 =

ξ2n−1
...

ξ 2n−2

n+1

 +
√

L′
nEn + (L′

nKn + R′
n)Fn

We wish to reorganise this matrix equation in two different ways. First, we wish to
describe the relations so that d2n−1 appears on the right hand side. To this end, let Gn−1

denote the last column of the matrix(
(Ln−1Kn−1 Ln−1En−1) + √

R′
n

)
Jn

and let Sn−1 denote the (n − 1) × (n − 1) matrix obtained by deleting this column.
Then we can write

14.6. The left handed reorganization:

Sn−1

 dn
...

d2n−2

 =

ξ2n−1
...

ξ 2n−2

n+1

 +
√

(L′
nEn + (L′

nKn + R′
n)Fn) + Gn−1d2n−1

Since Jn is upper uni-triangular, and also the matrix obtained by deleting the last
column of R′

n is R∗2
n−1, it follows that

Sn−1 = (Ln−1Kn−1 + Rn−1)J′′
n,

where J′′
n is the matrix obtained by deleting the last row and last column of Jn. Notice

that J′′
n is upper uni-triangular and therefore by Lemma 14.4(iii).
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LEMMA 14.7.

det Sn−1 = det (Ln−1Kn−1 + Rn−1) = �2n−2

Secondly we wish to describe the relations so that dn appears on the right hand
side of the equation. To do this, let Hn−1 denote the first column of the matrix(

(Ln−1Kn−1 Ln−1En−1) + √
R′

n

)
Jn

and let Tn−1 denote the (n − 1) × (n − 1) matrix obtained by deleting this column.
Then we can write

14.8. The right handed reorganization:

Tn−1

 dn+1
...

d2n−1

 =

ξ2n−1
...

ξ 2n−2

n+1

 +
√

(L′
nEn + (L′

nKn + R′
n)Fn) + Hn−1dn.

We have the following result:

LEMMA 14.9.

det Tn−1 = �−
2n−2(ξ0).

Proof. Modulo ξ0, . . . , ξn−1, Tn−1 is upper triangular with diagonal entries
ξn, ξ

2
n , . . . , ξ 2n−2

n and therefore det Tn−1 is non-zero. We also see that det Tn−1 is
homogeneous of degree (2n + 1)(2n−1 − 1) = 22n−1 − 2n−1 − 1 = deg �−

2n−2(ξ0). When
we invert det Tn−1, we can solve the relations to give expressions for dn+1, . . . , d2n−1 in
terms of ξ0, . . . , ξ2n−1, dn. Therefore det Tn−1 belongs to the ideal of Corollary 13.7(i)
and hence the result follows. �

This concludes our investigation of the subring T .

14.10. Returning to work in T∗. We consider an abstract polynomial ring in 3n
generators:

T∗ := �2[ξ0, . . . , ξ2n−1, d2n−1, . . . , dn].

By using the same symbols ξi, dj as for the subring T we risk great confusion. We shall
maintain a clear distinction between our work in T∗ and T . The relations we found
holding in T can be interpreted as relators in T∗. There are n − 1 of these relators and
they are expressed by the column vector r1

...
rn−1

 =
(

(Ln−1Kn−1 Ln−1En−1) + √
R′

n

)
Jn

 dn
...

d2n−1

 +

ξ2n−1
...

ξ 2n−2

n+1


+

√
L′

nEn + (L′
nKn + R′

n)Fn.
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Notice that since L′
n ≡ 0 modulo ξ1, . . . , ξn−1 we therefore have the simplification r1

...
rn−1

 ≡

ξ2n−1
...

ξ 2n−2

n+1

 + √
R′

nFn,

modulo dn, . . . , d2n−1, ξ1, . . . , ξn−1. Modulo ξ1, . . . , ξn, the last row of R′
n is zero and

hence

rn−1 ≡ ξ 2n−2

n+1 .

More generally for j ≥ 1, the last j rows of R′
n are zero modulo ξ1, . . . , ξn+j−1 and

therefore

rn−j ≡ ξ 2n−j

n+j .

This has the crucial consequence that

LEMMA 14.11. The sequence

dn, . . . , d2n−1, ξ0, ξ1, . . . , ξn−1, ξn, rn−1, rn−2, . . . , r1

is a regular sequence in T∗.

Proof. We manage regular sequences of homogeneous elements in a graded
commutative ring using three simple devices:

� Permuting the terms of a regular sequence yields a regular sequence.
� Replacing the last term of a regular sequence by a proper power yields a regular

sequence. In view of the first device, we can in fact replace any term of a regular
sequence by a proper power.

� If a1, . . . , aj, . . . , ak is a regular sequence and b is any ring element such that the
ideals (a1, . . . , aj−1, aj) and (a1, . . . , aj−1, b) are equal then the sequence obtained by
replacing aj by b is a regular sequence.
These facts are all simple consequences of the definition that a sequence a1, . . . , ak is
regular if and only if each term is a non-zero-divisor modulo its predecessors. In T∗

we surely have the regular sequence

dn, . . . , d2n−1, ξ0, ξ1, . . . , ξn−1, ξn, ξn+1, ξn+2, . . . , ξ2n−1

and since r1 ≡ ξ2n−1 modulo dn, . . . , d2n−1, ξ1, . . . , ξ2n−2 it follows that we can adjust
the last term: so

dn, . . . , d2n−1, ξ0, ξ1, . . . , ξn−1, ξn, ξn+1, ξn+2, . . . , ξ2n−2, r1

is a regular sequence. Therefore we can replace the penultimate term by its square and

dn, . . . , d2n−1, ξ0, ξ1, . . . , ξn−1, ξn, ξn+1, ξn+2, . . . , ξ
2
2n−2, r1

is also a regular sequence. Since r2 ≡ ξ 2
2n−2 modulo dn, . . . , d2n−1, ξ1, . . . , ξ2n−3 we see

that

dn, . . . , d2n−1, ξ0, ξ1, . . . , ξn−1, ξn, ξn+1, ξn+2, . . . , ξ2n−3, r2, r1
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is a regular sequence. Now we replace ξ2n−3 by ξ 4
2n−3 and then by r3. Continuing in this

way the desired conclusion follows. �
The relators all belong to the kernel of the natural surjection

T∗ → T.

Thus we have an induced map

T∗/(r1, . . . , rn−1) → T.

It is our aim to prove that this is an isomorphism and simultaneously that T is integrally
closed. We shall use Proposition 1.1. More precisely, we shall show that

LEMMA 14.12. (i) �2n−2,�
−
2n−2(ξ0) is a regular sequence in T∗/(r1, . . . , rn−1);

(ii) the localizations

T∗/(r1, . . . , rn−1)
[
�−1

2n−2

]
,

T∗/(r1, . . . , rn−1)[�−
2n−2(ξ0)−1]

are unique factorization domains;
(iii) �2n−2 generates a prime ideal in T∗/(r1, . . . , rn−1)[�−

2n−2(ξ0)−1]; and
(iv) �−

2n−2(ξ0) generates a prime ideal in T∗/(r1, . . . , rn−1)
[
�−1

2n−2

]
.

Proof. Note that to avoid excessive notation we are now in the position that the
names of elements do not tell you which ring they belong to. When we write about the
elements �2n−2,�

−
2n−2(ξ0), keep in mind that the subring of S generated by ξ0, . . . , ξ2n

is isomorphic to the abstract polynomial ring on ξ0, . . . , ξ2n because these elements are
algebraically independent in S. Here we are interested in viewing these polynomials
in T∗ which is defined to be an abstract polynomial ring, and then in the quotient
T∗/(r1, . . . , rn−1) which sits in between T∗ and S as follows:

T∗ → T∗/(r1, . . . , rn−1) → T ⊂ S.

Therefore there is no real risk of confusion when considering a polynomial in the ξ ’s so
long as we keep clear which of the above rings is relevant at each point of argument.

(i) We know from Lemma 14.11 that

ξ1, . . . , ξn

is a regular sequence in the quotient ring T∗/(r1, . . . , rn−1). Therefore

ξ1, . . . , ξn−1, ξ
2n−1−1
n

is also a regular sequence. By Corollary 13.3 we have that �−
2n−2(ξ0) ≡ ξ 2n−1−1

n modulo
ξ1, . . . , ξn−1 and therefore

ξ1, . . . , ξn−1,�
−
2n−2(ξ0)

is a regular sequence, and so also is

ξ1, . . . , ξn−2, ξ
2n−1−1
n−1 ,�−

2n−2(ξ0).
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Using the fact that �2n−2 ≡ ξ 2n−1−1
n−1 modulo ξ1, . . . , ξn−2 we see that

ξ1, . . . , ξn−2,�2n−2,�
−
2n−2(ξ0)

is a regular sequence. (In fact, since ξ0 involves the extra variable x0 we can even say
that

ξ0, ξ1, . . . , ξn−2,�2n−2,�
−
2n−2(ξ0)

is a regular sequence.) In particular

�2n−2,�
−
2n−2(ξ0)

is a regular sequence in T∗/(r1, . . . , rn−1) as claimed.
(ii) First notice from the left handed reorganization (14.6) that when we invert

det Sn−1 = �2n−2

the relations can be solved to express dn, . . . , d2n−2 in terms of ξ0, . . . , ξ2n−1 and d2n−1.
This gives the isomorphism

T∗/(r1, . . . , rn−1)
[
�−1

2n−2

] ∼= �2
[
ξ0, . . . , ξ2n−1, d2n−1,�

−1
2n−2

]
and we can see on grounds of Krull dimension that this ring is a localized polynomial
ring; in particular it is a unique factorization domain. Similarly, from the right handed
reorganization (14.8) we deduce the isomorphism

T∗/(r1, . . . , rn−1)[�−
2n−2(ξ0)−1] ∼= �2[ξ0, . . . , ξ2n−1, dn,�

−
2n−2(ξ0)−1],

because inverting det Tn−1 = �−
2n−2(ξ0) allows us to solve for dn+1, . . . , d2n−1 in terms

of ξ0, . . . , ξ2n−1, dn, and this ring is also a localized polynomial ring; in particular it is
a unique factorization domain.
Finally (iii) and (iv) hold because �2n−2 and �−

2n−2(ξ0) are irreducible polynomials in
the ring �2[ξ0, . . . , ξ2n−1]. �

In view of Proposition 1.1, this completes the calculation of the ring of invariants
SO(V ).

15. The invariants for O−. Let ξ− be any quadratic form of −type. Then ξ0 + ξ− =
x2

− for some fixed x ∈ V∗
� U∗. The composite Ker x → V → U is an isomorphism

and so we identify Ker x with U . We write O− for the group of automorphisms of
(U, ξ−)

We show that S(U∗)O−
is given up to isomorphism by adding the single additional

relation P−(0) = 0 to the ring of invariants SO(V ). Let’s see what happens when we
adjoin this additional relation to our presentation. This simply amounts to setting
dn = 0.

Note that ξ− belongs to S(U∗) and in just the same way as for Lemma 8.5 we have

LEMMA 15.1. The elements ξ−, ξ1, . . . , ξ2n−1 are algebraically independent in S(U∗).

Moreover, Corollary 13.4 simplifies in a significant way:
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LEMMA 15.2. For each j,

Sqj(�−
2n−2(ξ−)) = �−

2n−2(ξ−)Pj

where Pj is the coefficient of degree j in the restriction of P−(t) to U∗.

We begin by studying the subring T of S(U∗) generated by the 3n − 1 elements

ξ−, ξ1, . . . , ξ2n−1, d2n−1, . . . , dn+1.

We shall in due course see that T = S(U∗)O−
.

The fundamental system of relations for SO(V ) now simplify in line with (14.8):

15.3. The fundamental system of relations for O−.

Tn−1

 dn+1
...

d2n−1

 =

ξ2n−1
...

ξ 2n−2

n+1

 +
√

(L′
nEn + (L′

nKn + R′
n)Fn).

Direct inspection of Tn−1 reveals that its top right hand entry is of the form

ξ2n−2 + terms involving ξ0, . . . , ξ2n−3.

It follows that the (n − 2) × (n − 2) matrix T′′
n−1 found by deleting the first row and

last column of Tn−1 has determinant �−
2n−4(ξ0)2. Since the first relation simply gives

expression for ξ2n−1 in terms of the other generators we can dispense with this relation,
throw out ξ2n−1, and use

15.4. The reduced system of relations for O−.

T′′
n−1

 dn+1
...

d2n−2

 =

ξ2n−2
...

ξ 2n−2

n+1

 +
√

(L′
nEn + (L′

nKn + R′
n)Fn) + G′

n−1d2n−1.

This concludes our analysis of the subring T . Now we consider an abstract
polynomial ring on generators

ξ−, ξ1, . . . , ξ2n−1, d2n−1, . . . , dn+1.

The matrix relation (15.3) can be interpreted as providing a sequence of relators
r1, . . . , rn−1 in T∗ so that there is a natural map

T∗/(r1, . . . , rn−1) → T.

As before, r1, . . . , rn−1 form part of a longer regular sequence. This time

15.5. The fundamental regular sequence is

dn+1, . . . , d2n−1, ξ−, ξ1, . . . , ξn, rn−1, . . . , r1.

In a simple variation on the odd dimensional case we have
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LEMMA 15.6. (i) The sequence

�−
2n−4(ξ−),�−

2n−2(ξ−)

is a regular sequence in T∗/(r1, . . . , rn−1),
(ii) the localizations

T∗/(r1, . . . , rn−1)[�−
2n−4(ξ−)−1]

T∗/(r1, . . . , rn−1)[�−
2n−2(ξ−)−1]

are isomorphic to the localized polynomial rings

�2[ξ−, ξ1, . . . , ξ2n−2, d2n−1,�
−
2n−4(ξ−)−1]

�2[ξ−, ξ1, . . . , ξ2n−2, ξ2n−1,�
−
2n−2(ξ−)−1]

respectively, and so these are unique factorization domains,
(iii) �−

2n−4(ξ−) is irreducible in

�2[ξ−, ξ1, . . . , ξ2n−2, ξ2n−1,�
−
2n−2(ξ−)−1]

and �−
2n−2(ξ−) is irreducible in

�2[ξ−, ξ1, . . . , ξ2n−2, d2n−1,�
−
2n−4(ξ−)−1].

Proposition 1.1 now comes into force and we deduce that T∗/(r1, . . . , rn−1) is
isomorphic to the subring T and that this is the ring of invariants as required.

16. The invariants for O+. It is useful now to have formulations of Corollaries
13.4 and 13.5 for P+(t). These are as follows and are proved in exactly the same way.

COROLLARY 16.1. Let j ≥ 0 be a natural number and let P+
j be the coefficient of

degree j in P+(t), (i.e. P+
j is the coefficient of t22n−1+2n−1−j). Let P′′

j be the coefficient of
degree j − 1 in �+

2n−2(t2 + ξ0), (i.e. P′′
j is the coefficient of t22n−1+2n−1−j). Then

Sqj�+
2n−2(ξ0) = �+

2n−2(ξ0)P+
j + P′′

j P+(0).

COROLLARY 16.2. (�+
2n−4(ξ0))2ξ2n−1 + �+

2n−2(ξ0)d2n−1 + �2n−2P+(0) belongs to the
subring generated by ξ0, . . . , ξ2n−2

We shall have need of the following embellishment of our discussion of the odd
dimensional case.

LEMMA 16.3. There exist polynomials f0, . . . , fn ∈ �2[ξ0, . . . , ξ2n−1] such that

P+(0) =
n−1∑
�=0

f�dn+� + fn

and which satisfy the conditions f0 = ξ 2n−1

0 , and in general for 1 ≤ j ≤ n we have fj ≡ ξ 2n−1

j
modulo ξ0, . . . , ξj−1.
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Proof. Since P+(0)2 = Q+(ξ0) we see from Proposition 13.1 that

P+(0)2 =
n∑

�=0

cn+�(α+
� (ξ0))2n−�

,

and in addition that modulo ξ0, ξ1, . . . , ξj−1

P+(0)2 ≡ ξ 2n

j cn+j + terms involving Dickson invariants of lower degree.

From this we can deduce that

P+(0) ≡ ξ 2n−1

j dn+j + terms involving d’s of lower degree.

and the result follows. �
We now choose a quadratic form ξ+ on U of +type. As in the −type case, there

is a vector x+ ∈ V∗
� U∗ such that ξ+ = ξ0 + x2

+. The composite of inclusion and
restriction supplies an isomorphism between Ker x+ and U∗ so we identify these two.
On restriction to Ker x+ there is a new relation, namely P+(0) = 0.

The identification Ker x+ = U∗ gives us a map

S → S(U∗)

which carries the invariants of O(V ) into the ring of invariants of O+. Therefore we
wish to stick with the choice of dj as key generators for the new ring of invariants even
though it may at first appear that working with coefficients chosen from P+(t) would
be more natural. In fact it makes very little difference because of Lemma 13.10. From
Lemma 16.3 we see that this is linear in the d’s with coefficients f0, . . . , fn−1 and we
adjoin the row of f ’s as an additional last row to the matrix

((Ln−1Kn−1 Ln−1En−1) + √
R′

n)Jn

at the left of the fundamental relations for O(V ) in (14.5). This yields an n × n matrix
Mn and allows us to write the relations we have found for the group O+ in the form

Mn

 dn
...

d2n−1

 =


ξ2n−1

...
ξ 2n−2

n+1

ξ 2n−1

n

 +


√
L′

nEn + (L′
nKn + R′

n)Fn

ξ 2n−1

n + fn

 .

A variation on the arguments we have used before leads to the conclusion that

det Mn = �+
2n−2(ξ+)

and that

det M′′
n = �+

2n−4(ξ+)2

where M′′
n is the matrix obtained by omitting the first row and last column of Mn. The

same regular sequence arguments can be applied, and the ring of invariants for O+ is
established.
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20. W. Wu, Les i-carrés dans une variété grassmannienne, C.R. Acad. Sci. Paris 230 (1950),
918–920.

https://doi.org/10.1017/S0017089504002198 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002198

