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TOPICS IN DIRECT DIFFERENTIAL GEOMETRY
RALPH PARK

PREFACE

In the theory of curves, one often makes differentiability assumptions in
order that analytic methods can be used. Then one tries to weaken these
assumptions as much as possible. The theory of curves which is presented here
uses geometric methods, such as central projection, rather than analysis. In
this way, no analytic assumptions are needed and a purely geometric theory
results. Since this theory is not so well known as the analytic one, I have tried
to make the treatment as self-contained as possible. It is hoped that this paper
will form a quick introduction for a reader who has had no previousacquaintance
with the subject.

We assume that our curves satisfy a condition, which we call direct differenti-
ability. Roughly this condition is that, at each point of the curve, all the oscu-
lating spaces exist. In particular, the line through a fixed point and a neighbour-
ing point of the curve tends to a limit, called the tangent at the point. Under
central projection, a curve may acquire many types of singularities which are
often not admitted in a theory of curves. We do admit such singularities and
thus obtain a rather wide class of curves.

In [7], a general theory of geometric orders is developed. The geometric order
of a curve is the maximum number of points in which a hyperplane can meet
the curve. Many of our theorems are related, in some way, to the geometric
order of a curve. For example, the tangent of a curve of order % in real pro-
jective n-space depends continuously on the point of contact.

Theorems about algebraic curves, which can be given a purely geometric
formulation, provide a source of conjectures for our curves. For example,
Scherk and Derry conjectured that the k-th rank of a curve of order » is
(B+1)(n — k);ct. [7, p. 396]. As yet, this has been proved only in special cases.

This paper has developed out of my doctoral thesis On Barner arcs and curves,
which I wrote at the University of Toronto under the supervision of Professor
Peter Scherk. In that thesis, we investigated a condition on curves which
Barner, and later Haupt, had studied. In the course of that investigation, arcs
with tower were discovered. By giving these arcs with tower a central role in
the present work, a number of simplifications have resulted.
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1. DIRECTLY DIFFERENTIABLE ARCS

In this section, we give the precise definition of the arcs which we shall be
studying. More general arcs could be studied; however, the theory would
become much more complicated. Many of the proofs in later sections are based
on induction by dimension. In all of these proofs, one uses the fact that the
projection of an arc from a point—be it on the arc or not—is again an arc;
cf. Theorem 1.3.1.

We define the characteristic of a point and the order of an arc. One of the
main themes in later sections is the relationship between these two concepts;

cf. [9].

1.1. Real projective n-space. A real projective n-space, n = 1, is a set X" of
objects called spaces along with a 1-1 mapping of £ onto the set of all sub-
spaces of a real (n + 1)-dimensional vector space. As usual, one defines the
inclusion relation L C M between spaces, the intersection L /M M of spaces
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and the span LM of spaces. For a collection of spaces, the intersection is denoted
by M;L; and the span by V ;L.

A space of " is said to have dimension k if the vector subspace correspond-
ing to it has dimension k + 1. Let &;* denote the set of all k-spaces,
—1 £ k £ n. The unique (—1)-space is denoted by @. The elements of £
and £,_," are called points and hyperplanes of 2", respectively.

We give &" a topology in the usual way. Thus, each &;* is compact and
connected, —1 < k < #, and every sequence in " has a convergent subse-
quence. If (L;) and (M) are any two convergent sequences of spaces and
L,CM;fori=1,2,...,thenlim L, C lim M,.

If Lis a k-space, —1 <k < n — 2, then the set Z"*1(L) of all spaces
containing L is a projective space in a natural way. A sequence in #**-1(L)
converges in Z"*1(L) if and only if it converges in #".

1.2. Direct differentiability. Let J be an ordered topological space which is
isomorphic with the ordered topological space of the real numbers. A set
X C J is called an interval if there exist p, ¢ € J with p < ¢ such that

X = (pv Q)r [P, Q]r (P,GZ], or [Py9]~

Thus, [p,q) = {r € J|p < r < q}. By a two-sided (deleted, right, left) neigh-
bourhood of p € J we mean a set U(p) = (q,r) containing p

U@ = @p)\J @), UP)=(r) U)=(p);

here, ¢ < p < r. If X is a finite subset of J, we write |X| for the number of
elements of X.

Let a mapping 4: J — %" and a k-space L be given. For p € J, it may
happen that limg, 4 (¢)L, g # p, exists in which case we denote it by 4 (p)|L;
in particular, 4 (p)|0 = lim, 4 (q), ¢ # p.

The mapping 4 is said to be directly differentiable at p € J if there exist
spaces

Ay(p) € Py, =1 =k = m,

such that 4,(p) = A (p) and 4, (p) = A(p)|Ar_1(p), 0 = k < n. Putting £ = 0,
we obtain that A4 is continuous at p. Putting 2 = #, we obtain that there is a
U'(p) such that A (q) ¢ A._1(p),if g € U’ (p). If A is directly differentiable at
each p € J, then 4 is a (directly differentiable) arc. By a point of an arc A we
mean an element p of J. If 4 is an arc then A4,(p) is called the osculating
k-space of A at p.

TaEOREM 1.2.1. Let A be an arc and let L be a hyperplane. For each p € J,
there is a U’ (p) such that A(q) ¢ L, if ¢ € U'(p). In particular, if n = 2 the
image of an arc cannot contain a straight line segment.

Proof. Given p € J, let A,(p) be the largest osculating space at p contained
in L. If no such U’ (p) exists, then there is a sequence p; — p with p; # p and
A(p;) C L, for all 7. But then 4;1(p) C L, contradicting our definition of
Ax(p).
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1.3. Projection. The position of a point P relative to the osculating spaces
of an arc 4 at a point p is indicated by = (P, p), the dimension of the largest
osculating space at p which does not contain P. Thus, —1 < (P, p) = n— 1.

If #(P,p) = —1 then P = A (p) and P lies on the arc.

THEOREM 1.3.1. Suppose that n = 2. Put
S=ks=n-—1

) = ’
0 = o)
Then A = A, is an arc in P"=1(P) with A,(p) as its osculating k-space at p,

—1=Zk==n-—1

Proof. One has
/Ik(p) E(@k_l(P), —1 ék én‘— 1.
By Theorem 1.2.1, there is a U’ (p) such that A(q) = P if ¢ € U’ (p). Thus,

A(q) = A(g)P, for all ¢ € U (p).
If0 =<k < a(P,p), then P Ay(p) and

AP)|Aia(p) = lqin;l (A(Q)P)(Ai—1(p)P) = Ax(p)P = A(p).

legid
If 7(P,p) <k =<n—1,then P C Ax(p) and
AP)|Ai-1(p) = lim (A (q)P)Ax(p) = Arra(p) = Ai(p).

q-p
a=“p

The arc A is called the projection of 4 from P. If P = A(g) we write
= (P, p) = w(q, p), A = A|P = Al|q and speak of the projection of 4 from gq.
ForL € &#*, —1 <= k < n — 2, the projection 4|L of 4 from L is defined by

(AIL)(p) = A@)IL, for all p € J.

TaEOREM 1.3.2. A|L is an arc in ZP»*1(L).
Proof. If k = —1, A|L = A. If k = 0, A|L is an arc, by Theorem 1.3.1.
Let1 < B £ n — 2 and assume that the theorem is true for 2 — 1. Take a

point P C L. Then A|P is an arc in #*~1(P). Since L ¢ &,_,""1(P), (4|P)|L

is an arc in ##"*1(L). Now
(4|P)IL)(p) = lim (4 (¢)P)L

-p
*=p

= A@)|L = (4]L)(p).
1.4. The characteristic of a point. The dimension §(p, L) of the largest

osculating space of an arc 4 at a point p which is contained in a k-space
L, —1 £ k < n, will occur frequently. One has —1 < §(p, L) = k.
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LeEMMA 1.4.1. Let P be a point of the k-space L; A = A|P. Then

< _ 6<pyL)r’Lf_1 éa(PvL) <7T(P1p),
°@. L) = {a@, L) = 1,if (P, p) < 6(p, L) < .

Proof. Use Theorem 1.3.1.

We say that a hyperplane L supporis A at p if there is a hyperplane H_, with
H_# L, A(p) ¢ H,, and a U’ (p) such that 4 (U’ (p)) is contained in one of
the two open half spaces determined by L and H. If L supports 4 at p, then any
hyperplane M with M = L, A(p) M, can be taken as H,,. When L does not
support 4 at p, we say that L cuts 4 at p; cf. Theorem 1.2.1.

LemMA 1.4.2. (Scherk’s lemma.) Let —1 < k < n — 1. Let S be the set of all
hyperplanes with 5(p, L) = k. Either all hyperplanes of Sy support A at p or all
cut A at p.

Proof. Suppose that L;, L € Sy, Li— L. There is a U’(p) such that
A(q) T Li, A(q) C L, for all ¢ € U’ (p). For, otherwise, there exist points ¢;
with ¢; — p, ¢; # p, and integers j(¢) with 4 (q;) C L. Then,

A(q)Ar(p) C Ly and Apa(p) CL,

contradicting L € Si. Hence, if all L; cut (support) 4 at p, then L cuts (sup-
ports) A at p. Thus, the set of hyperplanes of .Sy which cut (support) 4 at p
is a closed subset of S;. The lemma now follows from the connectedness of .S;.

Let p be a point of an arc. For —1 < 2 < #n — 1, define o,(p) = 0 or 1,
according as the hyperplanes of .Sy support or cut 4 at p; cf. Lemma 1.4.2.
Thus, o_1(p) = 0. The characteristic (ao(p), . .., a,_1(p)) of p is defined by
taking «;(p) to be 1 or 2 and requiring that

a(p) + ...+ ) =ox(p) (mod2),0 =k =n—1

We also define numbers

k

Bi(p) = 2. aip),for —1<k<n-—1

i=

Thus, 8 () = ox(p) (mod2) and e = 2 — |0y — o], if 0 Sk = m — 1.

THEOREM 1.4.3. Suppose that n = 2. Let P be a point; A = A|P. Then
{ao(p) + e (p), f P= A(p), 1 Sk=n—2

l

or1(p), f P = Ap), 7(P,p) =k =n— 2

ak(?)r 1f0 Sk< W(Pv P)
a,(p) = () + arp1(p), tf k = = (P, p)
agr1(p),if m(P,p) <k =mn—2
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(mod 2) and

B(p) = {ﬁm(p) — Bop), f P=A(p), —1 Sk<mn—2
k Be(p), if P # A(p), =1 S k < (P, p).

Proof. Suppose that P = A (p), —1 < k < n — 2. Let L and H_, be distinct
hyperplanes satisfying 6(p, L) = k + 1, 6(p, H,) = 0. Some U’(p) is con-
tained in one of the two open half spaces determined by L and H if and only if
oo(p) + or41(p) = 0 (mod 2). Hence, 54(p) = o0(p) + ors1(p) (mod 2).

Suppose that P # A(p), —1 = k < w(P, p). Considering distinct hyper-
planes L and H, with P C LN\ H,,6(p, L) = k,and 6(p, H,) = —1, one has
5 (p) = or(p).

Suppose that P # A (p), (P, p) < k < n — 2. Considering hyperplanes
Land H, with PC LNH_,, 6(p,L) =k +1,and 6(p, H,) = —1, one has
7 (p) = ora(p).

The remaining relations now follow.

1.5. Order and rank. Let 4 be an arc and let X be a subset of J. If the set
S(X,L) = {p € X|4e(p) N L # 0}

is finite for every (# — & — 1)-space L, we say that k-th rank of X is finite,
0=k =n— 1. If, in addition,

r= sup |S(, L)
LEPn—k-1
is finite, we say that X has bounded k-th rank ». By the k-th rank of A we mean
the k-th rank of J. By the order of X we mean the O-rank; this is at least #.

THEOREM 1.5.1. Let an arc A be given. Any compact set X C J is of finite
order. In particular, A is locally of finite order.

Proof. Use Theorem 1.2.1.
2. SECANTS

We define secants in such a way that multiplicities are taken into account.
For example, in 78 the concept of a 2-secant of an arc includes not only a plane
which is spanned by three points of the arc, but also a plane which is spanned by
a point of the arc and the tangent at another point. A k-secant is called inde-
pendent if it meets the arc in only 2 4 1 points, multiplicites being included.
An arc is k-independent if all its k-secants are independent.

As will be seen in § 3, an arc is (# — 1)-independent if and only if it is of
order #; cf. Theorem 3.1.1. The condition of (# — 2)-independence has been
studied for more general arcs than ours by Haupt; cf. [6]. For » = 3, the con-
dition that an arc be (# — 2)-independent is that no line meet the arc in 3 or
more points, multiplicities being included.
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In this section, we develop some rather formal properties of k-independent
arcs.

2.1. Connectivity of secants. Let 4 be an arc and let L be a k-space,
—1 £k £ n. Then

V A5(p,L) (P) C L,
pEX

for any X C J. If the inclusion is improper, we say that L is a k-secant of X.

TurOREM 2.1.1. The set of all k-secants of a connected set X C J is pathwise
connected, —1 = k =< n.

Proof. We may assume that# = 2,1 < k¥ < #, and that the theorem is true
for £ — 1.

Suppose that p € X. By Theorem 1.3.1, a k-space L with 4(p) C L is a
(B — 1)-secant of X on A|p if and only if it is a k-secant of X on 4. Thus, the
set of k-secants of X containing 4 (p) is pathwise connected.

Let L, M be k-secants of X. Take p, ¢ € X with 4(p) C L, A(g) C M and
let NV be a k-secant of X containing 4 (p) and 4 (¢). Then construct a path from
L to M by constructing a path from L to N and then from N to M.

2.2. Independence. Let L be a k-secant of X C J. Then
E< > (3, L)+1) — 1.
PEX

We say that L is an independent k-secant of X if equality holds. We say that
X (the arc A) is k-independent if every k-secant of X (J) is independent.

TaEOREM 2.2.1. Let n = 2. If X 1is k-independent and p € X, then X 1s
(kB — 1)-independent on A|p.

Proof. Let Lbe a (k — 1)-secant of X on A = A|p. By Theorem 1.3.1, Lisa
k-secant of X on 4 with 4 (p) C L. Hence, & = 3 4ex (6(q, L) + 1) — 1. We
have A (p) € Asq.1)(g), for all ¢ € X, g 5 p; hence, §(¢g, L) = §(¢g, L), for
such ¢. Since §(p, L) = 6(p, L) — 1,k — 1 = ¥ 4ex (6(g, L) + 1) — 1. Thus,
L is an independent (£ — 1)-secant of X on 4.

THEOREM 2.2.2. Suppose that —1 = h = k = n — 1. If X is k-independent,
it 15 also h-independent.

Proof. Let L be an h-secant of X. Choose p € X and take ¢ such that L4 ;(p)
is a k-secant of X. With L4 ;(p), L must be independent.

THEOREM 2.2.3. If X s k-independent, then a k-space can meet X in at most
k + 1 points. The converse is not true.

Proof. The converse does not hold, for, if n = 2, we may take X = [p, ¢] to
be of order 2 with 4 (p) C A41(g); then L = A,(g) is not independent.
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2.3. The mapping A4*. We define inductively, mappings A*: J&+1 — P,
—1 = k = n, by requiring that 4=1( ) € &_i" and that A*(p,, ..., pr) =
A (pp)|A¥(po, . . ., pr-1), 0 = k = n. Note that A*(p, ..., p) = A;(p).

TaEOREM 2.3.1. A¥(X*1) s the set of all k-secants of X, —1 < k < n.

Proof. For k = —1 and k = 0, this is obvious. Assume that it is true for
k — 1, where 1 = k& < n. We may also assume that n = 2.
Let po, . .., px € X be given. If one projects 4 from p,, then

Ak-l(plr o .. )pk) = Ak(POy ... ypk)'

Hence, A*(po, ..., px) isa (B — 1)-secant of X on 4 and, by Theorem 1.3.1,
also a k-secant of X on 4.

Conversely, let a k-secant L of X be given. Projecting A from a point p with
A (p) C L one has, by Theorem 1.3.1, that Lisa (¢ — 1)-secantof X on 4. Thus,

L= /Ik—l(ply .. ypk) = Ak(pv P1y .. !pk)r

and Theorem 2.3.1 is proved.

Suppose that p € J, x = (po, ..., pr) € J, —1 < k < n. Put
y(p,x) = 2 1 -1
P1=D

Thus, v (p, x) = 6(p, 4%(x)).

THEOREM 2.3.2. Suppose that X C J, x € X**1. Then A*(x) is an independent
k-secant of X if and only if 6(p, A*(x)) = v (p, x), for all p € X.

Proof. A*(x) is an independent k-secant of X if and only if
k=2 (6, A*@) +1) - L

PEX

Since B = > ,ex (v(p,x) + 1) — 1, the statement follows.
Suppose that x = (po, ..., px) € J5*1, —1 < k < n. Then
V Ay (p) C A" (x).
pes

We say that x is independent if the inclusion is improper. If y is a permutation
of x, then

V A'y(p,z)(p) = V Av(zh.f/)(P)-
PEJ peJ
Thus, if x is independent, so is y and 4% (x) = A*(y).

TureOREM 2.3.3. Let —1 <k = n — 1. Then X C J s k-independent if and
only if every x € X*2 is independent.

Proof. Suppose that X is k-independent. If x € X*2, then L = V ex4 .0 ()
is an k-secant of X, & < k 4 1. Suppose that # < k + 1. By Theorem 2.2.2,
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X is h-independent, so k. = > ,cx (8(p, L) + 1) — 1. Since, by the definition of
L,v(p,x) £6(p,L), forall p € X, we have

k+1=2@;(v(p,x)+1)—1§ 26;((6(p,x)+1)—1=h,

which is a contradiction. Hence, # = k& + 1.

Next, suppose that L = A*(y), y € X**!, is a dependent k-secant of X.
By Theorem 2.3.2, there is a ¢ € X with vy(g,y) < (¢, L). Put x = (y, q).
Then v(p, x) < 6(p, L), for all p € X, and

V A‘Y(ﬂ.z) (p) CL # Ak+1(x)-
PEX

Thus, x € X**2 is dependent.

TurorEM 2.3.4. Let X C J and let L = A*(x) be a k-secant of X, where
x € X*¥1, Then L 1s an independent secant of X if and only if the y € X*+1 for
which L = A*(y) holds are exactly the permutations vy of x.

Proof. Firstly, suppose that L is an independent secant of X. Then by
Theorem 2.3.2,

V Ay @) = V Asgaray (p) = A"(x).
PEJ PEX

Hence, x is independent and L = A4*(y) for all permutations y of x.
If L = A%*(y), where y € X**1 then by Theorem 2.3.2,

v(p,y) =6, L) = v(p, %),

for all p € X and y is a permutation of x.

Secondly, suppose that L = 4%(y) holds for all permutations y of x and L is
a dependent secant of X. By Theorem 2.3.2, there isa p € X with v(p, x) <
5(p, L). We may assume that p; = p, for 0 < 7 < y(p, x). Take j such that

v, x) =8, A1 (o, ..., P5)) < (P, AT (bo, . . ., Py41)).
Then A& (po, ..., pu1) = A (po, ..., P4 p). Thus, L = A*(y) where
y=(Pos-s i Py Psr2, -, Px) € XM
is not a permutation of x.

THEOREM 2.3.5. Let A be k-independent. Then A*(x) = A*(y) exactly when x
is a permutation of y.

3. ARCS OF ORDER #

Compared with arcs of higher order, arcs of order # are well behaved. For
example, if £ 4+ 1 points of an arc of order # converge to a point then the k-
secant through them converges to 4;(p); cf. [10] and Theorem 3.4.1. Arcs of
higher order may not have this property. Because of the relative simplicity of
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arcs of order # we define a singularity as a point which has no neighbourhood
of order #. Later we will see this is justified in the sense that the singularities
of an arc are nowhere dense in J; cf. Theorem 9.1.2.

Arcs of order # are important in the study of elementary arcs, i.e., arcs
whose points have right and left neighbourhoods of order #». By assuming an
arc to be elementary one is able to avoid, or at least postpone, the consideration
of pathological behaviour.

3.1. Projection of arcs of order #.

TueoreMm 3.1.1. If (p, q) has order m, then [p,q) and (p,q] are (n — 1)-
independent; cf. Theorem 2.2.3.

Proof. This is true for » = 1; assume that it is true for » — 1.

Ifp<r<s<gq,thenA(@r) C A,—i(s). For, (p,s) has order » — 1 on A|s
and hence (p, s] is (n — 2)-independent on A4 |s.

Let L be an (» — 1)-secant of (p, ¢) and let » be the first point of (p, q)
with 4 (r) C L. Since (7, ¢) has order n — 1 on A|r, [r, q] is (n — 2)-indepen-
dent on A|r. In particular, L is an independent secant of [7, g] on A|r. Since
A(r) & Api(s) for s € (r,q), it follows that projecting from 7, one has
6(s, L) = 6(s, L), if s € (r, ¢). Thus, L is an independent secant of [7, ¢) on 4.
Hence, (p, q¢) is (n — 1)-independent.

Continuing our proof, we next verify that 4 (p) € A,-1(s), if s € (p, q).
For, by Theorem 2.2.1, (p, q) is (» — 2)-independent on Als; by Theorem
2.2.3, (p, q) is of order  — 1 on Als; by our induction assumption, [p, q) is
(n — 2)-independent on A |s.

Furthermore, [p,q) has order #n. For, if p < p1<...p, <gq and if
b, 1, - - -, pn were to lie in a hyperplane, then [p, p,) would not have order
#n — 1 on A|p,. Now, since (p, q) has order » — 1 on Al|p, [p, q) is (n — 2)-
independent on 4 [p.

Finally, let L be any (» — 1)-secant of [, ¢) which contains 4 (p). Then L
is an independent secant of [p, ¢) on 4|p. By the paragraph before the previous
one, if one projects from p, §(s, L) = &(s, L), for all s € (p, g). Thus, L is an
independent secant of [p, ¢) on A.

The symmetric argument holds for (p, q].

TuaeoreM 3.1.2. If (p, q) has order n on A and r € [p, ql, then (p, q) has order
n— 1on Alr.

Proof. Use Theorems 3.1.1, 2.2.1, and 2.2.3.

3.2. Properties of points. The order of a point p is the minimum order
which a neighbourhood of $ can possess. By Theorem 1.5.1, the order of a
point is finite although perhaps not bounded. The point p is ordinary if it is of
order #; otherwise, it is a singularity. The point p is elementary if there exist
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Ut(p) and U~(p) of order #n. An arc is ordinary (elementary) if each of its
points is ordinary (elementary).

THEOREM 3.2.1. The set of singularities of an arc is closed. An elementary
singularity is an isolated singularity but the converse is not in general true.

Proof. Consider the graph of the parabola y = x2 Through each of the
points (1/%, 1/n2), n = 1, 2, ..., construct the circle of diameter 1/#% which
lies above the parabola and has the same tangent as the parabola at (1/x, 1/52).
Introducing a parameter, one obtains an arc for which the origin is a non-
elementary isolated singularity.

We say that a point p is regular if a;(p) = 1,0 = 4 = n — 1. We say that p
is an nflection if a;(p) = 1,0 =7 = n — 2,and a,_1(p) = 2. An arc is regular
(has at most inflections) if each point is regular (regular or an inflection).

THEOREM 3.2.2. An ordinary point is regular.

Proof. This is true for n = 1; assume that it is true for n — 1. Let p be
ordinary and take U(p) of order n. Let ¢ € U(p), ¢ # p. For A|p, ax(p) =
ari(p), 0=k =<n—2 For Alg, a&(p) = ax(p), 0 =k <n — 2, since
A(g) & A,_1(p) by Theorem 3.1.1. By Theorem 3.1.2, U(p) is of order n — 1
on Alp (Alg). Thus, p is regular on A|p (4lg), s0 arr1(p) = ar(p) =1, if
0 =k = n — 2. Hence, p is regular on 4.

3.3. Monotonicity. Let 4 be an arc of order #, L an oriented line and
suppose that no (n — 2)-secant of 4 meets L. Then for eachx € J*, A" 1 (x) N\ L
is a point ¢(x) of L. We assume that there is a point P, C L such that
o(x) # P, for all x € J*. Put

(pO’ cery pn—l) é (gO, ey Qn—l)y
iftp, £ gy foralli,0 =7 =n— 1.
THEOREM 3.3.1. ¢ is (strictly) monotone.

Proof. We first show thatif # = 2 and {po, ..., Pr-3s) Pu—2, ¢u2} C J, then
the mappings p — @ (bo, . - « » Prasy Prz, P) and p — o (Po, . - . , Pn_s, Gu_s, P) are
monotone with the same sense.

Suppose that # = 2. By Theorem 3.1.2 and projection from p,, # — ¢ (po, p)
is of order 1 and hence monotone. Take 1, 7, with py < 7; < ro. We may assume
that the orientation of L is such that ¢ (po, 71) < ¢ (P, 72). There is a U(po)
such that, if go € U(pe), then ¢(go, 71) < ¢(qo, 72). Thus, p — ¢(qo, p) has the
same sense for all ¢o € U(po). Since J is connected, the case n = 2 follows. The
general case now follows by induction using projection from p,.

Since ¢ is monotone for # = 1, we may assume that it is monotone for » — 1.
By Theorems 3.1.1 and 2.3.5, A®1(x) is symmetric. Hence, ¢ (x) is symmetric.
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Suppose that (po, ..., Pu-1) = (oy.-.)¢u1). We may assume that
p— o(po, ..., Pu_s, p) is increasing. Then

QD(P(): ce ey pn—2y pn—l) ‘P(po: e ey pn—2; Qn—l)
<P(P0y o .y Qn—Zy Qn——l)

IIATIA

ﬂa(q()y o ooy Qn—2, Qn—l)-

I\

3.4. Continuity of 4*.

TaEOREM 3.4.1. If (p, q) is of order n, then A* is continuous on [p, q)¥+1,
—1=k=mn

Proof. The theorem is true for # = 1; assume that it is true for » — 1.

Case 1. x = (po,...,px) € [P, @)*, —1 =k = n — 2. Take ¢1, g2 such
that p; < q1 < ¢» < ¢, for all <. Then by Theorem 3.1.1,

2

Ak(p(),y LRI ypk,) = m Ak+1(qiy P()’y o .. ypk’)y

i=1
for all (po, ..., ps) € [P, ¢1)%, and the continuity of A* at x follows by
projection from ¢; and from g..

Case 2. x = (po, ..., Pu1) € [P, q)"; not all p; are equal. By Theorems
2.3.1 and 2.3.2,

A"_l(DC) = Y A*r(m,:r>(Pi)~

Choose neighbourhoods U; of the points p; relative to [p, ¢) such that p; € U,
only if p; = p,. Put V; = Uj®»+, By Case 1, U; may be chosen such that
Ar@i9 (z) is in any given neighbourhood of Ay, (p:) if 2 € V,. Thus, it is
possible to choose the U; such that A" !(y) is in any given neighbourhood of
A1 (x)ify € Uy X ... X Up.

Case 3. x = (r,...,r) € (p,q)". Consider x; € (p, ¢)" such that x; — x,
A™1(x;) > L. By Case 1, 4,_2(r) C L.

We may assume that L meets [p, ¢] only in 7 and that there is a hyperplane
H_ which does not meet [p, g]. Then p, ¢ lie in the same open half space deter-
mined by M = A" (x;) and H, exactly when > ,<ic; os¢s,a0(S) is even.
By Theorems 3.2.2 and 3.1.1,

3(s, M)

2 Gean(s) = 2. 2 axy (mod 2)

p<s<¢ <s<g =0

> (s, M) + 1)

p<s<g¢
dim M + 1

= n.

Thus, L supports 4 at 7 exactly when # is even.
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By Theorem 38.2.2, ¢,_2(r) = n — 1 (mod 2), Thus, a hyperplane M with
8(r, M) = n — 2 supports 4 at r exactly when # is odd. Hence, L = 4,_1(r).

Case4.x = (p,...,P) € [p, ¢)". Suppose that x; € [p, )", x; > x, x; # x,
and A" 1(x;) — L. By Case 1, A,_»(p) C L. By Case 2, there existy; € (p, ¢)"
such thaty; — xand A" 1(y;) > L. Let P € 4A,—1(p)\Au—2(p). Put M = PA(r),
where r € (p, q¢). By Theorem 3.1.1, 4,_»(p) N\ M = @. By Case 1, there is a
Ut (p) such that no (n — 2)-secant of Ut(p) meets M. Put

e(y) = A" (y) N M,

tory € (Ut(p))". Since ¢(y) = A (r), Theorem 3.3.1 applies and ¢ is monotone.
Since there exist z; € (Ut (p))" such that z; — x and 4A"1(z;) — 4,_1(p), one
has lim,;_,, ¢(y:) = P; cf. Theorem 5.3.1. Hence, P C L and L = A,_,(p).

THEOREM 3.4.2. If A 15 elementary, then Ay is continuous, 0 < k = n — 1.
4. ARCS WITH TOWER

The purpose of this section is to prove Theorem 4.1 which is a fundamental
result in our development. For » = 2, the condition of continuity of the
osculating spaces can be removed; cf. Theorems 8.1.2 and 9.1.1. For# = 3, itis
an open question whether the continuity condition can be removed.

A set {H{—1 =17 =<mn} of spaces is called a ftower if H; € &»* and
H_, C...C H,. An arc with tower is an arc 4 for which there exists a tower
satisfying

Ar(p) N Hyymq = 9,

forall p € J, —1 £ k& = n. Any arc in the affine plane which has no vertical
tangent is an arc with tower.

THEOREM 4.1. If A is a regular arc with tower and Ay is continuous,
0=Fk=mn—1,then A is of order n.

LemMMA 4.2. If p is @ point of an arc A satisfying the hypothesis of Theorem 4.1,
then
{H—ly H()y HoA (P)y LRI Hn——lA (P)}
15 a tower for each of the components of A determined by p.

Proof. To prove Theorem 4.1 for n = 1, suppose that there are points p < ¢
such that 4 (p) = A(qg). Since the image of 4 is not all of £,!, there is an
inflection in (p, ¢), which is a contradiction. Lemma 4.2(1) is also true. We
assume that Theorem 4.1(z — 1) and Lemma 4.2(n — 1) are true.

Proof of Lemma 4.2(n). Consider 4 = A|H,. Since Hy ¢ A,_,(q), for all
g € J, 4 is regular. Put H; = Hyy, —1 < B < n — 1. Since

/'Ik(Q) NH, = A(@QHo N Hyy—y = H,,
{H,} is a tower for A. Since A;(q) = A(q¢)H,, A, is continuous.

https://doi.org/10.4153/CJM-1972-012-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-012-1

DIFFERENTIAL GEOMETRY 111

By Lemma 4.2(z — 1),
{H—lv HO: HO"‘I (p)v RO an—2/I(P)}

is a tower for each component of A determined by p. If ¢ # p and
—1 =k < n— 3, then

Ak(q)Ho N Hy_y 24 (p) = K‘Ik(Q) N ﬁn—k—:iA- (P) = H,.

Thus, 4x(g) N H,x—24 (p) = 9.
By Theorem 4.1(n — 1), A is of order n. By Theorem 3.1.1,

An2(Q)Ho N HoA (p) = Ama(q) N A(p) = Ho,

g # p. Thus, 4,-2(q) N HeA(p) = @ and the proof of Lemma 4.2(n) is
complete.

In Lemmas 4.3 and 4.4 we shall assume that the hypothesis of Theorem 4.1
holds.

LemMMA 4.3. For any point P C H, there 1is at most one p € J such that
P C An—l(p)

Proof. Put ¢(p) = A,_1(p) N Hi. ¢ is continuous and ¢(p) # H,, for all
p € J. Suppose that there exist points p; < p2 such that ¢ (p1) = ¢(p2). Then
there exists a ¢ € (p1, p2) such that ¢((p1, p2)) lies in one of the closed seg-
ments of H; with end points Hy and Q = ¢(g), say S. By projection from
A,_2(q) and the regularity of ¢, there is a point 7 € (pi, p2) such that
R = A(r)A,—2(q) N\ Hy ¢ S. Now (pi, p2) is regular on 4 = A|R and has
tower {R, Hy, ..., H,}.Since A,(r) = A,(r)H,, 4, is continuous. By Theorem
4.1(n — 1), (p1, p2) isof order n — 1on A. But A (r) C A,_2(q), contradicting
Theorem 3.1.1.

LeEmMmA 4.4. If p < q, then A (p) T An1(q)-

Proof. Put P = A,-1(¢) N Hy. By Lemma 4.3, P C 4,-1(r) only if r = q.
Hence, X = {r|r < ¢} is regular on 4 = A|P. Now {P,Hy,...,H,} is a
tower for X on A and A is continuous. By Theorem 4.1(z — 1), X has order
n — 1 on A. By Theorem 3.1.1, A (p) ¢ A,2(q). Hence, A (p) T An_1(q).

Proof of Theorem 4.1 (n). Suppose there are points pg < p1 < ... < p, which
lie in a hyperplane L.
Let X = {p|p > po}. By Lemma 4.4, X isregularon 4 = A|p,. By Lemma
4.2(n),
{H—ly HOy IJO"4 (p())r LI Hn—lA (PO)}

is a tower for X. Hence,

{A (Pﬂ)y H()A (PO)’ e ey Hn—-lA (PO)}

is a tower for X on 4. Since 4, is continuous, Theorem 4.1(n — 1) applies
and X has order n — 1 on A. This contradicts 4 (1), ..., 4 (p,) C L.
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5. FINITENESS

We introduce the condition that a point be strongly finite. This is weaker
than the condition that the point be elementary;cf. Theorem 5.2.1. In Theorems
5.2.2-5.2.4, we develop properties of elementary points which will be needed
later. Perhaps the main result of this section is Theorem 5.5.1. It describes the
behaviour of the k-secants of a one-sided neighbourhood of a strongly finite
point. We will use Theorem 5.5.1 in the proof of Theorem 6.2.4.

5.1. Finiteness and strong finiteness. A point p of an arc is right finite
(strongly right finite) if, for every (n — k — 1)-space L,0 < k < n — 1, there
is a Ut(p) such that no osculating k-space (no k-secant) of U*(p) meets L.
Left finiteness (strong left finiteness) is defined similarly. The point p is finite
(strongly finite) if it is both right and left finite (both strongly right and left
finite). The arc is finite (strongly finite) if each of its points is finite (strongly
finite).

(strongly finite) on any projection A = A|P.

Proof. Let L € &, , »1(P),0 <k <n—2 Then Lisan (n — k — 1)-
space with P C L. Take U*(p) such that no osculating k-space (no k-secant)
of Ut (p) meets L. An osculating k-space (a k-secant) of Ut (p) on A4 is spanned
by an osculating k-space (a k-secant) of U*(p) on A and P. Since such a space
meets L only in P, the theorem follows.

THEOREM 5.1.1. Suppose that n = 2. A finite (strongly finite) point p is finite

5.2. Elementary points.
THEOREM 5.2.1. An elementary arc is strongly finite.

Proof. This is true for # = 1; assume that it is true for  — 1. Let U*(p) be
of order #.

Let P be a point. If P = A (p), then no (z — 1)-secant of U*(p) contains P,
by Theorem 3.1.1. Therefore, assume that P £ A4 (p) and put L = PA(p). By
projection from p, there is a Ut (p) C U*(p) such that A"2(y) N\ L = @, for
all y € (Ut (p))* . By Theorem 3.3.1, ¢(x) = A" 1(x) M L is monotone for
x € (Uit (p))™ 1f ¢ € Uit (p) then

lim ¢(q,...,q,7) = A(p).

70+

Thus, there exists Uz (p) C Urt(p) such that o(x) ## P,forallx € (Ust(p))™
Hence, no (m — 1)-secant of Uyt (p) contains P.

Let L be an (w — k — 1)-space, 0 = k£ < n — 2. Let P be a point on L.
Choose U,*(p) as above. Suppose that there is a hyperplane H through P and
there are » distinct points py, ..., p, in Ust (p) such that 4 (p1), ..., A (p,) C H.
Since Uyt (p) is of order n, H = V'i_; A(p;); thus, H is an (n — 1)-secant
containing P, which is a contradiction. Hence, U, (p) has order n — 1 on 4|P.
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By the induction hypothesis, there is a Us* (p) C Uyt (p) such that no k-secant
of Ust(p) on A|P meets L. Thus, no k-secant of Us*(p) on A meets L.

THEOREM 5.2.2. Suppose that n = 2. An elementary point p of an arc A 1is
elementary on any projection A = A|P.

Proof. By Theorem 5.2.1, there is a U*(p) of order # such that no (n — 1)-
secant of U*(p) contains P. As in the proof of Theorem 5.2.1, U*(p) is of
order » — 1 on 4.

THEOREM 5.2.3. A regular elementary point p is ordinary.

Proof. Let {H;} be a tower of spaces such that A;(p) N\ H,_s_1 = 9,
—1 =k = n. By Theorem 3.4.2, there exist Ut(p) and U~ (p) of order =
such that 4;(q) N Hy—1 = 0, for all ¢ € U(p) = Ut(p) U {p} U U-(p),
—1 =k = n. By Theorem 3.2.2, U(p) is regular; by Theorem 4.1, it is of
order n. Thus, p is ordinary.

THEOREM 5.2.4. Suppose that n = 2. Let p be an ordinary point or an element-
ary inflection. If P @ An_1(p), then p is ordinary on A|P.

Proof. Use Theorems 1.4.3, 5.2.2, and 5.2.3.

5.3. Continuity properties.

THEOREM 5.3.1. Let p be a point of an arc A. Given Ut (p) and a neighbourhood
UC P of Ax(p), there is a k-secant L of Ut(p) with L € U(4r(p)),
0sk=n-—1

Proof. This is true for & = 0. Assume that it is true for & — 1, where
1=k =n-—1 Assume that U is open and take ¢ € Ut(p) such that
A(q) T Ar1(p) and A (q)Ar_1(p) € U. Let U’ be a neighbourhood of 4;_,(p)
such that 4 (¢) M € U, for all M € U’. By the induction assumption, there is a
(B — 1)-secant M of U*(p) with M € U'. Put L = A(q)M.

THEOREM 5.3.2. Let p be a strongly right finite point of an arc A. Then

A*(po, .« -, Pr) = A (P)

as (poy .oy Px) = By ooy D) Po> by, px > p. Hence, Ay is continuous at a
strongly finite point, 0 < k = n — 1; cf. Theorem 3.4.1.

Proof. By Theorem 2.3.1, we must show that given a neighbourhood
U(Ax(p)) of Ay(p), there is a Ut (p) every k-secant of which is in U(4;(p)).
This is true for # = 1; assume that it is true for » — 1.

Case 1. 0 =k =n — 2. Let Qy, Q; be points with Qi, Q> Z A:(p) and
Q141 (p) #= Q24:(p). Let Urt(p) be such that no k-secant of U;*(p) contains
Qi or Qz. Fori = 1,2, let U(Q;4:(p)) be a neighbourhood of Q.4;(p) in 4|Q;
such that M1 N My € U(Ax(p)), if M, € U(Q.Ax(p)). By projection from Q;
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and the induction assumption, there is a Ut (p) such that every k-secant of
Ut(p) on 4]|Q;is in U(Q:4x(p)), ¢ = 1,2. If M is a k-secant of U*(p) on 4
then Q;M is a k-secant of U*(p) on 4|Q;, = = 1, 2. Since M = Q1M N Q:M,
Case 1 follows.

Case 2. k=n—1. Let L be a line with 4, .(p) YL =@. Put
P = A4,_1(p) N L. Let U(p) be a neighbourhood of P on L, say with end points
Q1, Q2, and let U(A4,—2(p)) be a nieghbourhood of A,_s(p) such that
OM € U(pa(P)),forallQ € UP), M € U(4,-2(p)). Take Ut (p) such that
no (n — 1)-secant of U*t(p) contains Q; or Q, and every (n — 2)-secant of
Ut(p)isin U(An—2(p)). By Theorem 5.3.1, thereisan (n — 1)-secant of Ut (p)
which meets U(P). By Theorem 2.1.1, every (r — 1)-secant of U*(p) meets
U(P).

5.4. Regular finite arcs.
THEOREM 5.4.1. A finite arc with at most inflections is strongly finite.

THEOREM 5.4.2. A regular finite arc with tower is of order n.

Proofs of Theorems 5.4.1. and 5.4.2. Theorem 5.4.1(1) is true; Theorem
5.4.2(1) is the same as Theorem 4.1(1). Assume that Theorems 5.4.1(n — 1)
and 5.4.2(n — 1) are true.

We first prove Theorem 5.4.1(n). Let P be a point and let {H,;} be a tower
with Hy = P. Take U*(p) such that A;(q) N H, 1 = @, for all ¢ € Ut (p),
0 <k <n— 1.Then Ut(p) isregularon A = A|P and has tower {H,, ..., H,}.
By Theorems 5.1.1 and 5.4.2(n — 1), U*(p) is of order » — 1 on A. By
Theorem 3.1.1, it is (# — 2)-independent on A. Let M be a hyperplane through
P. Since P ¢ A,_1(q), §(q, M) = &(qg, M), for all ¢ € Ut(p). Thus,

dim V )Aa(q,M)(Q) = Z )(5(% M)+1) -1

gEU* (p geU+(p

€U ()
n— 2.

Hence, M isnotan (n — 1)-secant of Ut (p). Thus, no (r — 1)-secant of Ut (p)
contains P.

LetLbean (n — &k — 1)-space,0 < £ = n — 2.Let P bea pointon L. Take
U+ (p) such that no (# — 1)-secant of U*(p) contains P and U*(p) is of order
n — 1on A = A|P. By Theorem 5.2.1, there is a U+ (p) C U*(p) such that
no k-secant of Ut (p) on 4 meets L. Hence, no k-secant of U+ (p) on A meets
L and the proof of Theorem 5.4.1(n) is complete.

By Theorem 5.4.1(n), a regular finite arc is strongly finite. By Theorem 5.3.2,
Ay is continuous, 0 < £ =< # — 1, and Theorem 5.4.2 () follows from Theorem
4.1.

THEOREM 5.4.3. A regular finite arc 1is ordinary.

1A
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Proof. Let p be a point of the arc and {H;} be any tower. Take Ut (p) such
that {H,} is a tower for Ut (p). By Theorem 5.4.2, Ut (p) is of order . Hence, p
is elementary and Theorem 5.2.3 applies.

5.5. Behaviour of secants. Let p be a point of an arc 4. Let P; € A4,(p)\
Ai1(p), 0 = i £ n. The points P, are independent and are the vertices of 2"
open n-simpleces. Let St be that open n-simplex which contains some Ut (p).
If 1 £7=<mnand7is odd (even), let E;* be the open segment of PP, with
ends P, and P; which is (is not) an edge of St. S~ and E;~, 1 £ 7 < #, are
defined using U~ (p) instead of U™ (p).

Let p be a strongly right finite point of an arc. Take Ut (p) such that no
k-secant of Ut(p) meets an (n — k — 1)-space spanned by points P,

0=<k=n—1. Consider the (n — k)-space PoPna) ... Pummr, where
O<m(l)<...<mm—k) =n Let St(m(1), ..., (m — k)) be the open
(n — k)-simplex with the vertices Py, P,,(1), ..., Pnu-x which the k-secants

of Ut(p) meet; cf. Theorem 2.1.1.

THEOREM 5.5.1. E,(y* is an edge of St(m(1), ..., m(n — k)) if and only if
1150dd, 1 SE1=n—k0=k=n—1.

Proof. If & = 0, then S*(m (1), ..., m(n)) = S*, and the theorem follows
from the definition of E,»* = E;. Hence, it is true for » = 1.

Suppose that z = 2, & = 1. Take ¢ € U*t(p) such that (g, p) does not meet
the line 4 (p)A (g). S* is divided into two open triangles by 4 (p)4 (q); (g, )
is contained in the triangle which has E* as an edge. Let r € (g, ) be such
that 4 (¢)A (r) meets Ei+, Eo+. Thus a 1-secant of U+ (p), viz. 4 ()4 (r), meets

Eit, Est.

Assume that the theorem is true for n — 1, where n = 3.

Case 1. 1 = k = n — 2. The projections of Py, Py, ..., Punur from
P, are Po, Pooy—1, « . ., Pp_iy—1, respectively. The projection of S+ is S+.
Hence, the projection of E, ;™ is the open segment of PP,,(;_; different from
E,-nt, 2 £ i < n — k. But the projection of St(m (1), ..., m(n — E)) is

St(m(2) — 1,...,m(m — k) — 1). Since E*,(;_1 is an edge of
Stm@2) —1,...,mn — k) — 1)
if and only if 7 is even, it follows that E+*,; is an edge of
Stim(),...,mn — k))

ifandonlyifzisodd,2 < ¢+ £ » — k. Thisremains true for 7 = 1, by projection
from P, instead of Py .

Case 2. k = n — 1. We have to show that St(m) = E,*, for 1 £ m = n.
Suppose thatm > 1. Project 4 from 4,_3(q) into the plane Py P1P,,. By Case 1,
EF(E,t) is (is not) an edge of S*t(1,m). Also, St = S+(1,m). Hence,
E+ = E,+, E;t = E,*. Since A1(q) meets E;+ and Es*, A,_1(¢) meets E;+,
E,*. Thus, St(m) = E,*, for all m.
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6. DUAL DIFFERENTIABILITY

We introduce the condition that an arc be dually differentiable. This con-
dition is weaker than the condition that the arc be strongly finite; cf. Theorem
6.1.3. In [11; 12], pathological examples of points on dually differentiable arcs
in the plane are given. A reader desiring some motivation for our ¢;t and ¢;~
should refer to these papers. The main results of this section are Theorems
6.2.4 and 6.3.1. The result, Theorem 6.4.2, is an application of dual differenti-
ability.

6.1. Dually differentiable arcs. In our definition of a projective space £”,
each k-space L corresponds to a (k + 1)-dimensional subspace of an (# + 1)-
dimensional vector space V. If we associate to L the corresponding (» — k)-
dimensional subspace of V*, then 7" is again a projective space, called the
dual PP of P*. One has P* = Py, —1 £ B < n.

Let 4 be an arcin &". Define a mapping 4*: J — P * by A*(p) = A._1(p),
for all p € J. We say that 4 is dually differentiable if A* is an arc in Z"* and
A = A,_4—1, —1 = k = n. By the definition of an arc, 4 is dually differenti-
able if and only if

Ax(p) =lim 4,_1(g) N Aesa1(p),

P
a=p

forallpeJ, —1 =k =n— 1.

TaHEOREM 6.1.1. If A s a dually differentiable arc, then A,y is continuous.
If P Py and p € J, then there is a U’y such that P ¢ A,1(q), for all
g€ U®).

Proof. Use Theorem 1.2.1.

THEOREM 6.1.2. Let p be a strongly right finite point of an arc A. Let P, be a
point on A ;(p) but not on A, 1(p), 0 = ¢ = n. Then
lim A,1(g) N PyPri1 = Py,
-+
0zk=n-—1
Proof. Let U(Py) be a neighbourhood of P on PxPyy1. Take Ut (p) such that
no h-secant of Ut(p) meets an (n — h — 1)-space spanned by points P,
0 < h £ n — 1, and further such that no (# — 1)-secant of Ut (p) contains an
end point of U(Py). Let Lbean (n — k — 2)-secant of U*(p). By the choice of
Ut (p), Arp1(p) N L = B. Thus, A;(p)L is a hyperplane. Also,

Ak(p)L ﬂ PkPk+1 = .Pk;

for, if Pyp1 C Ax(p)L, then Azi1(p) C Ax(p)L and Ax1(p) M L # @, which
is a contradiction. Let U(4;(p)) be a neighbourhood of A;(p) such that
LN M = @ and LM meets U(Py), for all M € U(Ax(p)). By Theorem, 5.3.1
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there is a k-secant M of Ut(p) in U(4x(p)). Since the (n — 1)-secant LM
meets U(P;), all (n — 1)-secants of Ut (p) meet U(P;) by Theorem 2.1.1.
Thus, Theorem 6.1.2 is proved.

THEOREM 6.1.3. 4 strongly finite arc A is dually differentiable.
Proof. Let p be a point of 4 and take points P; as in Theorem 6.1.2. It is

sufficient to show that

lim A4,-1(q) N Ax1(p) = Ai(p),

-+

—1 =k =n— 1. Take U*(p) such that Py Z 4,.1(q) if ¢ € U*t(p). Then
An1(q) N Appi(p) is a k-space, for all ¢ € Ut(p). Let L be a k-space of
accumulation of 4,_1(¢) M Az41(p) as ¢ — p*. Since the lines PPy, . .., PyPii:
lie in A4+1(p), we have Py, ..., P, C L, by Theorem 6.1.2. Hence, L = A4,(p).

6.2. The characteristic of A*. Let  be a point of an arc 4. Take P;, ST,
S—, E;*, E; as before for Theorem 5.5.1.

THEOREM 6.2.1. O'k(p) =0 ’Lf and Only ’L:f Ek+1+ = Ek+1_, 0 é k é n — 1.

Proof. Let L= Py ...Py.;...P, (thehat over Py, indicates that Py is to
be omitted). Since 6(p, L) = k, ox(p) = 0 if and only if L supports 4 at p.
Let H, = P;... P, Lsupports 4 at p if and only if S* and S- lie on the same
side of L. This is the case if and only if the edges of St and S~ along PP, are
the same, i.e., if and only if Exy1t = Epyr.

Suppose further that 4 is a dually differentiable arc. By Theorem 6.1.1,
there exists Ut (p) such that P; Z A,_1(q), forall ¢ € Ut (p), 0 < 7 < n. Put
at(p) =0 (ot (p) = 1) if A,_1(¢g) meets (does not meet) E;, s+, for all
g€ Ur(p), 0=k =n—1. Also, put o_;t(p) =0 and define o (p),
—1 =k £ n — 1, similarly.

In this and in later sections all congruences are to be considered taken modulo 2.
THEOREM 6.2.2. At any point p of a dually differentiable arc
or* = opp—st + oni—2 + ok + ot + o1 + ot
0<k=n-—1.

Proof. Put Q; =Py... Py y...P,,0=1=mn Then 4,_,_1(p) C Q; and
A._:(p) T Q.. Thus, the hyperplane Q; is a point Q;* of #?** with

QX c AXp)\dit* (), 0=i = n.
Put
e(q) = A*(@Q0* . .. QIH—I* .. Q0

Then A*(p) C Qo* .. Qrer* ... Q* and A*(®) T Qo ... Orsr® ... O.*.
Thus, o* () = 0if and only if ¢(p) supports A* at p. This occurs if and only if
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¢ has characteristic (2) at p. In ", the space Q:* ... Op1* ... Q* is
0N ...N Q1N ...0
=Py...0, PN ...\ (Po.o . Poyr . . PAN L. .N Dy P,
= n—k—an-

Thus, ¢(q) = An—1(g) N P,_4_1P,. Hence, o*(p) = 0 if and only if there is a
U’ (p) such that A, 1(g) meets the same open segment of P, ; 1P, for all
q € Up).

Suppose that —1 < & < n — 2. Take U*(p), U~(p) such that P; Z A,1(q),
for all g € Ut(p) VU U= (p), 0 =i =n. Let r € Ut(p) and s € U (p). By
Theorem 6.2.1 and the definition of ¢;t and ¢;7, 4,-1(r) meets the same seg-
ment of PyP,_y—1 as A,-1(s) if and only if

Ont—st + Op—p—2 + Opz—o” = 0.
Considering the triangle with vertices Py, P,_s—1, P, and also making use of the
case k = —1, it follows that 4,_:(g) meets the same open segment of P,_;_1P,,

for all ¢ € Ut(p) \J U (p), if and only if
(O'n—k—2+ + op—p—2 + Un—k—z_) + (‘Tn—1+ + op—1 + Un—f—) =0.

Suppose £ = n — 1. 4,_1(q) meets the same open segment of P,P, if and
Only lf 0n—1+ + Opn—1 + Op—1 = 0.

THEOREM 6.2.3. For any point p of a dually differentiable arc
a® = ay_p—1 + opep—st + onop—o + i1t + op—i—1,
0=k=n-—1
Proof. By Theorem 6.2.2 and the definition of the characteristic
a* + ... Fatf=a+ . F ke F oot o™ + ot A+ o,

0<k=n—11f1 £k =n— 1, add this congruence to the corresponding
congruence with £ — 1 instead of .

THEOREM 6.2.4. Let A be strongly finite. Then
o (P) = an—k—l(p)r
forallpe J,0=k=n— 1.

Proof. By Theorem 6.1.3, 4 is dually differentiable. With the notation as in
Theorem 5.5.1 and 2 = » — 1, one has that 4,_,(¢) meets E,*, 1 <= m =< n,
for all ¢ € U*(p). Hence, ¢, 7 (p) = 0,0 = 7 = n — 1. By Theorem 6.2.3, the
result follows.

6.3. The Scherk-Derry duality theorem.
TueoReM 6.3.1. The dual A* of an arc A of order n is also of order n.

Proof. By Theorem 5.2.1, 4 is strongly finite and hence, by Theorem 6.1.3,
it is dually differentiable. By Theorems 3.2.2 and 6.2.4, A* is regular. By
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Theorem 3.4.2, 4,* = A,_+_1 is continuous, 0 = £ < n — 1. By Theorem
3.1.1, A;(p), —1 = 7 < n,isa tower for (p, g) on 4; hence 4 *(p) = 4,_;_1(p),
—1 £ i < n, is a tower for (p, ¢) on A*. By Theorem 4.1, (p, ¢) is of order =
on A*, and Theorem 6.3.1 follows.

THEOREM 6.3.2. The dual A* of an elementary arc is elementary.

6.4. Existence of an elementary singularity.
THEOREM 6.4.1. Let p be a point of a strongly finite arc. Let
P, c 4:(p)\dia(p), 0=i=mn

The dual projection of A into the line PyPyy1 has the characteristic (o (p)) at
p,0=k=n-—1

Proof. By Theorems 6.1.3 and 6.2.4, 4 is dually differentiable and
ak*(p) = Cln_k_1(P),f0rallp € J,O = k =n— 1. Pthi = Po. . -Pn—i- . .P,“
0 < 7 < n. The hyperplane Q; is a point Q;* of P** and the point

P,=0N...N0iN...NQ,
is a hyperplane P* = Qo*...Q._* ... 0.* of P™*. One has
(PkPk+l)* = P*N Pk+1*
=0 ...0u*. .. 0N Q... Oia® ... QF
= Qo* s Qn—k—l*én—k* e Qn*
We may project 4* from (PyP1)* by successively projecting from

0o%, ..., Qp_sz—o* and then from Q,*, . . ., Q,—x_1*. The result is an arc with the
characteristic (o,—r—1*(P)) = (0r(p)) at p.

THEOREM 6.4.2. If a finite arc has a singularity, it has an elementary singularity.

Proof. Let n = 1. We may assume that there is a point P, such that
A(p) # P, for all p € J. By Theorem 4.1, every regular subarc of 4 is of
order 1.

Suppose that 4 has a singularity but no elementary singularity. Then 4
has an inflection p;. There is a neighbourhood (g1,71) of p; such that
A(p) # A(pr),forall p € (g1, 71),p # p1. We may assume that 4 (q1) = A (1)
and that 4 (p) # A (q1), for all p € (g1, 71). Since p; is not elementary, at least
one of the intervals (g1, #1), (p1,71), say X1, contains an inflection. Let ¥,
be the other interval. Note that X1 M\ ¥; = @ and 4 (X;) = A(Yy).

Repeat the above using X instead of J. Thus, p3, g2, 72, X2 and ¥, are defined.
Continuing indefinitely, one obtains sequences X ;, Y, 2 = 1, 2, ..., such that
Xiﬂ Ya,; = ﬂ, A(X1) = A(Yi), and X«H.l, I_/’H»l CX@, 1= ]., 2, ol It
follows that A (X 41) = AXy1) CAX,), 1 =1, 2, .... Thus, there is a
point P € M; A(X ;). Hence, P meets each V. But the Y, are disjoint. Thus, P
meets [¢i1, 71] infinitely often, contradicting Theorem 1.5.1.

Thus, Theorem 6.4.2 is true for # = 1; assume that it is true for » — 1.
First, suppose that A4 has at most inflections. By Theorem 5.4.3, 4 has an
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inflection p;. Let L be a line such that 4,_5(p1) M L = @. Since p; is finite, we
may assume that 4,_2(p) N L = @, for all p € J. Put

¢(P) = An—l(p) m Ly
for all p € J. By Theorems 5.4.1 and 6.4.1, ¢ is an arc in L with characteristic
(en-1(p)) at p.

Since ¢ has the singularity pi, it has an elementary singularity p.. 2 is an
isolated inflection of A. There is a U*(p.) which is regular and has a tower. By
Theorem 5.4.2, U* (p) is of order #. Hence, p; is an elementary inflection.

Next, assume only that 4 has a singularity p;. Let P be a point with
P  A,_1(ps). Since p; is finite, we may assume that P  A,_1(p), for all
p € J.1f A = A|P is ordinary, then 4 has at most inflections and the theorem
follows. If A has an elementary singularity p,, take U*(p,) and U~ (ps) of
order » — 1on A.On 4, U*(ps) and U~(p,) have at most inflections. If either
contains an inflection, Theorem 6.4.2 follows. If both are regular, p. is
elementary as above. By Theorem 5.2.3, p4 is non-regular on 4. Hence, p; is
non-regular on 4.

7. MULTIPLICITIES

We define the multiplicity with which an osculating k-space 4;(p) meets an
(n — kB — 1)-space L. The use of multiplicities allows us to prove some con-
gruences which hold for any elementary curve; cf. Theorems 7.4.1 and 7.4.2.
In Theorem 7.5.9, we give a geometric interpretation of multiplicites. From this
there follows a lower bound for the k-th rank number of an elementary point;
cf. Theorem 7.5.10.

7.1. Definition of multiplicities.

TaEOREM 7.1.1. Let a tower {H,} of spaces and an (n — k — 1)-space L be
given, 0 < k = n — 1. Then there exist points Py, . . ., Prni—1y, Where

0=70)<...<7Tm—k—1) =mn,
such that L = V=" P, and P.¢; is on H,¢; but not on
H.p-1, 02j=n—%k—1

The numbers 7(0), ..., 7(n — k — 1) are uniquely determined by the spaces H;
and L.

Proof. Suppose that 0 = ¢ £ wand dim (H;MN L) = d. We show there exist
pOiI’ltS P.,(o), o ooy P,(d), where

0=70)<...<7(@) =1,

such that H; L = V9 P.;y and P, is on H, but not on H,_y,
0=j5=d
This is true for 2 = 0; assume that it is true forz — 1 < ». If

H_ i N\L=H,NL,
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the statement is clear. Thus, assume that H,_; N\ L # H,N L. Then
dim (H,.1MNL) =d — 1. Let Py, - .., P.qg be points where

057(0)<...<r@d—1)=i—1, 7(d) =3

such that
d—1

H . NL= VO Py Pry CHiMN L
j=

and P,-(j) is on H.,(j) but not on H,-(j)_l, 0 é ] é d. Then H,; NL = V?_o P,-(j)
and the statement follows.

If the 7(j) were not unique, there would exist more than » — % independent
points which span L, which is a contradiction.

Letp bea pointof anarcand let Lbean ( — k — 1)-space,0 £ k < n — 1.
Putting H; = 4,(p), —1 £ ¢ £ n, Theorem 7.1.1 implies there exist points

P.oyy «++y Prp—i—), where 0 = 7(0) < ... < 7(m — k — 1) < n, such that
L= Vi Py and w(Pry,p) =7(G) —1, 0=j<n—k— 1. We say
that L has the type (r(0), ..., 7(n — & — 1)) relative to p. Thus, every space

L has a uniquely determined type relative to p.

THEOREM 7.1.2. Suppose that n = 2. Let P be a point of an (n — k — 1)-space
L. Suppose that P is on A .y (p) but not on A,y—1(p), where0 <r <n — k — 1.
Then the type of L relative to p on A = A|P s given by

o f1(@) if 0=5i<r
(1) = rG+1)—1 if r<i+1=n—Fk—1

Proof. Choose points P,, 0 £ ¢ = n — k — 1, as in Theorem 7.1.1 with
H, = A4,p), —1 =1 = n. We may take P,y = P. Then

L = (PPyy) ... (PP:r—1)(PPr1y) - . . (PPrini—1)),
and the statement follows.

Let p beapointofanarcandlet Lbean (n — & — 1)-space,0 < k < n — 1.
The multiplicity with which L meets 4 is defined as

n—k—1 i+k
pp, L) = 25 25 ap),
=0 j=7(1%)
where (7(0), ..., 7(n — k — 1)) is the type of L. Thus, if L is a hyperplane,
then
8(p.L)
p@, L) = 2 ailp) = Bio.n (P)-

THEOREM 7.1.3. Suppose that n = 2. Let P be a point of an (n — k — 1)-space
L. For A = A|P, one has

k

ap,L) = ulp, L) — 2 @),

i=m(P,p)+
0Zk=Zn-—2
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Proof. Put # = (P, p). By Theorem 1.4.3,

i2+1

>oailp) if w <y
i=1i1+1

i2 ig+1

2 ap) =12 alp) if a7 =i
12
3 oa(p) i iy <

=11

Choose points Py, 0 =¢=n—%k — 1, as in Theorem 7.1.1 with
H;,=A4,p), —1 =i = n, such that P, = P, where 0 = r <n — k — 1.
Then # = 7(r) — 1. By Theorem 7.1.2,

n—k—2 i+k

.U'(Pr L) = Z ]Zl a](P)
r—l i+;c n—k—1  i+k—1
1,2_: ];1 a;(p) + i;ﬁl j=§)_ a,(p).

Case 1. 7 < 7(0). Since 7 = 7(r) — 1, r = 0. Hence,

n—k—1  i+k—1

Bp, L) = 2. 2 ap)

i=1 J=1()—1

n—k—1 itk
=2 2 ap)
i=1  j=7(1)
k
=, L) = 3 a(0)
Case2.7(0) S w7 S k. Sincer(r — 1) Sw <7(r+1) — 1, we have
r—1  i+k+1 n—k—1 i+k
B L) =3 2 )+ 2 3 ap)
+k r+k
=l L) = X o) + 2 aip)
k
= u(p, L) = 3 ay(p).
Case 3. k < w.Since7(r — 1) = 7 < 7( + 1) — 1, we obtain
T—k—1 i+k r—1 i+k n—k—1 i+k—1
B D) = 2 X e+ 2 X a®) + X 2 &)
r—k—1 i+k —1 i+k+1 n—k—1 i+k
= E Z aJ(P) + Zk Z a](P) + Z Z aJ(P)
j=T1(9) i=r—k j=71 i=r+1 j=7(%)
T+k 4k
=up, L) — 22 a;(p) + 2o a;(p)
j=7(1) j=m+1
= :u(p,L)'

7.2. Multiplicities for 4*.
THEOREM 7.2.1. Let A be dually differentiable. Let (r(0), ..., 7(n — k — 1))
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be the type of an (n — k — 1)-space L relative to p. Then the type of L relative to p
on A* is given by
([ 4 if 02i<n—7n—Fk—1)
14+1 if n—tn—k—1)<i4+1<n—7n—F—2)

™@) =

i—n—Fk if n—70)<i4+n—Fk=Zn
Proof. Choose points P; € A;(p)\A4i~1(p), 0 £ 7 £ n, such that P,y C L,
0<<j=n—k—1LPutQ;=Py...P;...P,,0= 1,; #n. The hyperplane
Q; is a point Q;* of &P, The point P; = QN ...NQiN...NQ,isa
hyperplane P* = Qo*... Qui* ... Q* of ™. The (n — k — 1)-space L
is a k-space L* of &P,
L* = P*f(o) m .« e ﬂ P*r(n—k-l)
= Qo* “ e Qn__,-(())* ... Qn* f\ o e f\ Qo* e Qn_f(n_k_l)* oo Qn*
= QO* EREE Qn—r(n—k-—l)* e Qn—r(O)* LI Qn*-
THEOREM 7.2.2. Let A be a strongly finite arc. Then
w*(p, L) = p(p, L),
for every (n — k — 1)-space of ", 0 <k < n — 1.
Proof. By Theorems 6.2.4 and 7.2.1,

k Hn—k—1

wp, L) =2 2 af®)

=0 j=7*(1)

n—1(n—k—1)—1 i4+n—k—1 n—1(n—k—2)—1  i+n—k—2
= 2 2 o)+ X 2 o)
i=0 j=1 i=n—1(n—k—1)+1 j=1i
n—7(0)—1 i

+.o.4+ 2 2 aFp)+0

t=n—r(D+1 =i
n—1(n—k—1)—1 n—i—1 n—1(n—k—2)—1 n—i—1
= 2 X aa®+ X 2 ap)
i=0 j=k—1 i=n—r(n—k—1)+1 j=k—i+1
n—r(0)—1 n—1i—1

+...+ X 2. ap)

i=n—7(1)+1 j=n—i—1

n—1 T(n—k—1)
=2 ap)+...+ 2 a;(p)
j=k j=k—(n—7(n—k—1))+1
T(n—k—1)—2 T(n—k—2)

N a;(p) + ...+ 2 a;(p)

j=k—(n—T1(n—k—1 j=k—(n—1(n—k—2))+2

-2 (0)
+ > a®) .+ 2 ap)
J=1(1)—2 j=1(0)
= l’-(py L)-
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The last equality follows since the sum of the (m + 1)-st terms is

m+k

S oap), 0sm<sn—Fk—1.

j=T(m)

7.3. Reduced rank numbers. Let K be an oriented circle. A mapping
C: K — P is directly differentiable at p € K if the restriction of C to a
neighbourhood of p is directly differentiable at p. C is a curve if it is directly
differentiable at each of its points.

TueorEM 7.3.1. Let C be a curve. Then
Z ,U(P, Ll) = Z #(P! LZ))
PEK PEK
for any two hyperplanes Ly and L.
Proof. By Theorem 1.5.1, both sides are finite.
Suppose that # = 1 and L; £ L,. Let S be one of the two open segments of

Pt determined by Ly and Ly. If C(p) = L, let m;(p) be the number of one-
sided neighbourhoods of » which are mapped into S. Thus, 0 < m;(p) = 2. Put

mqi = Z mq(p).
C(p)=Li
Then
mi; = E #(Pv L‘L)‘
PEK

But mq + ms is twice the number of intervals (p, ¢) mapped into S with
{C(p), C(q)} C {Ly, Ls}. Hence, m; = m..

Assume that the theorem is true for » — 1. Let L be a hyperplane and let P
be a point on L not on C. We project from P and use Theorem 1.4.3.

Case 1. P  Cspp.1y(p). Then6(p, L) = 8(p, L)yand 6(p, L) + 1 < = (P, p).
Hence,

ﬁ(pr L) = 55 = 55 = 65 = ,U'(Py L)'

Case 2. P C Csqry(®). Then 8(p,L) = 6(p,L) — 1 and 0 £ =(P, p) <
6(p, L). Hence,

3(p,L)

alp, L) = X aip)

=0

T(P,p)—1 3(p,L)—1

= Z al(?) + arp,p (P) + ar(P,p)+1(P) + Z Oli+1(P)

=0 i=m(P,p)+1
3(p,L)

= Z aqy(p)

=0

= u(p, L).

Except possibly when # = 2, there is a point P C L; M\ L, not on C.
Then the induction hypothesis and the above cases apply. If » = 2 and
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LiMN Lyis on C, let P; be a point on L; noton C, 7 = 1,2. Put L = P,P,.
Then

2w, L) = X ulp, L) = 2 ulp, Ly).
THEOREM 7.3.2. Let C be a strongly finite curve. Then

Z #(P: Ll) = Z #(P; Lg),

PEK PEK

for any two (n — k — 1)-spaces Lyand L, 0 < k < n — 1.

Proof. Since C is a finite curve, both sides are finite. The theorem is true for
n = 1, by Theorem 7.3.1; assume that it is true for n — 1.

First, assume that 0 £ & = # — 2. We may assume that L, L, have a point
P in common. Then the induction hypothesis and Theorem 7.1.3 apply.

If # = n — 1, then Theorems 7.2.2 and 7.3.1 apply.

Let C be a curve such that

Z I‘(P) Ll) = Z #(P, L2)y

PEK PEK
for any two (# — k& — 1)-spaces Ly and Ly, 0 = k = n — 1. The reduced k-th
rank number p; of C is defined to be 0 or 1 such that
pe= D, u(p, L),
PEK

where L is an (n — k — 1)-space, 0 £ k& < n — 1. Also, put p_; = p, = 0.
By Theorem 7.3.2, the reduced k-th rank number of a strongly finite curve is
always defined.

THEOREM 7.3.3. Let C be a strongly finite curve. If n = 2 and one projects C
from a point P, then

k

e =pr— 2 2. aip),
pEK  i=m(P,p)+1

—1Z2k=n—1.

Proof. For k = —1, this is clear. For 0 £ 2 = n — 2, use Theorem 7.1.3.
If £ = n — 1 then the type of P relative to p is 7 = 7(P, p) + 1. Hence,

n—1 n—1
s P) = 2 ap) = 30 ai(p)-

THEOREM 7.3.4. Let C be a strongly finite curve. The reduced k-th rank number
oi* of C* is defined and

pk* = Pp—k—1y
—1=k=mn

Proof. Use Theorems 7.2.2 and 7.3.2.
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7.4. Congruences for elementary curves.
THEOREM 7.4.1. Let C be an elementary curve. Then
Z (w(p) — 1) = pr1 + pra1y
PEK
0<k=n-—1

Proof. Suppose that » = 1. Since C is elementary, each of the % singularities
is an inflection. Since C changes direction an even number of times, % is even.
Thus, &2 = X pex (@0 (p) — 1) is even.

Assume that the theorem is true for » — 1.

Case 1.0 < k = n — 2. Projecting from a point P, we obtain

> @) —1) = Z (w(p) — 1) +k:§ ” (a(p) + ara(p) — 1)

PEK k<T(P,p)

+ 2 (ak+1(17) -1

T(P,p)<
= Z (ak(P) - 1)+ Z ap1(p)
PEK k=m(P,p)
+ ,@Z (@r1(p) — an(p)).
By Theorem 7.3.3,
k=1 k+1
i1+ Prr1 = pro1 + prr1 — O ) 2 aip)— 2 > aip)
PEK  i=m(P,p)+1 PEK  i=m(P,p)+1

= 1+ prer + W(PZ (ar(p) + arpa(p)) + E a1(p).

7(P,p)=k

Case 2. k = n — 1. By Theorem 7.3.4,
2 (aa(p) — 1) = 2 (ac*(p) — 1)

PEK 2EK
= p_r* 4+ pr*
= pp + pp—s.

THEOREM 7.4.2. Let C be an elementary curve. Then

> Z (@) — 1) = po + o1,

peEK  i=0
n—1
2 2 (n—=1)(aip) — 1) = (n+ po.
PEK  i=0
Proof. Use Theorem 7.4.1. For the significance of the left hand sides compare
with Theorems 8.9.2 and 8.10.1.

In [7], it is proven that the k-th rank number of a curve of order # is bounded
and it is conjectured that the k-th rank number is (¢ + 1) (r — k). The follow-
ing shows that the k-th rank number, with multiplicites taken into account, is
at least congruent to (¢ + 1) (r — k) modulo 2:
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THEOREM 7.4.3. Let C be a curve of order n. Then
pr= (kb + 1)(n — k).
Proof. By Theorem 3.2.2, each point of C is regular. By Theorem 7.4.1,

Pr—1 + Pi+1 = Oy if 0 =k =#n-—1 From Pn + Prn—2 = pp—2 + Pn—t = .. and
Pne1 + Pn—z = pp_s + puns = ... it follows that
_JOifk=mn
PE=\nifk=mn— 1.

In both cases, py = (k + 1)(n — k).

THEOREM 7.4.4. Let C be an elementary curve with tower. Then p; = 0,
—1=2k=n,and Ypex (x(p) — 1) iseven,0 =k = n — 1.

Proof. pr = Y pex u(p, Hyy—1) = 0. Thus, Theorem 7.4.4 follows from
Theorem 7.4.1.

7.5. Interpretation of multiplicities.

THEOREM 7.5.1. Let A be an ordinary arc and let H be an (n — k)-space such
that Aw_1(q) NH =0, forallqg € J,0 <k <n — 1. Then A(q) = Ax(qg) N H
is an ordinary arc in H.

Proof. Since A;_1(q)H has dimension n, 4, ;*(¢) N H* = @. By Theorem
6.3.1, A* is an ordinary arc. The projection 4 ¢*|H* of 4¢* from the (¢ — 1)-
space H* is ordinary, by successive applications of Theorem 5.2.4. In
P, A*(g)H* is a hyperplane 4,_1(¢) N H of H. By Theorem 6.3.1 applied to
the dual of the projective space H, A (q) = Ax(q) M H is an ordinary arc of H.

THEOREM 7.5.2. Let p be a point of an arc A of order n and let L be an
(n—k — 1)-space, 0 =k =n — 1. If u(p, L) = 1, then there is a neighbour-
hood U (L) of L such that, for every M € U(L), thereisa q € J with u(g, M) = 1.

Proof. Choose points P; € A;(p)\Ai—1(p), 0 = ¢ £ n, such that

L=PkPk+2...Pn.

Let H_, be a hyperplane with Py, ..., Py C H,and Pyyy, ..., P, C H,. The
equations

7.5.3 Ar1(q) N Pyt M = 6

7.5.4 A @) N Pa(MMNH,) =0

7.5.5 AN (MNH,) =0

hold for ¢ = p, M = L. There exist neighbourhoods U(p) and U(L) such that
7.5.3, 7.5.4, and 7.5.5 hold, for all g € U(p), M € U(L). By 7.5.5, Pyrn T M
and M  H,, forall M € U(L).
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By Theorems 7.5.1 and 7.5.3, p is an ordinary point of the arc

Since A1(p) = PpPii1, L cuts 4 at p. Taker, s € U(p) with » < p < s such
that A (r) and A (s) are separated in Pi1L by L and Py (L N H,). We may
assume that A;(r) M PiiM and Ay (s) M Py M are separated in Py M by M
and Poyn(M M H,), forall M € UL).

Let M € U(L). By 7.5.3, Ax(q¢) N Pr1iM is a point of Py M for all
g € U(p); by 7.5.4, this point does not lie on Py (M M H,). Hence,
Ar(@ N M =@, for some g€ (r,s). By 7.5.3, Aralg) "M =90. If
Arv1(g) M M were a line, the infinite point on this line would contradict 7.5.5.
Thus, there is no point of M in A;41(q)\4x(¢). Hence, u(g, M) = 1.

THEOREM 7.5.6. Let p be an elementary point and let L be an (n — k — 1)-space
of type (7(0),...,7(m — k —1)),0 = k = n — 1. Suppose that there is a j
such that either () +1<1(G+1),0=i=n—%k —2, or 7(j) < n,
j=mn—k — 1. Then any neighbourhood U (L) of L contains a space M of type

TO),...,7G—-1), O+ LG+ 1),...,7(n — k — 1)),
for which there exist a,¢; (p) ordinary points q with u(q, M) = 1.

Proof. We may assume that each point ¢ ## p is ordinary. Choose
P € Ai(p)\Ai-1(p), 0=s2=mn,

SUCh that L = P,(o) PN -P‘r(n—k—l)- Put G = P.,(o) “ e Pf(j_l)PT(H_l) PR Pr(n—k—l)
and H = P.(;+1L. Then G C L C H. By Theorem 5.2.1, we may assume

7.5.7 Aya(g) NH =0,
7.5.8 Ak+1((1) NG =9,
for all ¢ # .

By Theorem 5.2.2, p is an elementary point of 4 = A|G. Since
H = (P:(»G) (Pr(»+1G), one has H = P,;,_;P.;_s11. Let ¢ be the dual pro-
jection of 4 in H. By Theorem 6.1.2, ¢(p) = P.;_;; by Theorems 5.2.1 and
6.4.1, ¢ has the characteristic (&.(;—;(®)) at p. Thus, ¢(p) = L; since
7(G) + 1 < 7(j+ 1), ¢ has the characteristic (a.¢; (p)) at p.

If ¢ # p, then

e(q) = Ax(@) NH
= Ay @GN H
= (4.(g) N H)G.

Thus, ¢ may be regarded as the projection of an arc in H from G. Hence, any
neighbourhood U (L) of L = ¢(p) contains a space M # L withG C M C H
for which there exist a.(; (p) ordinary points ¢ with ¢(q) = M.

We show that u(q, M) = 1. By 7.5.7, Ax—1(¢) N\ M = @. Since ¢(q) = M,
Ax(g) N M # @. The space Axy1(¢) M M cannot be a line, for, otherwise, it
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would meet the hyperplane G of M in a point, contradicting 7.5.8. Thus, M has
the type (k, k& + 2, ..., n) relative to g. By Theorem 3.2.2, ¢ is regular. Thus,
ulg, M) = 1.

Since M # L and L = P,»G, P.;y ¢ M. Thus, the line P,;yP.(;.+1 meets
the hyperplane M of H in a point P € A.(j+1(p)\A+» (p). Since G C M, M
has the required type.

THEOREM 7.5.9. Let p be an elementary point and let L be an (n — k — 1)-space
0 =k =n— 1. Any neighbourhood U(L) of L contains a space M for which
there exist u(p, L) distinct ordinary points q with u(q, M) = 1.

Proof. By successive applications of Theorem 7.5.6, one is able to construct
the u(p, L) ordinary points. By Theorem 7.5.2, no points obtained in preceding
steps need be lost when new points are gained.

THEOREM 7.5.10. The k-th rank of an elementary point p is at least

n—k—1 itk

;) ;i a;(p).

Proof. By Theorem 7.5.9, with L = 4, _;_1(p), thereisan (n — & — 1)-space
meeting u(p, A,——1(p)) osculating k-spaces. But

n—k—1 itk

o A () = 2 2 ().
i= j=1
8. BARNER ARCS

In [1], strongly convex arcs in &* were defined. In the plane, the condition
that an arc be strongly convex is roughly that through each point p of the arc
there pass a line B (p) which depends continuously on p and meets the arc only
at p. Using analytic methods, Barner proved that strongly convex arcs satisfy
an inequality similar to that of Theorem 8.6.1. Later, Haupt studied similar
arcs which he called arcs without (# — 2, k)-secants in the strong sense. His
work is completely synthetic and is outlined in [7].

The Barner arcs which we define may seem to have little in common with
Barner’s or Haupt’s arcs; cf. 8.1.1. Nevertheless, we are able to prove (cf.
Theorem 8.6.1), the analog of Barner's theorem. Perhaps the most significant
way in which our arcs differ from Barner’s or Haupt’s is that they can have
other points than regular points and inflections; cf. Theorem 8.4.1.

It is after our study of Barner arcs that we discovered arcs with tower.
Such arcs satisfy a Barner-type inequality; cf. Theorem 8.7.1. By the early
introduction, in §4, of arcs with tower this theory has been considerably
simplified. In Theorem 8.8.1, the inequality for arcs with tower is used to
establish Denk’s theorem.
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8.1. Existence of Barner arcs. An arc is a Barner arc if there exists a
continuous mapping B: J* 1 — %", such that

8.1.1 6(Pr B(:XI)) = 67(%2)(?) -1
forall p € J, x € J—L

TuroreEM 8.1.2. Let A be an arc with tower which has at most inflections.
Assume that Ay 1s continuous, 0 < k = n — 2. Then A 1s a Barner arc.

Proof. For n = 1, any arc whose image is not &' is a Barner arc. Therefore,
assume that n = 2. Let {H,} be a tower for A. A = A|H, is a regular arc with
tower {H,, ..., H,}. A;(p) = A,(p)H, is continuous, 0 < & < un — 2. By
Theorem 4.1, A is of order n — 1. Put B(x) = A" *(x). By Theorem 3.4.1, B is
continuous. By Theorems 2.3.2 and 3.1.1,6(p, B(x)) = 5(p, A" 2(x)) = v(p,x)
Since y(p, x) = n — 2 and » is at most an inflection,

v(p,z)

Brwry(P) — 1 = Zo 1—1=~x(,x).
Thus, 4 is a Barner arc.

For the remainder of § 8, we shall assume that A is a Barner arc.

8.2. Projection of Barner arcs.

TuroreM 8.2.1. A(p) C B(py . - -, Pner) if and only if p € {p1, ..., Pu_il.
THEOREM 8.2.2. 6(p, B(p, ..., P)) = Buz2(p) — 1, for all p € J.

TaEOREM 8.2.3. A,—2(p) C B(p,...,p), forall p € J.

THEOREM 8.2.4. If p = q, then A (p) ¢ A.—2(q).

Proof. By Theorem 8.2.1, A(p) C Blg,...,q). By Theorem 8.2.3,
An—2(q) CB(g, ..., 9.

THEOREM 8.2.5. If n = 2, A s simple, i.e., if p # q, then A (p) # A (q).
THEOREM 8.2.6. If p 5 q and A (p) C Au-1(q), then B,—2(q) = n — 1.

Proof. Since A (p) C An—1(q), B(g, ..., q) # An,—1(g), by Theorem 8.2.1.
Thus, 6(¢, B(g,...,q)) = n — 2. By Theorem 8.2.3,6(¢, B(g,...,q))=n—2.
The statement now follows from Theorem 8.2.2.

THEOREM 8.2.7. Suppose thatn = 2,q € J. If A has at most inflections, then so
has Alg.

Proof. By Theorem 1.4.3, ¢ is at most an inflection of 4[g. If p # g, p is at
most an inflection of 4|¢ by Theorems 1.4.3 and 8.2.4.

THEOREM 8.2.8. Suppose thatn = 2,q € J. If ag(q) = 1, then A|q is a Barner

arc. If ao(q) = 2, then the restriction of Al|q to either component of J\{q} is a
Barner arc.
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_ Proof. Giveny = (py,. .., pu—2),putx = (g, p1, .. ., Pu2) and B(y) =B (x).
B is continuous.

Suppose that p = ¢, ae(g) = 1. Then &(p, B(y)) = 6(p, B(x)) — 1. By
Theorem 1.4.3, B, (p) = Brr1(p) — Bo(p), for —1 < k < n — 2.Since Bo(p) =1

Brway ) = Bro+1(P) — 1 = Bropy (P) — L.

Thus, by 8.1.1,

8.2.9 80, BB)) = Brow (b) — 1.

Next, suppose that p # q, A(q) C A,_1(p). By Theorem 8.2.4,

A(q) € An2(p);
hence, 7(q, #) = n — 2. By Theorem 8.2.6, 8,_»(p) = n — 1; hence,
3@, B(x)) = By (P) — 1 < Bu2(p) — 1 =n — 2.

By Lemma 1.4.1,

8.2.10 §(p, B(y)) = 6(p, B(x)).

If p # gand A(g) C A,—1(p), then (g, p) = n — 1 and 8.2.10 again holds.
If p # g, then v(p,v) = v(p,x) <n — 2 = 7(q, p), so by Theorem 1.4.3,

57(1),1/) (®) = By (P) = Brw.) ®)-
By 8.1.1 and 8.2.10, it follows that 8.11 also hold if p # gq.

8.3. Independence properties. Suppose that 4 is a Barner arc in & and
$, q are distinct points with characteristic (2, 1, 1, 1). Then

A1(p)Ai(qg) C B(p, g, 1),

forallr € J. If A:(p) N A1(¢) = 0, then the inclusion is improper and the arc
lies in the hyperplane 4:(p)A1(g), contradicting Theorem 1.2.1. Thus, 4 has
a dependent 2-secant, namely 41(p)41(q).

THEOREM 8.3.1. An (n — 2)-space L can meet a Barner arc in at most n — 1
distinct points.

Proof. Suppose that there are distinct points p1, . . ., p, such that 4 (p,)C L,
1 <4 < n. Thenforsomej, A(p;) C V ey A(P:). Putx = (p1,..., Pjro-v,bn)-
Then 4 (p;) C B(x), forallz # j. Thus, 4 (p;) C B(x), contradicting Theorem
8.2.1.

THEOREM 8.3.2. Suppose that n = 3, 1 = k = n — 2. If Bx_2(p) =k — 1,
for all p € J, then A is k-independent.

Proof. By Theorem 8.3.1, a line can meet 4 in at most 2 points. Hence, by
Theorem 8.2.4, 4 is 1-independent and Theorem 8.3.2 is true if & = 1.
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Assume that it is true for £ — 1, where 2 < k£ < n — 2. Let L be a k-secant
of A andlet 4(g) C L. Thenay(gq) = 1; by Theorem 8.2.8, 4|q is a Barner arc.
By Theorem 1.4.3, Bi_3(q) = Bi_2(q) — Bo(g) =k — 2. If p = g, then
E—3<n—2Z n(g, p) by Theorem 8.2.4; hence, B;_3(p) = Bi_s(p) =k — 2.
Thus, A|q is (B — 1)-independent; in particular, L is independent on 4|g.
Thus,

E—1=Y (G@p,L)+1) -1

ped
Now 6(q, L) = é(q, L) — 1. If p 5= q, then A(q) T 4,_2(p), by Theorem
8.24;sinceA(q) C Landdim L =n — 2,6(p,L) =n — 3 < 7(q, p). Hence,
if p#q,6(p,L) =38(p,L). Thus, L is an independent secant of 4.

TuaeoreM 8.3.3. If A has at most inflections it is (n — 2)-independent.

8.4. The characteristic.
TuaeoreM 8.4.1. If p € J, then a;(p) = 2, for al most one 1,0 <7 = n — 1.

Proof. For n = 1, this is obvious.
For n = 2, suppose that ay(p) = a1(p) = 2. Take U’ (p) and a line H_, such
that 4 (p) C H_, and

Ag) Z Ax(p), A(g) L Ho, forall g € U'(p).

If one projects from p, @ (p) = a1(p) = 2. Thus, there exist points
p1, p2 € U'(p) and aline L such that py < p < p2and 4 (p1), 4 (p), A (ps) C L.
Since a1 (p) = ao(p) + a1(p) = 4 (mod 2), 4 (p1), A (p2) lie on the same side of
A:(p). I, say, A(p1) lies between A(p) and A (p,) on L, then there is a
q € [p, p2] with 4 (q) C B(p1), which is a contradiction.

Assume that the theorem is true for # — 1, and suppose that for some p,
ai(p) = a;(p) = 2, wheres < j.Sinced(p, B(p,...,p)) En—1,8,20) =n
by Theorem 8.2.2. Thus, in our case, 8,_2(p) = nand j = n — 1. Also, 7 = 0,
for, otherwise, projection from p gives a contradiction. Projecting from
A,_o(p) and using a,_1(p) = 2, one obtains points pi, po with p1 < p < po
such that 4 (p1) C A4,_2(p)A (p2). But this is impossible since

An—2(p)A (PZ) = B(pr e Dy P2)y
by as(p) = 2.

8.5. Ordinary subarcs of Barner arcs.

TueoreM 8.5.1. If (p, q) is ordinary, then A (p) T A,—1(q).

Proof. The theorem is true for # = 1, by Theorem 4.1; assume that it is true
for n — 1. If aog(q) = 2, then 4, 1(q) = B(g,...,q) and A(p) Z A,-1(q).
Hence, we may assume that ao(¢) = 1.

Suppose that A (p) C A,_1(g). Then A = Alg is a Barner arc with
A(p) C A,_2(g). By the induction assumption, (p, ¢) is not ordinary on 4. By
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Theorem 5.2.4, there exists p1 € (p, ¢) such that 4 (q) C 4,-1(p1). We now
project the interval (p1,q) on 4 from p; obtaining ¢1 € (p1, ¢) such that
A(p1) C Ani(qr).

Consider the set S of intervals (7, s) of (p1, ¢1) such that A (r) C 4,_1(s).
Repeating the above argument, S # @. Let so be the infimum of thes € (p1, q1)
for which there exists an » with (r,s) € S. Since p; is ordinary, p; < s by
Theorem 3.1.1. Let 74, s; be such that (r;, s;) € S, r; converges, say, to 7, and
$;— So. Since s, is ordinary, 7o < so and A4 (r¢) C A,—1(s0). Repeating the
argument of the preceding paragraph we obtain (r,s) € S with s < s, con-
tradicting the definition of s.

THEOREM 8.5.2. If (p, q) is ordinary, then [p, q] is of order n; thus, an ordinary
Barner arc is of order n.

Proof. The theorem is true for # = 1, by Theorem 4.1; assume that it is true
for n — 1. Suppose that pi, . .., p.y1 lie in a hyperplane, where

PEp1<...<pur Sq.

Since p» € (p, ¢), ao(p2) = 1, by Theorem 3.2.2 and A|p, is a Barner arc. By
Theorem 3.1.2, p, is ordinary on A|ps. If € (p, q), r ¥ ps, then

A(p2) L Ana(r),

by Theorem 8.5.1; hence, 7 is ordinary on A|ps, by Theorem 5.2.4. By the
induction assumption, [p, g] is of order # — 1 on 4 |p,. This is a contradiction
since pi, P3, .« ., Pusr lie in a hyperplane in P*1(4 (ps))

THEOREM 8.5.3. If p < ¢ < r and (g, r) is ordinary, then
Ap) € Ana(@) N Apa (7).

Proof. The theorem is true for » = 1; assume that# = 2. By Theorems 8.5.2
and 3.4.1, A,_, and A4, are continuous on [gq, 7].

Suppose that 4 (p) C A,—1(g) N A,—1(r), p < ¢ < r. By Theorem 6.3.1,
there is an sy € (g, 7) such that 4 (p)  A,—1(so). Thus, there exist gy, 7o such
that g = qo < so < 79 = 7,

8.5.4 A(p) L Aua(s),
for all s € (qo, 70) and
8.5.5 A(p) C An1(go) M Apa(ro).

By 8.5.4 and Theorem 5.2.4, (qo, 7o) is ordinary on A4 |p.

By Theorem 8.3.1, 4 (p), A (o), A (ry) span a plane M. Put L; = 4 (p)4 (¢0),
Ly = A(p)A(ry). If s € (qgo, 70], then 4,—»(s) M L, = @; otherwise, projection
from p yields a contradiction of Theorem 8.5.1. Thus, 4,—2(s) M M is a point
for all s € [qo, 7o] and does not lie on Ly or Ly, if s € (qo, 70). Since it depends
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continuously on s, there is a line L such that A(p) CL C Mand
A,2(s) YL = @, for all s € [qq, 7o]. Put

o(s) =A,.66)NL, ¥(s)=DB(@,...,s)NL,

forall s € [go, 70]. ¢ and Y are continuous. By Theorem 7.5.1, ¢ is monotone. By
8.5.5, ¢(s) moves from 4 (p) to A (p) when s moves from gy to 7o. If s € (go, 70),
s is regular, by Theorem 3.2.2 and so ¢(s) # ¢(s), by Theorem 8.2.2. Also
Y (s) = A(p), for all s € [qq, 70]. Such ¢ and ¢ cannot exist.

8.6. Barner’s theorem. We define the mulitplicity of a point p as

n—1

v(p) = 2 (n — i) () — 1).

=0

TaEOREM 8.6.1. Let A be an elementary Barner arc. Then

;J p(p, L) £ 2 »(p) +n,

reJ

JSor every hyperplane L.
Proof. Suppose that the theorem is true for 3 ,c; u(p, L) finite. Then

> owp, L) 2 ) +n

P1<p<p2 p1<p<p2

> v(p) + .

ves

If Su(p, L) is infinite, then so is 3_yes v (p) and the theorem is true. We may,

therefore, assume that X ,c; u(p, L) is finite. We may also assume that
S per v(p) is finite. Then 4 has only finitely many non-regular points.

Suppose that # = 1. If A(p) = L, for k points p, and % of these points are

inflections, then > ,e; u(p, L) = h + k. Since 4 is a Barner arc, each of the

k — 1 open intervals determined by these & points contains an inflection. Thus,

E—1+4+h= Y vp).

peJ

A

Assume that the theorem is true for » — 1 and let L be a hyperplane.

Case 1. There is a point ¢ with ao(¢) = 1 and 4 (q) C L.
Put 4 = Alqg.
LemMMA 8.6.2.

2w L) £ 2 9(p) +n— L

peJ peJ

Proof. Use Theorems 5.2.2 and 8.2.8 and the induction hypothesis.

LEMMA 8.6.3. Let X be the set of inflections r = q of A with A,—1(r) = L. Then
2 mp, L) = 2 wp, L) —2[X] — 1.
ves ves

Proof. Write p, B, 8 instead of u(p, L), Bx(p), 6(p, L). Note that X is finite.
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Case (i). p = q. By Lemma 1.4.1, § = 6§ — 1. Thus, by Theorem 1.4.3,
E=F=PF1=8—Bo=RBs— 1 =pu—1,since ay(q) = 1.

Case (ii). 7(q,p) =n — 2,6 <n —2.0nehas § =68;s0 5 = B = Bs =
Bs = p. i

Case (iii). (¢, p) =n — 2,86 =n — 1. One has 6 = 6 — 1. Also,

n—2

E=Ffi= ZJO ai(p)
and
n—1

= Bi= T adp).

=0

If p is regular @ = pu; if p is an inflection @ = p — 2; by Theorem 8.2.6, only
these possibilities can occur.
Case (iv). w(q, ) = n — 1. Here, § < n — 1 and § = é. Thus,

E=PB=Ps =8 =p

LEMMA 8.6.4. Let Y be the set of regular points v #~ qof A with A (q) C Ap1(7);
let Z be the set of non-regular points r # q. Then

> ) = 2 vp) + Y| — |Z].

peJ peJ
Proof. We are assuming that Z is finite. By Theorems 5.2.3 and 8.5.3, ¥V is
finite.
Case (i). p = q. Then
n—2
p= X (r—i=D@E) - 1
n—2
= ZO (n — 17— 1)(aii(p) — 1)
n—1

=2 (n—1)(ap) — 1) =,

sinceag(q) = 1.

Case (ii). w(q,p) = n — 2. If p is regular, then v =0, 7 = 1. If p is an
inflection, then» = 1, 5 = 0.

Case (iii). (g, p) = n — 1.

n—2

=2 (n—i—1)(ap) —1)

=0

<
|

n—1

=¥ - De®) -1 - T @) -

=

”‘2@@‘”

Thus, 7 = » if p is regular; otherwise, » = v — 1, by Theorem 8.4.1.
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LeEMMA 8.6.5. Let X, YV, Z be as in Lemmas 8.6.3 and 8.6.4. Then
21X+ Y] —|Z] =0.

Proof. The set X \U YU {¢} determines |X| + |¥| open intervals. By
Theorems 8.5.1 and 8.5.3, none of these intervals is ordinary; by Theorem 5.2.3,
each of these intervals contains a non-regular point. Hence,

X1+ Y] = |2\X] = |Z] — |X].
By Lemmas 8.6.2-8.6.5,

2 ulp, L) =2 alp, L) + 2|X| + 1
<2 9p)+ (n— 1) +2|X| + 1
=2 v(p) + |Y] = |Z] + 2|X| +n
<2 v(p) +n

This concludes the proof of Theorem 8.6.1 in case 1.

Case 2. ag(q) = 2, for all ¢ with 4 (¢) C L, and there are at least two such
points. By Theorem 8.2.6, 6(q, L) = »n — 2, for all ¢ with A(qg) C L. By
Theorem 8.4.1, u(g, L) = n = »(q), for such ¢; hence,

> oup L) £ 2 v(p) £ X v(p) + .

e peJ peJ
Case 3. There is only one point ¢ with 4 (¢) C L and this point satisfies
ap(g) = 2. Then > u(p,L) =n+ 1. Let M = A, 2(q)A(r), r # q. Then
n+1=> ulp, M), so 2ulp,L) => ulp, M) and Barner’s theorem
follows.

TuEOREM 8.6.6. The inequality of Theorem 8.6.1 holds if A is a Barner arc
with at most countably many singularities.

Proof. Suppose that 4 is regular. By Theorem 3.2.1, the set S of singularities
of 4 is closed. By Theorems 5.2.3 and 8.5.2, S contains no isolated points. Since
a non-empty perfect subset of J is uncountable, S = @; cf. [8]. By Theorem
8.5.2, 4 is of order n.

Suppose that 4 is not regular. We may assume that 3 ,¢; v () is finite. Then
the non-regular points decompose 4 into finitely many regular arcs. Thus, 4
is elementary and Theorem 8.6.1 applies.

8.7. Main theorem for arcs with tower.

THEOREM 8.7.1. Let A be an elementary arc with tower. Then

n

T ue D) =Y X @) -1+,

peJ peJ i=

for every hyperplane L.
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Proof. As in Theorem 8.6.1, we may assume that both sides are finite.

Forn = 1, Theorems 8.6.1 and 8.7.1 are the same. We may, therefore, assume
that Theorem 8.7.1 is true for » — 1. Let {H,} be a tower for 4.

Suppose that Hy C L. By Theorem 5.2.2, 4 = A|H, is an elementary arc
with tower {H,, ..., H,}. Hence,

8.7.2 2, mp L) = Z i @) — 1) +n—1.

Since Hy Z A,_1(p) we have 6(p,L) < n — 2 and 8(p, L) < = (H,, p). By
Theorem 1.4.3, @ =85 =F:s = Bs = p and a&;(p) = ay(p), 01 <n — 2.
Thus, Theorem 8.7.1 follows from 8.7.2.

Next, assume that Hy L. Put P = LN H;. As before, 8.7.2 holds for
A = A|P.

LemmA 8.7.3. Let X be the set of all points p such that P C A,_1(p). Then
2 aa(p) £ 2 () = 1) + L.
pEX peS
Proof. By Theorems 5.2.1 and 6.4.1, ¢(p) = A,—1(p) M H; is an arc with
tower in H; with characteristic (a,—1(p)) at p. Thus, Lemma 8.7.3 follows from
Theorem 8.7.1 for n = 1.

Suppose that 6(p, L) < n — 2. Since 4,_2(p) M Hy = @, we have
n—2=a(P,p).

If6(p, L) =n — 2, then P  A,—1(p) and 7 (P, p) = n — 1. Thus,
5(p, L) < (P, p).

By Lemma 1.4.1 and Theorem 1.4.3, g = 85 = 5 = 85 = p.
Suppose that §(p, L) = » — 1. Then

n—2

gp, L) = 2. ap)

= pu(p, L) — (eu—2(p) + en-1(p)) + @2(p).
Combining these cases and using the fact that p € X if 6(p, L) = n — 1,

one has
2w L) = 2 B L)+ 2 (ana(d) +ana(p) — dua(p))
= % B, L) + JJZEX (@n—2(p) + an-1(p) — @u-2(p)).
Also,
S S @p-0-% 5 @e) -0+ @) -1

+ ;X (an—2(P) - 1).
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By 8.7.2,

S DY T @) -+ T al) bn— 1

peJ

Now Theorem 8.7.1 follows from Lemma 8.7.3.

8.8. Denk’s theorem.

TuEOREM 8.8.1. The order with or without multiplicities taken into account, of
an elementary point p is 3o o (P).

Proof. Let ord (p) (Ord (p)) denote the order of p without (with) multiplici-
ties taken into account. One has ord (p) = Ord (p). By Theorem 7.5.10 with
k=0,

n—1

2 ai(p) = ord(p).

=0
By Theorem 3.4.2, A is continuous at p, 0 < k& = n — 1. Thus, some neigh-

bourhood U(p) of p is an elementary arc with tower and contains only regular
points except possibly p. By Theorem 8.7.1,

Ord(p) = ZO (i(p) — 1) +n
= 20 ai(P)~

8.9. Barner curves. Barner curves are defined similarly to Barner arcs.
THEOREM 8.9.1. Barner curves exist in every dimension.

Proof. For n = 1, any curve whose image is not ! is a Barner curve.
Therefore, assume that # = 2. Let C be a curve with at most inflections for
which Cy is continuous, 0 £ 2 = #n — 1. Assume that there is a point $ such
that the restriction 4 of C to K\{p} is an arc with tower {H,} with
Hy Z C,_1(p). As in the proof of Theorem 8.1.2, 4 = A|H, is of order n — 1.
By Theorem 3.1.1, C = C|H, is (n — 2)-independent. The remainder of the
proof is as for Theorem 8.1.2.

TuEOREM 8.9.2. Let C be an elementary Barner curve. Then

2 ulp, L) = 2 v(p),

PEK PEK

for every hyperplane L. Both sides are congruent to n + 1 (mod 2).

Proof. The proof is the same as for Theorem 8.6.1 with slight modifications.
In particular, the inequality of Lemma 8.6.5 can be improved to

2| + ¥ — |zl + 1 = 0.
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By definition, po = Y ek u(p, L). Choose L = B(g, ..., q). Then

po = “(q,B(g:"'1Q))

0(¢,L)

= E ai(g).

i=0
If ¢ is at most an inflection, then 6(¢, L) = » — 2 and this sum is n — 1;
otherwise, 6(¢, L) = # — 1 and, by Theorem 8.4.1, the sum is #» + 1. In any
case, po = # + 1. By Theorem 7.4.2,
2 vP)=(n+po=n+1
PeK
8.10. Curves with tower. It is clear that curves with tower exist in every

dimension. For example, if 4 is an arc with tower and p < ¢, then the curve
obtained by going from p to ¢ and back to p again is a curve with tower.

TaeoreM 8.10.1. Let C be an elementary curve with tower. Then

e sT T @ - .

Both sides are even.

Proof. The proof is the same as that of Theorem 8.7.1 with slight modifica-
tions. Use Theorem 7.4.4.

8.11. Index of a curve. The sndex of a curve is the minimum number of
points which can lie in a hyperplane. The points are not counted with
multiplicity.

TueorREM 8.11.1. Suppose that there is a hyperplane L which meets C in only
one point. Then the index of Cis 0 or 1, according as L supports or cuts C at p.

Proof. The index is either 0 or 1.

Assume that L supports C at p. If n = 1, it is clear the index of C is 0.
If » = 2, take an (» — 2)-space M C L with C(p) M. Projection from M
shows that C has index 0.

If L cuts C at p, then the supposition that there is a hyperplane H, not
meeting C leads to a contradiction. Hence, C has index 1.

TaeoreM 8.11.2. The index of a curve of order n (of a Barner curve) is 0 or 1,
according as n is even or odd (odd or even). A curve with tower has index 0.

Proof. If Cis a curve of order # then, by Theorem 3.1.1, C,_1(p) meets C only
in p. By Theorem 3.2.2, p is regular; thus, o,—1(p) = n. Hence, C,_1(p)
supports or cuts C according as # is even or odd and Theorem 8.11.1 applies.

If Cisa Barner curveand L = B(g, . . ., ¢) then, from the proof of Theorem
8.9.2, g5¢.zy = 7 + 1, and Theorem 8.11.1 applies.

If Cis a curve with tower {H,}, then H,_; does not meet C.
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9. REGULAR ARCS

If one were able to show that every regular Barner arc is of order #, then the
inequality of Theorem 8.6.1 would hold for all Barner arcs. For then the
assumption that >, v(p) is finite implies that the arc is elementary and
Theorem 8.6.1 applies. Unfortunately it is not known whether or not every
regular Barner arc is of order #.

A large part of this section consists of the proof of Theorems 9.1.1 and 9.1.2.
From Theorem 9.1.1, it follows that the inequality of Theorem 8.6.1 holds for
any Barner arc for which A4,_, is continuous. Haupt’s work on order-homo-
geneous arcs is related to Theorem 9.1.2; cf. [7]. From Theorem 7.5.10 and 9.1.2,
it follows that the k-th rank of any arc is at least (n — k) (B + 1); cf. [13].

One may ask whether or not a regular (z — 2)-independent arc is necessarily
ordinary. In Theorem 9.2.3, we show that this is the case if n = 2.

9.1. The existence of an ordinary point.

TrEOREM 9.1.1. If A s a regular Barner arc and A,—» is continuous, then A s of
order n.

THEOREM 9.1.2. Every arc has an ordinary point.

TrHEOREM 9.1.3. If A is a Barner arc with at most inflections and A,y is
continuous, then either A is of order n or A has an elementary singularity.

Proof of Theorems 9.1.1, 9.1.2, and 9.1.3 for n = 1. Use Theorems 6.4.2 and
4.1.

Assume that Theorems 9.1.1, 9.1.2, and 9.1.3 are true for n — 1.

LEMMA 9.1.4. Let A be a Barner arc with at most inflections in P™. If Ap_1is
continuous at p, then so is A p_s.

Proof. By Theorem 8.2.2, 6(q, B(q, ...,q)) = m — 2, for all ¢ € J. Hence,
Ap2(q) = Apua(@) NB(g,...,q), forall g € J.

LeMMA 9.1.5. Let A be an arc with at most inflections. Assume that A,_s s
continuous. Then there is a point at which A,_1 is continuous.

Proof. We may assume that there is a line L such that 4,_,(p) N L = @, for
all p € J. Let {P,] 7 =1,2,...} be a set of points of L which is dense in L.
By Theorem 9.1.2(n — 1), there exists a sequence X, 7 = 1,2,... of open
intervals such that X; hasordern — lon A|P;and X;;, C X2 =1,2,....
Take p € N1 X and put P = A,_1(p) N L.

To show A4,—; that is continuous at # it is sufficient to show

Ilm A4, 1(g) YL = P.

D

Let U(P) be a neighbourhood of P on L, say one with the end points P, P,
where 7 < j. Take ¢, » € X; with ¢ < p < r. Since X; is of order » — 1 on
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A|P;, A(s) T An(t),foralls, ¢t € X, s # t. We may define a continuous path
in #*,_, by:

A1 (P) B A sPYA(r) L2 A,a(@)A(r) 2 40a(9)
where
01(s) = Aua(P)A(s) i s € (p,7)
02(s) = Aus(5)A(r) i s € (¢ )
03(s) = Aua(@AG) if s € (g 7).

Since X, is of order » — 1 on A|P,, A|P,, no hyperplane of this path, except
possibly 4,-1(¢), contains P; or P,. Hence, 4,-1(¢) YL € (U(P))~, where
(U(P))~ is the closure of U(P). Similarly, 4, 1(*) YL € (U(P))~. Since
g and 7 are arbitrary points of X ; with ¢ < p < 7, the continuity of 4,_; at p
follows.

LemMmA 9.1.6. Every arc A contains a Barner arc with ot most inflections on
which A,_s 1S continuous.

Proof. We may assume that there is a hyperplane H, not meeting 4. Let
Py, ..., P, be independent points of H,. By Theorem 9.1.2(n — 1), there are
subarcs Xy, ..., X, such that X, has order » — 1 on 4|P;, 1 <7 < #n, and
X, C ...C X;. X, has at most inflections on 4 ; for, if p € X, there is an
such that P; A, 1(p). By Theorem 3.2.2, p is regular on 4|P;. By Theorem
1.4.3, p is either a regular point or an inflection on 4.

If p € X,, then P; Z A,_2(p), for all 72, 1 <7 =< #n. For, otherwise, by
Theorem 1.4.3, and P; # A (p), one hasa;(p) = 2,forsomej 0 =j<n — 2,
contradicting the above argument. Hence, 4,_2(p)P; is the osculating (r — 2)-
space of A|P,, forall p € X,, 1 £ ¢ £ n. Since

An—Z(P) = Ql An—z(P)Pi:

for all p € X, A, is continuous on X,; cf. Theorem 3.4.1.

By Lemma 9.1.5, there is a point p € X, at which 4,_; is continuous. Take
P Z A,1(p) and U(p) C X, such that P  A,-1(g) for all ¢ € U(p). By
Theorem 9.1.2(z — 1), there is a subarc X C U(p) which is of order n — 1
on A = A|P. Put B(x) = A" %(x). As in the proof of Theorem 8.1.2, X is a
Barner arc.

Assumption. From now until the end of the proof of 9.3(z), we assume that
A is a Barner arc with at most inflections and that A,_, is continuous. This is
possible by Lemmas 9.1.4 and 9.1.6.

If H,, is a hyperplane and P and Q are distinct points not on H,, then
L, (L;) will denote the open segment of the line L = PQ which does (does not)
contain L M H_,.

LEmMmA 9.1.7. Suppose that (p, q) is of order n and H,, is a hyperplane not
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meeting [p, q]. Put L = A(p)A(q). If n is odd (even), then A,—1(r) (L € L,(L,),
for all r € (p, q).

Proof. By Theorem 3.1.1, 4,_:(r) meets [p, q] only at r. If # is odd (even),
then 4,_1(r) cuts (supports) 4 at r; cf. Theorem 8.11.2. Thus, 4 (p) and 4 (q)

lie in different open half spaces (the same open half space) determined by
Ap_1(r) and H.

LemMA 9.1.8. Suppose that p < q < r. Let H,, be a hyperplane not meeting
[p,r]. Put L = A(p)A(q). If (q,7) is of order n and A (p) C An_1(r), then
An_1(s) meets Ly, for all s € (g, 7).

Proof. Since Lemma 9.1.8 is true for » = 1, we may assume that » = 2. By
Theorem 8.2.5, A (p) # A (q); hence, L is a line.

By Theorem 8.5.3, 4 (p)  A,—1(s), for all s € (g, 7). Hence, by Theorem
5.2.4, each s € (g, r) is ordinary on A|p and (g, r) is of order » — 1 on A|p,
by Theorem 8.5.2. Using this and Theorem 8.5.1, we obtain

Aua(s) L = 0,
if s € (g, 7], and
A@p) C A™1(s, ..., s, 1),

if s,t€ (¢,7), s # t. By Theorem 8.5.3, this is true even when s = ¢. By
Theorem 3.1.1,

A(g) & A™1(s, ..., s, t),

if s,¢ € (g,7). By the continuity of 4! on (q,7), 4" '(s,...,s,t) meets
either L, for all s,¢ € (q,7), or Ly, for all s, ¢ € (g, 7).
Since 4, _,(r) YL = @,

o(t) = A1, ...,7r,t) L

is a point of L, for all ¢ € [g, r]. Since [, ¢] lies in one of the open half spaces
determined by B(r,...,r)and H,, B(r,...,7r)MN\ L € L_. Now

o) #B(@r,..,r)NL,

for all ¢t € (g, 7). Since ¢(¢) moves continuously from 4 (¢) to A (p) as ¢ moves
from ¢ to r, there is a £y € (g, 7) such that ¢(¢) € L. Thus,

Ay s(AW)NLE L,

By the continuity of A,—. on [g,r], there is an sy € (g,7) such that
A" (sq, . . ., So, to) meets Ly. Thus, A"71(s, ..., s,t) meets Lyforalls, ¢t € (g,7).

LemMA 9.1.9. Suppose that A is regular and there exist p < g, q ordinary, such
that A(p) C Au—1(q). Then there exist r, s, with s singular, such that A,_1(s)
cuts A atr.
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Proof. Take s as small as possible such that (s, ¢) is ordinary. By Theorem
8.5.1, p < s < ¢q and s is singular. By Theorem 8.5.2, (s, ¢q) is of order #.
Let H,, be a hyperplane which does not meet [p, ¢] and put P = A(s)4 (q),
S=A4(p)A(q), Q = A(p)A(s). For any ¢ € (s, q), Ap_1(t) meets P,(P,) if n
is odd (even), by Lemma 9.1.7; 4,_;(¢t) meets Q, by Lemma 9.1.8; thus,
An_1(t) meets S,(S;) if # is odd (even). Since 4 (p)  A,_i(s), by Theorem
8.5.3, and A(q) C A,—1(s), by Theorem 8.5.1, it follows that 4,_;(s) meets
S.(Sy) if 7 is odd (even). But, s being regular, 4,-1(s) cuts (supports) 4 at s
if » is odd (even). Since A4,_1(s) does not meet (s, q), there is an r € (p, s)
such that 4, _;(s) cuts 4 at r.

LeMMA 9.1.10. If A is not of order n, then there exist p, q, with p < q, such that
8(p, Ana(q)) = 0.
Proof. Some hyperplane contains points p, p1, . . . , pn, where

p<pP1<...< D

Consider A4 = Alp By Theorem 8.2.4, A, s(q) = An,_2(q)A(p), for all
q € (p, pn); thus, A,_» is continuous on (p, p,). By Lemma 9.1.4, A, ; is
continuous on (p, p,). By Theorem 8.2.7, (p, p,) contains at most inflections
of 4. Now (p,p,) contains an inflection of A4; otherwise, by Theorems
9.1.1(n — 1) and 8.5.2, [p, p,] would be of order » — 1 on 4, contradicting
the fact that py, ..., p, lie in a hyperplane.

If there is only one inflection g of 4 in (p, p,), then (p, q) is of order n — 1
on A, by Theorem 9.1.1(n — 1), and A (p) Z A,—2(g), by Theorem 8.5.1.
Since ¢ is an inflection of 4, ¢ is regular on 4 and 4 (p) C A,_:(g). Since
A(p) T Au_s(q), A1(p) T A,_1(g) and Lemma 9.1.10 holds.

Suppose that ¢; < ¢ are inflections of 4 in (p, p,). By Theorem 9.1.2(z — 1),
there is an ordinary point g; of 4 in (g1, ¢2). Take gi, ¢5 such that

g1 = qa < ¢35 < g5 = o,
(¢4, g5) is regular on 4, and every neighbourhood of ¢, and g5 contains inflections
of A. By Theorem 9.1.1(n — 1), (¢4,¢5) isof ordern — lon 4. If A (p) C A,_2(q),
for all inflections ¢ of 4 in (p, p,), then A (p) C A,—2(gs) N A,_2(g5), con-
tradicting Theorem 8.5.3. Hence, 4 (p)  A,_s(q), for some inflection ¢ of 4
in (p, pn), and Lemma 9.1.10 follows, as in the preceding paragraph.

LemMA 9.1.11. If A s regular but not of order n, there exist p, q, r, with
p < q <, qsingular, such that A (p)An.—2(q)A (r) is a hyperplane which cuts A
at p.

Proof. By Lemma 9.1.10, there exist s,¢, with s < g, such that
6(s, An_1(g)) = 0. Since ao(s) = 1, 4,-1(¢) cuts 4 at s. By Lemma 9.1.9,
we may assume that ¢ is singular. By projection from 4,-s(g), there is an r
with ¢ < 7 such that 4,_2(q)4 () cuts 4 at a point p < q.

Proof of Theorem 9.1.1(n). Suppose that 4 is not of order n. Take p1, ¢1, 71
with the properties of p, ¢, 7 in Lemma 9.1.11. Let X be a neighbourhood of ¢;
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such that 7; ¢ X; and that for all ¢ € X4, 4,_2(q)A4 (r1) meets 4 in a point
p ¢ X1, p < qi1. Since g, is a singularity, we may repeat this argument using X
instead of J and obtain p,, g2, 72 and X .. Continuing, one obtains 4, ¢y, 74, X,
1=1,2,...,suchthat X, ;s C X7, ¢ X,,q: <ryand A,_2(q)A (r;11) meets

X \X s1inapointp < g1, wheneverg € X 1,7 = 1,2,. ... We may assume
that N1 X; = {g}. Then g < r;,, 2 =1, 2,.... Also, 4, 2(q)A4 (r;+1) meets
X, in a point p < ¢, 2=1, 2, .... Since ¢ is regular on 4, ¢ is regular on

A = A|A4,_2(q). Thus, thereexist Ut (q), U~ (q) with A (U (q)) N A (U~ (q)) =0.
Taking X, C U= (¢) Y {q} \U Ut(g), we obtain a contradiction.

LemMmaA 9.1.12. Suppose that A, is continuous at each point of ¢ non-empty
set W. Then there is a subarc X which contains a point of W such that, if p,q € X,
pF#q, p €W, then A,_1(p) does not cut A at q.

Proof. Suppose that for every subarc X with X M W = @ there exist
p,q € X, p#gq p € W such that 4, 1(p) cuts 4 at ¢q. Take p1, q1 € J,
p1 # q1, p1 € W such that 4,_1(p1) cuts 4 at ¢;. Since p; € W, there are dis-
joint neighbourhoods X,, Y1 of p1, g1, respectively, such that if p € X, then
A,—1(p) meets Yi. Since p; € X, we may repeat this construction replacing
J by X,. This yields two intervals X,, ¥y of X;. Thus, X,, ¥, C X:. Con-
tinuing, one obtains sequences X;, YV, 2 =1,2, ..., with X; N\ YV, = 0 and
X1 Y1 C Xy, such thatif p € X, then 4,1 (p) meets V;. Since X 11 C X5,
there is a point p € N%1 X ;. Thus, 4,_1(p) meets every Y. Since the V; are
disjoint, A,-1(p) meets the compact set X; infinitely often, contradicting
Theorem 1.5.1.

Notation. The following notation will remain fixed: pyis a point at which 4,_;
is continuous; cf. Lemma 9.1.5; (pi1, p2) is a neighbourhood of p, and H_
is a hyperplane such that H_, does not meet [p1, p2], An_1(po) meets [py, po]

only in pg and A (p1) C An1(p), for all p € (po, p2); L = A (p1)A (po), a line
by Theorem 8.2.5, L,(L,) is the open segment of L with the end points
A (p1), 4 (po) which meets (does not meet) H..

LeMMA 9.1.13. (po, p2) has order w — 1 on A|p1; An_e(p) NN L = @, for all
p € (pOy P2)
Proof. (po, p2) is regular on A = A|p;. By Theorem 8.2.4,
Au2(p) = Aucs(p)A (b1),

for all p € (po, p2). Hence, 4,_, is continuous on (po, p2). As 4,_; is continuous
on (po, p2) by Lemma 9.1.4, the first statement follows by Theorem 9.1.1 (z—1)
and the second by projection from p; and Theorem 8.2.4.

LeEMMA 9.1.14. Suppose that po is an inflection. If there is a ps € (o, p2) such
that (po, ps) has order n — 1 on A|p,, then for each p € (o, ps), either A,_1(p)
meets L;or A (po) C A1 (p).
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Proof. By Theorem 3.4.1 applied to A|po, 4 (po)An—2(p) tends to A,_1(po) as
p — pot. If m is odd (even), p1, ps lie on the same side (opposite sides) of
A,_1(po). Take py € (po, p3) such that if # is odd (even), p1, ps lie on the same
side (opposite sides) of A (po)A,—2(ps). By Theorem 3.2.2, p, is regular on
A|po. Hence, by projection from po and Theorem 1.4.3, A (po)A4,_2(p.) supports
(cuts) A in p4 if 7 is odd (even). Since A4 (po)A,—2(p41) meets (po, p3) only in
ps, prand (po, po) lie on the same side of 4 (po)A4,_2(p4), for # odd or even. Now
by projection from 4,_:(p4), there is a ps € (po, p4) such that 4 (p5)A4,—2(ps)
meets L.

Since (po, p3) has order n — 1 on A|p1, by Lemma 9.1.13, and on 4|p,, by
hypothesis, it follows, by Theorem 3.1.1, that neither 4 (p1) nor 4 (p,) lie on
AP)An—2(q),if po < p < ¢ < p3. Thus, 4 (p)A,_2(q) meets Ly, if

po < p < q < ps,
and Lemma 9.1.14 follows.

Proof of Theorem 9.1.2(n). Let W be the set of all points at which A4,_; is
continuous. By Lemma 9.1.5, W 5 @. Choose X according to Lemma 9.1.12;
po € X M W. We may assume that X = J. Then if p € W, 4,_1(p) does not
cut 4 at any point except possibly p.

Case 1. po is regular. Then pi, p» lie on the same side (opposite sides) of
A,_1(po), if nis even (odd). Take ps € (po, p2) such that p;, p. lie on the same
side (on opposite sides) of 4,_1(p), for all p € (po, p3). Thus, 4,_1(p) supports
(cuts) 4 at p, for all p € (po, p3) M W. Hence, each point p € (po, p3) N W
is regular.

Let ¢ be a point of (pg, p3). By Lemma 9.1.5, there are points

q: € (po, Ps) N W, i=1,2,...

such that ¢; — ¢. Let M be any hyperplane of accumulation of the sequence
An—1(g:). Let (rq, 72) C (po, p3) be a neighbourhood of ¢ such that 4,_,(q)
meets [71, 7o] only in g. There is an ¢ with g; € (71, 72) such that 7y, 7, lie on the
same side of 4,_1(g;) if and only if they lie on the same side on M. Since ¢; is
regular, this is the case if and only if # is even. Hence, M supports (cuts) 4 at g,
if » is even (odd). Since A4,_»(q) C M, ¢ is regular. By Theorem 9.1.1(n),
(po, p3) is of order n.

Case 2. po is an inflection and there exists p3 € (po, p2) such that (po, p3) has
order n — 1 on A|po. By Lemma 9.1.5, there is a point p € (po, ps) N W. 1f
An1(p) meets L;, then A,_1(p) cuts A at a point of (p1, po) which is a con-
tradiction. Hence, by Lemma 9.1.14, 4 (po) C A1(p). If A1(po) T An_1(p),
A,—1(p) cuts 4 at p,, which is a contradiction. If 4,(pe) C 4,—1(p), projection
from p, yields a contradiction. Hence, Case 2 cannot occur.

Case 3. po is an inflection and no Ut (py) has order  — 1 on A|p,. By
Theorem 9.1.3(n — 1) applied to A|p,, there exist points ps, ps, ps such that
Po < pa < p3 < p5 < pa, p3 is an inflection on 4|py and (P4, p3), (Ps, ps) are
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of order » — 1 on A|po. Hence, p; is regular on 4 and A (po) C Anu_1(ps).
Since p; is regular on A|A4,_2(p3), there is a ps € (P4, p3) \J (ps. p5) such that
A (pe)An—2(ps) meets L.

Suppose that ps € (p4, p3). Projection trom py, po shows

Ap1), A(po) L A(p)An—2(q),
if pa<p <q=p;s Thus, 4(p)A,—2(q) meets Ly, for these p, g and 4,_1(r)
meets L, \U {4 (po)}, for all » € (py, p3). Take 71, 72 € (pu, p3) N W, 71 & 75.

The arguments of Case 2 show a contradiction occurs unless
AI(PO) C An—l(rl) N An—l (72)'

But this gives a contradiction of Theorem 8.5.3, by projection from p,. Simi-
larly, ps € (ps, p5) gives a contradiction. Thus, Case 3 cannot occur.

Proof of Theorem 9.1.3(n). Let W be the set of inflections of A. By Theorem
9.1.1(n), we may assume that W # @. As in the proof of Theorem 9.1.2(n), we
may assume that the subarc X of Lemma 9.1.12, is J. Let po € W.

Case 1. There exists p3 € (po, p2) such that (po, p3) has order n — 1 on 4|p,.
If thereis a p € (po, p3) M W, Lemma 9.1.14, and an argument as in Case 2
above give a contradiction. Thus, (po, p3) is regular; by Theorem 9.1.1(n),
it is of order #.

Case 2. No Ut (p,) has order n — 1 on A|po. By Theorem 9.1.1(xn), every
U+ (py) contains an inflection on A|py. By Theorem 9.1.3(n — 1), there exist
p3, Pa, s such that po < pa <ps < p5 < ps; ps is an inflection on 4 |po; (P4, p3),
(ps, ps) are of order » — 1 on A|po; and every neighbourhood of p, and p;
contains inflections of 4|p,. If p is an inflection of A|po and p # po, then p is
regular on 4 and 4 (po) C 4,—1(p). By the continuity of 4,1,

A(po) C Apa(ps) M Aui(ps).

Since p3 is regular on 4 and 4 (py) C A,—1(p3), it follows by projection from
A._2(ps) that there is a ps € (P4, p3) \J (ps, p5) such that A (pe)A,_2(ps)
meets L, Suppose that pes € (p4, p3). Then, as in Case 3 above, for each
p € (pu, p3), An_1(p) meets L,\J {4 (py)}. Theorem 8.5.3, (ps, p3) is not
ordinary; by Theorem 9.1.1(n), there is an 71 € (p4, p3) (M W. Since 4,_1(r1)
meets L, \J {4 (po)}, A1(po) C A,—1(r1), as in Case 2 above. Repeating this
argument, one obtains 72 € (rq, p3) M W. Again A1(po) C An_1(r2). This
contradicts Theorem 8.5.3 applied to (71, 72) on A|p,. Similarly, ps € (ps3, ps)
gives a contradiction. Hence, Case 2 cannot occur.

We conclude that p, has a right neighbourhood of order #. Symmetrically
po has a left neighbourhood of order #. Thus p, is an elementary inflection.

THEOREM 9.1.15. Let A be a regular Barner arc. If A, is continuous at p,
then p is ordinary.

Proof. This is true for = 1; assume that it is true for » — 1. Take p1, p»
with A(Pl) Q An—l(p), 1= 1: 21 and An—Z(p)A (Pl) #= An—Z(p)A (P2)~ Take
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Ui(p) such that 4 (p;) € A,-1(q), forallg € Ui(p),7 = 1,2. Put A® = A|p,.
U1(p) is regular on 49, By Lemma 9.1.4, A4,_ is continuous at $; by Theorem
8.2.4, A, Y is continuous at p. Hence, p is an ordinary point of 4®; in
particular, there is a Ux(p) C Ui(p) on which 4,_»® is continuous. Take
U(p) C Us(p) such that A,—2(q) = Nie1 Au_sa(q)A (p:), for all g € U(p).
Then A,_; is continuous on U(p); by Theorem 9.1.1, U(p) is of order #.

9.2. Regular simple arcs in &2,

LemMa 9.2.1. Let (p, q) be an ordinary simple subarc of an arc A in P2,
Suppose that {H} is a tower of spaces such that Hy does not meet A. If the lines
L = A(p)Ho and M = A(q)H, are distinct and do not cut (p, q), then (p, q) is
of order 2.

Proof. First, assume that p and ¢ are ordinary. By Theorem 5.2.1, there are
only finitely many points 7 € (p, q) with Hy C A1(r), say r1 < ... < ;. Put
ro=2p, 1 =¢q and L, = HA(r;), 0 =¢ =<k + 1. Thus, L, = A.(ry),
1 =7 = k. By Theorem 4.1, each of the intervals (r;_y,7;), 1 £ <1 =<k + 1,is
of order 2. Thus, if & = 0, (p, ¢) is of order 2.

Suppose that & = 1. We think of the lines through H,, other than H, as
being vertical and order them so that L < M. We may assume that (p, r;)
lies above the line A (p)A (r1). Since r; is regular (ry, 72) lies below the line
A(r1)A(re) and L = L, < Ly = M. Thus, k = 2. Since 7, is regular (7, 73)
lies above the line 4 (r2)A4 (r3). Since (p, q) is simple, (7., 73) lies in the region
determined by L, and (p, 72). Thus, L, < Ly < L; and & = 3. Continuing, it
follows that k is arbitrarily large, which is a contradiction.

Suppose that p is not necessarily ordinary. Take r € (p, g) such that the lines
L and A (r)H, are distinct and do not meet (p, 7). For any p1 € (p, 7), thereisa
pa € (p, p1) such that 4 (p2)H, does not meet (pq, 7). By the preceding para-
graph, (ps, 7) is of order 2. Thus, (p1,7) C (p2, 7) is of order 2. Since p; is
arbitrary, (p, r) is of order 2. Similarly, ¢ has a left neighbourhood of order 2
and Lemma 9.2.1 follows.

LeMMA 9.2.2. Suppose that a regular simple arc in P?* has a singularity po.
Let {H,} be a tower such that Hy does not meet A. Then there extist points p1, g1, 11
such that p1 is a singularity, p1 ¢ [q1, r1], and A (p1)H, lies between A (q1)H, and
A (Tl)Ho.

Proof. There is a point p such that Hy, C A((p); for, otherwise, 4 is a
Barner arc, by Theorem 8.1.2, and of order 2, by Theorem 9.1.1.

Case 1. Hy C A:(p) for some singularity p.

Let (g, 7) be a neighbourhood of p such that A (¢)H, = A (r)Ho = L, say.
We may assume that 4,(p) and L are distinct and do not meet (g, p) or (p, 7).
One of these intervals contains a singularity p1; for, otherwise, they are of order
2, by Lemma 9.2.1, and p is ordinary, by Theorem 5.2.3. If p; € (q, p) say,
choose g1 = p, r1 = 7.
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Case 2. Hy C A1(p) only for ordinary points p.

Let (p, q) be a neighbourhood of p, such that the lines 4 (p)H, and 4 (¢)H,
are distinct and do not meet (p, ¢). Letr € (p, q) be such that Hy C A.(r) and
A1(r) does not meet (p, 7). Take s € (r, ¢) such that A(s) C A1(r) and 4,(r)
does not meet (r, s). Take ¢ € (r, s) such that Hy C 41(¢t) and A,(¢) does not
meet (7, t) or (¢, s). Take u € (p,r) such that 4 (u) C A1(t) and 41(¢) does
not meet (#,7). Then # <7 < ¢ <s. By Lemma 9.2.1, (#,s) contains a
singularity p1. Since Ho CA1(r) M A1(t), p1 is neither » nor ¢ If p1 € (u,r)
choose g1 = ¢, r1 = s. If p1 € (r,¢) or (¢ s), similar choices for ¢; and 7, are
possible.

THEOREM 9.2.3. Every regular simple arc A in P? is ordinary.

Proof. Suppose that A has a singularity p,. Let {H;} be a tower such that
H, does not meet some Uy = U(py). Take p1, ¢1, 71 € U, as in Lemma 9.2.2,
Let U; = U(p1) be such that Uy C Uy, Ui M [g1,71) =0 and 4 (p)H, lies
between A (g1)Ho and A (r1)H,, for all p € U,

Repeating this construction, one obtains p, g4 74 U; such that p, € U,
Ui CUi1,q € Uity 74 € Uiy, Ui N [qiy 7i] = 0, and A (p)H, lies between
A(g:)Hoand A (r;)H,, for all p € U,. Take p € N5=0 U;:. Then 4 (p)H, meets
each of the disjoint intervals [g;, 7,], contradicting Theorem 1.5.1.
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