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TOPICS IN DIRECT DIFFERENTIAL GEOMETRY 

RALPH PARK 

PREFACE 

In the theory of curves, one often makes differentiability assumptions in 
order that analytic methods can be used. Then one tries to weaken these 
assumptions as much as possible. The theory of curves which is presented here 
uses geometric methods, such as central projection, rather than analysis. In 
this way, no analytic assumptions are needed and a purely geometric theory 
results. Since this theory is not so well known as the analytic one, I have tried 
to make the treatment as self-contained as possible. It is hoped that this paper 
will form a quick introduction for a reader who has had no previous acquaintance 
with the subject. 

We assume that our curves satisfy a condition, which we call direct differenti­
ability. Roughly this condition is that, at each point of the curve, all the oscu­
lating spaces exist. In particular, the line through a fixed point and a neighbour­
ing point of the curve tends to a limit, called the tangent at the point. Under 
central projection, a curve may acquire many types of singularities which are 
often not admitted in a theory of curves. We do admit such singularities and 
thus obtain a rather wide class of curves. 

In [7], a general theory of geometric orders is developed. The geometric order 
of a curve is the maximum number of points in which a hyperplane can meet 
the curve. Many of our theorems are related, in some way, to the geometric 
order of a curve. For example, the tangent of a curve of order n in real pro­
jective w-space depends continuously on the point of contact. 

Theorems about algebraic curves, which can be given a purely geometric 
formulation, provide a source of conjectures for our curves. For example, 
Scherk and Derry conjectured that the &-th rank of a curve of order n is 
(k + 1) (n — k) ; cf. [7, p. 396]. As yet, this has been proved only in special cases. 

This paper has developed out of my doctoral thesis On Barrier arcs and curves, 
which I wrote at the University of Toronto under the supervision of Professor 
Peter Scherk. In that thesis, we investigated a condition on curves which 
Barner, and later Haupt, had studied. In the course of that investigation, arcs 
with tower were discovered. By giving these arcs with tower a central role in 
the present work, a number of simplifications have resulted. 
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1. DIRECTLY DIFFERENTIABLE ARCS 

In this section, we give the precise definition of the arcs which we shall be 
studying. More general arcs could be studied; however, the theory would 
become much more complicated. Many of the proofs in later sections are based 
on induction by dimension. In all of these proofs, one uses the fact that the 
projection of an arc from a point—be it on the arc or not—is again an arc; 
cf. Theorem 1.3.1. 

We define the characteristic of a point and the order of an arc. One of the 
main themes in later sections is the relationship between these two concepts; 
cf. [9]. 

1.1. Real projective n-space. A real projective n-space, n ^ 1, is a set SPn of 
objects called spaces along with a 1-1 mapping of SPn onto the set of all sub-
spaces of a real (n + 1)-dimensional vector space. As usual, one defines the 
inclusion relation L C. M between spaces, the intersection L C\ M of spaces 
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and the span LM of spaces. For a collection of spaces, the intersection is denoted 
by r\iLt and the span by V iLt. 

A space of &n is said to have dimension k if the vector subspace correspond­
ing to it has dimension k + 1. Let &k

n denote the set of all ^-spaces, 
— 1 Û k ^ n. The unique (— l)-space is denoted by 0. The elements of <^V 
and SPn-x are called points and hyperplanes of £Pn, respectively. 

We give &n a topology in the usual way. Thus, each SPk
n is compact and 

connected, — 1 ^ k ^ n, and every sequence in &n has a convergent subse­
quence. If {Lt) and (Mt) are any two convergent sequences of spaces and 
Lt C Mu for i = 1, 2, . . . , then lim Lt C Km Mt. 

If L is a fc-space, — l ^ f e g » — 2, then the set &n-k-l(L) of all spaces 
containing L is a projective space in a natural way. A sequence in SPn~k~x(L) 
converges in SPn~]i~x(L) if and only if it converges in £Pn. 

1.2. Direct differentiability. Let J be an ordered topological space which is 
isomorphic with the ordered topological space of the real numbers. A set 
X C J is called an interval if there exist p, q £ J with p < q such that 

X = (p, q), [p, q], (p, q], or [p, q]. 

Thus, [p, q) = {r £ J\p t== r < q). By a two-sided (deleted, right, left) neigh-
bourhood oî p (L J we mean a set Z7(/>) = (q,r) containing p 

(U'(P) = (q,p) U (? , r ) , [/+(£) = for), £/-(£) = (g,/.)); 

here, q < p < r. H X is & finite subset of / , we write \X\ for the number of 
elements of X. 

Let a mapping ^4: J -^ SPn and a &-space L be given. For p Ç / , it may 
happen that lim^p 4̂ (g)L, q^ p, exists in which case we denote it by A (p)\L; 
in particular, A (p)\0 = l im^p A(q), q ^ p. 

The mapping A is said to be directly differentiable at p (z J i( there exist 
spaces 

Ak{p) e^y, - u i g » , 
such that 4 0 (£) = ^ (£) and,4fc(£) = 4 (£)|,4*_i(», 0 ^k^n. Putting & = 0, 
we obtain that A is continuous at p. Putting k = n, we obtain that there is a 
E7' (/>) such that A (q) (£ An^(p), if q Ç £/' (/>). If ,4 is directly differentiable at 
each p £ J, then 4̂ is a (directly differentiable) arc. By a point of an arc A we 
mean an element p oi J. If A is an arc then Ak(p) is called ^ e osculating 
k-space oi A at p. 

THEOREM 1.2.1. Let A be an arc and let L be a hyper plane. For each p (z J} 

there is a Uf (p) such that A(q) (jt_ L, if q Ç Ur (p). In particular, if n ^ 2 the 
image of an arc cannot contain a straight line segment. 

Proof. Given p £ J , let Ak(p) be the largest osculating space at p contained 
in L. If no such U'(p) exists, then there is a sequence pt-+ p with pt F^ p and 
A (pi) C L, for all i. But then .4fc+i(£) C L, contradicting our definition of 
A*(p). 
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1.3. Projection. The position of a point P relative to the osculating spaces 
of an arc A at a point p is indicated by 7r(P, p), the dimension of the largest 
osculating space at p which does not contain P . Thus, — 1 ^ 7r(P, p) ^ n — 1. 
If TT(P,P) = - 1 then P = A(p) and P lies on the arc. 

THEOREM 1.3.1. Suppose that n ^ 2. Put 

iAk(p)P,if-l ^k ^ir(P,p) 
MP) \Ak+l(p)}if7r(Pip) ^ k ^ n - 1 . 

Then Â = Â0 is an arc in éPn~l(P) with Âk(p) as its osculating k-space at p, 
- 1 ^ k ^ n - 1. 

Proof. One has 

MP) e &iTKP\ - I S k ^ n - l . 

By Theorem 1.2.1, there is a U' (p) such that A (g) ^ P if g G !/ '(£). Thus, 
1(g) = 4 (q)P, for all g G U'ip). 

If 0 ^ & ̂  TT(P, £), then P <£ Ak(p) and 

i ï (p) | i ï^ i (^ ) = lim (A(q)P)(Ak^(p)P) = Ak(p)P = Ak{p). 
Q^P 
Q9±P 

If v(P, p) < k ^ n - 1, then P C Ak(p) and 

K ^ l l ^ ) = lim (A(q)P)Ak(p) = Ak+1{p) = Ak{p). 

Q^P 

The arc Â is called the projection of A from P . If P = .4 (g) we write 
n(Pj P) = fiq, p), À = A\P = A\q and speak of the projection of A from g. 

ForL £ ^ / , — 1 ^ & ̂  w — 2, the projection A \L of A from L is defined by 

(A\L)(p) = A(p)\L}iorz\\p € / . 

THEOREM 1.3.2. A\L is an arc in ^-^(L). 

Proof. If k = - 1 , A\L = A. If k = 0, ^ | L is an arc, by Theorem 1.3.1. 
Let 1 ^ k ^ n — 2 and assume that the theorem is true for k — 1. Take a 

point P C I . Then ,4|P is an arc in ^^P). Since L £ ^ V i " " 1 ^ ) , (A\P)\L 
is an arc in ^>n-k~1(L). Now 

(G4|P)|L)(£) =Km(A(q)P)L 
Q9^P 

= A(p)\L= (A\L)(p). 

1.4. The characteristic of a point. The dimension ô(p,L) of the largest 
osculating space of an arc A at a point >̂ which is contained in a &-space 
L, — 1 ^ & ^ #, will occur frequently. One has — 1 ^ ô(p, L) S k. 
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LEMMA 1.4.1. Let P be a point of the k-space L; A = A\P. Then 

*(*> n = i S(p,L),if-l £8(P,L)<T(P,P), 
dKP'^ \S(fi,L)-l,ifx(P,p)<S(p,L) £k. 

Proof. Use Theorem 1.3.1. 

We say that a hyperplane L supports A atpii there is a hyperplane Hm with 
Hœ j* L, A (p) <t Hœ, and a U'(p) such that A (U1' (p)) is contained in one of 
the two open half spaces determined by L and H. If L supports A at p, then any 
hyperplane M with M ?± L, A(p) Çf M, can be taken as Hœ. When L does not 
support A at p, we say that L cuts A at p; cf. Theorem 1.2.1. 

LEMMA 1.4.2. (Scherk's lemma.) Let - 1 ^ | « - 1 . Let Sk be the set of all 
hyperplanes with 8(p, L) = k. Either all hyperplanes of Sjc support A at p or all 
cut A at p. 

Proof. Suppose that Lu L Ç Sk, Lt—*L. There is a U'(p) such that 
A (q) (£_ Lu A (q) (£_ L, for all q 6 Uf(p). For, otherwise, there exist points qt 

with qi —» p, qt 7e p, and integers j(i) with A (qt) C Lj(i). Then, 

A (qt)Ak(p) C L,(o and Ak+1(p) C L, 

contradicting L £ Sk. Hence, if all Lt cut (support) A at p, then L cuts (sup­
ports) A at p. Thus, the set of hyperplanes of Sk which cut (support) A at p 
is a closed subset of Sk. The lemma now follows from the connectedness of Sk. 

Let p be a point of an arc. For — l r g & r g n — 1, define <rk(p) = 0 or 1, 
according as the hyperplanes of Sk support or cut A at p; cf. Lemma 1.4.2. 
Thus, cr~i(p) = 0. The characteristic (ao(p), . . . , an-\(p)) of p is defined by 
taking at(p) to be 1 or 2 and requiring that 

a0(p) + . . . + ak(p) = ak(p) (mod 2), 0 ^ * ^ w - 1. 

We also define numbers 

k 

hip) = E ««GO. for - 1 ^ fe £ n - 1. 
4-0 

Thus, pk(p) = <?k(p) (mod 2) and a* = 2 — lo* — crs_1|, if 0 Si fe g » — 1. 

THEOREM 1.4.3. Suppose that n ^ 2. Le/ P be a point; Â = A\P. Then 

(<ro(p) + <r*+i(p), ifP=A(p),-l£k£n-2 
**tt>)=< ak(p),ifP^A(p), - 1 g £ < 7 r ( P , £ ) 

( ^ + i O ) , if P ^ 4 (£), x(P, ^ ) ^ B n - 2 , 

( ak(p),iJ0 ^k <w(P,p) 
st(p) = <<**(£) + «*+iO). *y * = ^(-p. *O 

( ak+1(p),ifir(P,p)<kSn-2 
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(mod 2) and 

R (4>\ = /^*+i(?) - Po(P), ifP = A(p), - l ^ k ^ n - 2 
Pk{p) \ pk(p), ifP *A(p), -l^k< T(P,P). 

Proof. Suppose that P = A(p), — 1 ^ k ^ n — 2. Let L and Hm be distinct 
hyperplanes satisfying ô(p, L) = k + 1, ô(p,Hœ) = 0. Some Uf (p) is con­
tained in one of the two open half spaces determined by L and H if and only if 
ar0(p) + (Tjc+i(p) = 0 (mod 2). Hence, âk(p) = a0(p) + Vk+i(p) (mod 2). 

Suppose that P F^ A(p), —l^k< TT(P,P). Considering distinct hyper­
planes L and Hœ with P C L C\ Hœ, ô(p, L) = k, and ô(p, Hœ) = — 1, one has 
*k(P) = <Th(p)-

Suppose that P 9^ A(p), ir(P,p) ^ k ^ n — 2. Considering hyperplanes 
L and Hœ with P C L C\ Hœ, ô(p, L) = k + 1, and <5(£, i7œ) = - 1 , one has 
*k(P) = o-*+i(p). 

The remaining relations now follow. 

1.5. Order and rank. Let 4̂ be an arc and let X be a subset of / . If the set 

S(X,L) = {p e X\Ak(p) H L * 0} 

is finite for every (n — k — 1)-space L, we say that &-th rank of X is finite, 
0 ^ k ^ n — 1. If, in addition, 

r = sup J 5 ( X , L ) | 

is finite, we say that X has bounded &-th rank r. By the &-th ra«& of A we mean 
the &-th rank of J. By the order of X we mean the 0-rank; this is at least n. 

THEOREM 1.5.1. Let an arc A be given. Any compact set X C J is of finite 
order. In particular, A is locally of finite order. 

Proof. Use Theorem 1.2.1. 

2. SECANTS 

We define secants in such a way that multiplicities are taken into account. 
For example, in &z the concept of a 2-secant of an arc includes not only a plane 
which is spanned by three points of the arc, but also a plane which is spanned by 
a point of the arc and the tangent at another point. A ^-secant is called inde­
pendent if it meets the arc in only k + 1 points, multiplicités being included. 
An arc is ^-independent if all its ^-secants are independent. 

As will be seen in § 3, an arc is (n — 1)-independent if and only if it is of 
order n; cf. Theorem 3.1.1. The condition of (n — 2)-independence has been 
studied for more general arcs than ours by Haupt; cf. [6]. For n = 3, the con­
dition that an arc be (n — 2)-independent is that no line meet the arc in 3 or 
more points, multiplicities being included. 
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In this section, we develop some rather formal properties of ^-independent 
arcs. 

2.1. Connectivity of secants. Let A be an arc and let L be a &-space, 
— 1 ^ k ^ n. Then 

V AHv,L){p) C i , 

for any X C. J> If the inclusion is improper, we say that L is a k-secant of X. 

THEOREM 2.1.1. TTte set of all k-secants of a connected set X C J is pathwise 
connected, — l ^ k ^ n . 

Proof. We may assume that n ^ 2, 1 ^ k S n, and that the theorem is true 
for k - 1. 

Suppose that p £ X. By Theorem 1.3.1, a &-space L with A (p) (Z L is SL 
(k — 1)-secant of X on A \p if and only if it is a ^-secant of X on A. Thus, the 
set of ^-secants of X containing A (p) is pathwise connected. 

Let L, M be £-secants of X. Take p,q £ X with ^ {p) CL, A(q) C M and 
let iV be a ^-secant of X containing A (p) and 4̂ (q). Then construct a path from 
L to M by constructing a path from L to N and then from N to ikf. 

2.2. Independence. Let L be a ^-secant of X C / . Then 

k^ S (*(/>,£) + 1) - 1. 

We say that L is an independent ^-secant of X if equality holds. We say that 
X (the arc A) is k-independent if every ^-secant of X(J) is independent. 

THEOREM 2.2.1. Let n ^ 2. 7/ X is k-independent and p £ X, then X is 
(k — 1)-independent on A\p. 

Proof. Let L be a (fe — l)-secant of X on if = A\p. By Theorem 1.3.1, L is a 
^-secant of 1 on i with A (p) C £. Hence, k = Ëffex (5(g, L) + 1) - 1. We 
have A(p) (£ A^QiL)(q)1 for all g Ç X, g ^ >̂; hence, ô(g, L) = <$(<?, £ ) , for 
such q. Since ô(£, L) = ô(p, L) — 1, & — 1 = JZQZX (5(<z, L) + 1) — 1. Thus, 
L is an independent (k — 1)-secant of J on 1 . 

THEOREM 2.2.2. Suppose that —1 ^ h ^ k ^ n — 1. If X is k-independent, 
it is also h-independent. 

Proof. Let L be an ^-secant of X. Choose p 6 X and take i such that LA t(p) 
is a ^-secant of X. With LAi(p), L must be independent. 

THEOREM 2.2.3. If X is k-independent, then a k-space can meet X in at most 
k + 1 points. The converse is not true. 

Proof. The converse does not hold, for, if n = 2, we may take X = \p, q] to 
be of order 2 with A (p) C Ai(q); then L = ^4i(g) is not independent. 
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2.3. The mapping A*. We define inductively, mappings Ak: Jk+l^>gPk
n, 

- 1 ^ k ^ », by requiring that ^ - x ( ) £ ^ _ i n and that ^4fc(£o, . . . , pk) = 
A (pk)\A

k-i(p0, . . . , pk-i), 0 g k £ n. Note that A*(p, . . . , p) = 4*(£). 

THEOREM 2.3.1. ^4fc(Xfc+1) w //^ ^ 0/a/Z k-secants of X, — 1 ^ & ^ ». 

Proof. For & = — 1 and & = 0, this is obvious. Assume that it is true for 
k — 1, where 1 ^ k ^ n. We may also assume that n ^ 2. 

Let £oi • • • , Pk £ -X" be given. If one projects 4̂ from p0, then 

^ - U ^ i , . . . , / > * ) = Ak(p0, ...,pk). 

Hence, Ak(p0, . . . , pk) is a (& — 1)-secant of J on I and, by Theorem 1.3.1, 
also a ^-secant of J o n i . 

Conversely, let a ^-secant L of X be given. Projecting A from a point p with 
4̂ (£) C L one has, by Theorem 1.3.1, that Lis a (k — 1)-secant of X on Z . Thus, 

L = Âk-^(pll . . . , pk) = Ak(p, Pu..., pk), 

and Theorem 2.3.1 is proved. 

Suppose that p G J, x = (p0, . . . , pk) G Jk+1, -1 ^ k ^ n. Put 

7 (/>,*) = 2 1 - 1 -
Pi=V 

Thus, 7 (p, x) ^ Ô(p, Ak{x)). 

THEOREM 2.3.2. Suppose that X C J, oc G X*+1. r&e» ^4*(x) is an independent 
k-secant of X if and only if 8(p, Ak(x)) = y(p, x), for all p £ X. 

Proof. Ak(x) is an independent ^-secant of X if and only if 

k=T,(*(P,A*(x)) + l) - 1. 

Since k = 2 ^ x (y(p,x) + 1) — 1, the statement follows. 

Suppose that x = (p0, . . . , pk) G Jk+l, —l^k^n. Then 

V A(,,*)(£) CA*(x). 
P<EJ 

We say that x is independent if the inclusion is improper. If y is a permutation 
of x, then 

V Ay(p,x)(p) = V Ay(ptV)(p). 

Thus, if x is independent, so is y and Ak(x) = Ak(y). 

THEOREM 2.3.3. Let —l^k^n—1. Then X (Z J is k-independent if and 
only if every x G Xk+2 is independent. 

Proof. Suppose that X is ^-independent. If x G Xk+2, then L = VpexAy(PtX) (p) 
is an ^-secant of X, h ^ k + 1. Suppose that h < k + 1. By Theorem 2.2.2, 
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X is /^-independent, so h = Y^vzx (à(P, L) + 1) — 1. Since, by the definition of 
L, y(p, x) ^ 8(p, L), for all p 6 X, we have 

* + 1 = £ (?(/>, X) + i) - i ^ E («te, )̂ + i) - i = A, 

which is a contradiction. Hence, h = fe + 1. 
Next, suppose that L = Ak(y), y Ç X*4"1, is a dependent ^-secant of X. 

By Theorem 2.3.2, there is a g € X with 7(5, 3/) < 8(q, L). Put x = (y, q). 
Then 7 O , x) ^ <5(£, L), for all p £ X, and 

V i 7 M W C ^ ^ + 1 ( x ) . 

Thus, x Ç X*+2 is dependent. 

THEOREM 2.3.4. Let X C J and let L = Ak(x) be a k-secant of X, where 
x G Xk+1. Then L is an independent secant of X if and only if the y Ç Xk+1 for 
which L = Ak(y) holds are exactly the permutations y of x. 

Proof. Firstly, suppose that L is an independent secant of X. Then by 
Theorem 2.3.2, 

V A7ip>x)(p) = V Ai(PtAHx))(p) = Ak(x). 
v£J vex 

Hence, x is independent and L = Ak(y) for all permutations y of x. 
If L = Ak(y), where y Ç X*+\ then by Theorem 2.3.2, 

y(P,y) = &(P,L) = y(p,x), 

for all p £ X and y is a permutation of x. 
Secondly, suppose that L = Ak(y) holds for all permutations y of x and L is 

a dependent secant of X. By Theorem 2.3.2, there is a >̂ G X with 7 ^ , x) < 
ô(p, L). We may assume that pt = p, for 0 ^ i ^ 7 ^ , x). Take 7 such that 

T ( P , x) = ô(p, A'(Po, . . . , p^) < è(p, A^(Po, . . . , pj+1)). 

Then ,4 m (£o , . • • , £ m ) = A^(Po, . . . , £„ £)• Thus, L = Ak(y) where 

y = (Po, • • • , £* P, pj+2,..., P,) e xk^ 

is not a permutation of x. 

THEOREM 2.3.5. Let A be k-independent. Then Ak(x) = Ak(y) exactly when x 
is a permutation of y. 

3. ARCS OF ORDER n 

Compared with arcs of higher order, arcs of order n are well behaved. For 
example, if k + 1 points of an arc of order n converge to a point then the k-
secant through them converges to Ak(p); cf. [10] and Theorem 3.4.1. Arcs of 
higher order may not have this property. Because of the relative simplicity of 
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arcs of order n we define a singularity as a point which has no neighbourhood 
of order n. Later we will see this is justified in the sense that the singularities 
of an arc are nowhere dense in / ; cf. Theorem 9.1.2. 

Arcs of order n are important in the study of elementary arcs, i.e., arcs 
whose points have right and left neighbourhoods of order n. By assuming an 
arc to be elementary one is able to avoid, or at least postpone, the consideration 
of pathological behaviour. 

3.1. Projection of arcs of order n. 

THEOREM 3.1.1. If (ft, q) has order n, then [ft, q) and (ft, q] are (n — 1)-
independent; cf. Theorem 2.2.3. 

Proof. This is true for n = 1; assume that it is true for n — 1. 
If ft < r < s < q, then A (r) (J_ An_i(s). For, (ft, s) has order n — 1 on A\s 

and hence (p, s] is (n — 2)-independent on A\s. 
Let L be an (n — 1)-secant of (ft, q) and let r be the first point of (p, q) 

with A (r) C L- Since (r, q) has order n — 1 on A\r, [r, q] is (n — 2)-indepen-
dent on A \r. In particular, L is an independent secant of [r, q] on A \r. Since 
A (r) (£_ An_i(s) for 5 G (r, q), it follows that projecting from r, one has 
l(s, L) = b(s, L),ii s G (r, q). Thus, L is an independent secant of [r, q) on A. 
Hence, (p, q) is (n — 1)-independent. 

Continuing our proof, we next verify that A (p) (J_ An^x(s), if 5 G (p, q). 
For, by Theorem 2.2.1, (ft, q) is (n — 2)-independent on ^4|s; by Theorem 
2.2.3, (ft, q) is of order n — 1 on A\s\ by our induction assumption, [p, q) is 
(n — 2)-independent on A\s. 

Furthermore, [ft, q) has order n. For, if p < pi < . . . pn < q and if 
p, pi, . . . , pn were to lie in a hyperplane, then [ft, pn) would not have order 
w - I o n A\pn. Now, since (p, q) has order n — 1 on A\p, [p, q) is (n — 2)-
independent on A \p. 

Finally, let L be any (n — 1)-secant of [ft, q) which contains A(p). Then L 
is an independent secant of [ft, q) on A \p. By the paragraph before the previous 
one, if one projects from p, 8(s, L) = ô(s, L), for all 5 G (p, q). Thus, L is an 
independent secant of [p, q) on A. 

The symmetric argument holds for (ft, q]. 

THEOREM 3.1.2. / / (ft, q) has order n on A and r G [p, q], then (ft, q) has order 
n — 1 on A\r. 

Proof. Use Theorems 3.1.1, 2.2.1, and 2.2.3. 

3.2. Properties of points. The order of a point p is the minimum order 
which a neighbourhood of p can possess. By Theorem 1.5.1, the order of a 
point is finite although perhaps not bounded. The point p is ordinary if it is of 
order n; otherwise, it is a singularity. The point p is elementary if there exist 
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U+{p) and U~{p) of order n. An arc is ordinary {elementary) if each of its 
points is ordinary (elementary). 

THEOREM 3.2.1. The set of singularities of an arc is closed. An elementary 
singularity is an isolated singularity but the converse is not in general true. 

Proof. Consider the graph of the parabola y = x2. Through each of the 
points {l/n, l/n2), n = 1, 2, . . . , construct the circle of diameter 1/n2 which 
lies above the parabola and has the same tangent as the parabola at {l/n, l/n2). 
Introducing a parameter, one obtains an arc for which the origin is a non-
elementary isolated singularity. 

We say that a point p is regular ii at{p) = 1,0 S i ^ n — 1. We say that p 
is an inflection if at{p) = 1, 0 ^ i ^ n — 2, and an-i{p) = 2. An arc is regular 
{has at most inflections) if each point is regular (regular or an inflection). 

THEOREM 3.2.2. An ordinary point is regular. 

Proof. This is true for n = 1; assume that it is true for n — 1. Let p be 
ordinary and take U{p) of order n. Let q G U{p), q ^ p. For A\p, ak{p) = 
ak+i{p), 0 ^ k ^ n - 2 . For A\q, âk{p) = ak{p), 0 ^ k ^ n - 2, since 
A {q) <t An^{p) by Theorem 3.1.1. By Theorem 3.1.2, U{p) is of order n - 1 
on A\p {A\q). Thus, p is regular on A\p {A\q), so ak+1{p) = ak{p) = 1, if 
0 ^ k ^ n — 2. Hence, £ is regular on ^4. 

3.3. Monotonicity. Let A be an arc of order n, L an oriented line and 
suppose that no {n — 2)-secant of A meets L. Then for each x G Jn, An~l {x) C\ L 
is a point <p{x) of L. We assume that there is a point Pœ C £ such that 
<p(x) 9* Pœ, for all x G J*. Put 

(Po, • • • » A*-i) ^ feo, . . • , <Zn-i)> 

if £* ^ <Z*, for all i, 0 ^ i ^ TZ- — 1. 

THEOREM 3.3.1. <p is {strictly) monotone. 

Proof. We first show that if n ^ 2 and { 0̂, • • . , Ai-3, Ai-2> ^-2} C J, then 
the mappings £ -> <p{p0, . . . , £n_3> £w_2, £) and p —• <p(£0, • • • , A*-3, g»-2, £) are 
monotone with the same sense. 

Suppose that n = 2. By Theorem 3.1.2 and projection from £0, P —> <p{po, p) 
is of order 1 and hence monotone. Take ri, r2 with po < r± < r2. We may assume 
that the orientation of L is such that (p{po, r\) < v{po, r2). There is a U{po) 
such that, if q0 G U(po), then <p(g0, r{) < <p(go, r2). Thus, p —> <p(g0, />) has the 
same sense for all q0 G U{po). Since / is connected, the case n = 2 follows. The 
general case now follows by induction using projection from p0. 

Since <p is monotone for n = 1, we may assume that it is monotone for n — 1. 
By Theorems 3.1.1 and 2.3.5, An~1{x) is symmetric. Hence, <p{x) is symmetric. 
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Suppose that (p0i . . . , pn-i) S (<Zo, . . . , qn-i)* We may assume that 
P ~>

 <P(PO> • • • » ^n-2, £) is increasing. Then 

0>(£o, • • • , Pn-2, Pn-l) ^ <p(/>0, . • . , Pn-2, ffn-l) 

^ <p(p0, . . . ,qn-2, q_n-l) 

3.4. Continuity of A*. 

THEOREM 3.4.1. If (p, q) is of order n, then Ak is continuous on [p, q)k+1, 
- 1 ^ k ^ ». 

Proof. The theorem is true for « = 1; assume that it is true for » — 1. 

Case 1. x = (£o, • • • , pk) G [£> <z)*+1> — 1 ^ ^ ^ » — 2. Take gi, g2 such 
that pi < qi < q2 < q, for all i. Then by Theorem 3.1.1, 

A*(p0', . . . , p*') = H Ak+\qu pj, . . . , />/), 

for all (po', • • • , Pk) G [pi °i)k, and the continuity of Ak at x follows by 
projection from qi and from q2. 

Case 2. x = (p0, . . . , pn-\) G [p, q)n\ not all pi are equal. By Theorems 
2.3.1 and 2.3.2, 

An~\x) = V . 4 7 ( ^ ) ( ^ ) . 

Choose neighbourhoods Ui of the points £* relative to [p, q) such that pj G Î/* 
only if £./ = £*. Put Vt = U\^Pi,x)+l. By Case 1, Ui may be chosen such that 
Ay(Pi,x) (z) is in any given neighbourhood of Ay^itX)(pi) if z G F*. Thus, it is 
possible to choose the Ui such that An~l(y) is in any given neighbourhood of 
An~l(x) if y G Z7o X . . . X £/„-i. 

Case 3. x = (V, . . . , r) G (£, g)w. Consider xt G (£, g)w such that x* —> x, 
-4w-1(^i) -* L- B y Case 1, An-2(r) C L. 

We may assume that L meets [p, q] only in r and that there is a hyperplane 
Hœ which does not meet [p, q]. Then >̂, g lie in the same open half space deter­
mined by M = An~l(xi) and Hœ exactly when J2p<s<q <TÔ(S,M)(S) is even. 
By Theorems 3.2.2 and 3.1.1, 

ô(5, M) 

S <rtis.M)(s) = X X) ««<*> (mod 2) 
p<s<q p<s<q i=0 

= E (*(*, AO +1) 
p<s<q 

= dim M + 1 

= w. 

Thus, L supports A at r exactly when w is even. 
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By Theorem 3.2.2, 0-w_2(V) = n — 1 (mod 2), Thus, a hyperplane M with 
ô(r, M) = n — 2 supports A at r exactly when w is odd. Hence, L = An-i(r). 

Case 4. x = (fi, . . . , p) Ç [/>, g)w. Suppose that #* 6 [/>, g)w, 
and An~1(xi) —> L. By Case 1, ̂ 4W_2(^) C £. By Case 2, there e x i s t s G (£, g)w 

such that y < -> x a n d ^ " 1 ^ ) ->L. L e t P G 4n_i(£)V4n_2(£). Put M = PA (r), 
where r G (£, g). By Theorem 3.1.1, An_2(p) r\ M = 0. By Case 1, there is a 
[7+0) such that no (n - 2)-secant of U+(p) meets M. Put 

^(3,) = ,4-1(3,) H M , 

tor^ £ ([/+ (p))w. Since <p(y) 9^ A (r), Theorem 3.3.1 applies and <p is monotone. 
Since there exist zt £ (U+(p))n such that s* —» x and .4W_1(^) —> An-i(p), one 
has limi_*œ <£>(3>z) = P ; cf. Theorem 5.3.1. Hence, P C L and L = An-i(p). 

THEOREM 3.4.2. If A is elementary, //zen ^4ft is continuous, 0 ^ k ^ n — 1. 

4. ARCS WITH TOWER 

The purpose of this section is to prove Theorem 4.1 which is a fundamental 
result in our development. For n = 2, the condition of continuity of the 
osculating spaces can be removed; cf. Theorems 8.1.2 and 9.1.1. For n ^ 3, it is 
an open question whether the continuity condition can be removed. 

A set {Hi\ — 1 S i S n} of spaces is called a tower if Ht £ & ? and 
H-i C • • . C Hn. An arc with tower is an arc A for which there exists a tower 
satisfying 

Ak(p)nH^^.1 = 0, 

for all £ G / , — 1 S k S n. Any arc in the affine plane which has no vertical 
tangent is an arc with tower. 

THEOREM 4.1. If A is a regular arc with tower and Ak is continuous, 
0 ^ k ^ n — 1, then A is of order n. 

LEMMA 4.2. If p is a point of an arc A satisfying the hypothesis of Theorem 4.1, 
then 

{H-1,Ho,H0A(p),...,Hn-1A(p)} 

is a tower for each of the components of A determined by p. 

Proof. To prove Theorem 4.1 for n = 1, suppose that there are points p < a 
such that A (p) = A(q). Since the image of A is not all of <^V, there is an 
inflection in (p, q), which is a contradiction. Lemma 4.2(1) is also true. We 
assume that Theorem 4.1 (n — 1) and Lemma 4.2 (» — 1) are true. 

Proof of Lemma 4.2(n). Consider Â = A\H0. Since H0 (J_ An_i(q), for all 
q G J, Â is regular. Put Hk = Hk+1, —l^k^n — 1. Since 

Ik(q) r\ Hn_k-2 = Ak(q)HQ C\ fl"„-»_i = H0, 

{Hk} is a tower for Â. Since Âk(q) = Ak(q)HQ, Âk is continuous. 
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By Lemma 4.2(n — 1), 

{B-1,Eo,BoA(p),...,31>-*A(p)} 

is a tower for each component of Â determined by p. If q ^ p and 
- l ^ J f e ^ n - 3 , then 

Ak(q)H0 H #„_*-2^ (£) = Z*(g) H Hn_k^A(p) = ff0. 

Thus ,^ , (g) H fl^^fr) = 0. 
By Theorem 4.1 (n — \), A is of order n. By Theorem 3.1.1, 

An_2(q)H0 H f M (p) = l„_2(g) H 1 ( £ ) = ff0, 

q 5^ p. Thus, ^4n_2(g) P\ H0A(p) = 0 and the proof of Lemma 4.2 (w) is 
complete. 

In Lemmas 4.3 and 4.4 we shall assume that the hypothesis of Theorem 4.1 
holds. 

LEMMA 4.3. For any point P C H\ there is at most one p £ J such that 

P C V i W -
Proof. Put <p(p) = An-x(p) Pi Hi. <p is continuous and <p(p) 5* H0, for all 

p G / . Suppose that there exist points pi < p2 such that <p(pi) = (pip2)- Then 
there exists a g G (pi, pi) such that <p((pi, Pi)) lies in one of the closed seg­
ments of Hi with end points H0 and Q = <p(q), say S. By projection from 
An-2(q) and the regularity of q, there is a point r £ (pi, P2) such that 
2? = 4(r)4n_2(g) r\Hi £ S. Now Oi, £2) is regular on A = A\R and has 
tower {R, Hi, . . . , i7w}. Since Ak(r) = Ak(r)H0f Ak is continuous. By Theorem 
4.1 (n — 1), (£1, p2) is of order w — 1 on Â. But Â (r) C ^ - 2 ( 5 ) , contradicting 
Theorem 3.1.1. 

LEMMA 4.4. If p < q, then A (p) (J_ An-i(q). 

Proof. Put P = An-i(q) H Hi. By Lemma 4.3, P C 4»-i(r) only if r = g. 
Hence, X = [r\r < q) is regular on A = ^4|P. Now {P, iJi, . . . , i7w} is a 
tower for J o n I and Ak is continuous. By Theorem 4.1 (n — 1), X has order 
» - 1 on Â. By Theorem 3.1.1, I(p) (£ In-2(q). Hence, A(p) (£ An_i(q). 

Proof of Theorem 4.1 (n). Suppose there are points p0 < pi < . . . < pn which 
lie in a hyperplane L. 

Let X = {/>|/> > po}. By Lemma 4.4, X is regular on if = A \p0. By Lemma 
4 .20 ) , 

{#_!, ff0, # o ^ (Po), . . . , Hn_iA (p0)} 

is a tower for X. Hence, 

{A (Po), HoA (Po), . . . , Hn_iA (Po)) 

is a tower for Z on 1 . Since J^ is continuous, Theorem 4.1(w — 1) applies 
and X has order w — l o n l . This contradicts Â (pi), . . . , Â(pn) C £. 
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5. FINITENESS 

We introduce the condition that a point be strongly finite. This is weaker 
than the condition that the point be elementary; cf. Theorem 5.2.1. In Theorems 
5.2.2-5.2.4, we develop properties of elementary points which will be needed 
later. Perhaps the main result of this section is Theorem 5.5.1. It describes the 
behaviour of the ^-secants of a one-sided neighbourhood of a strongly finite 
point. We will use Theorem 5.5.1 in the proof of Theorem 6.2.4. 

5.1. Fini teness and s t rong finiteness. A point p of an arc is right finite 
{strongly right finite) if, for every {n — k — 1)-space L, 0 ^ k ^ n — 1, there 
is a U+(p) such that no osculating &-space (no ^-secant) of U+{p) meets L. 
Left finiteness {strong left finiteness) is defined similarly. The point p is finite 
{strongly finite) if it is both right and left finite (both strongly right and left 
finite). The arc infinite {strongly finite) if each of its points is finite (strongly 
finite). 

THEOREM 5.1.1. Suppose that n ^ 2. A finite {strongly finite) point p is finite 
{strongly finite) on any projection Â = A \P. 

Proof. Let L G 0>n-.k-?-1 (P), 0 ^ k ^ n - 2. Then L is an {n - k - 1)-
space with P C L. Take U+{p) such that no osculating &-space (no ^-secant) 
of U+{p) meets L. An osculating &-space (a ^-secant) of U+{p) on Â is spanned 
by an osculating &-space (a ^-secant) of U+{p) on A and P. Since such a space 
meets L only in P , the theorem follows. 

5.2. E lementa ry poin ts . 

THEOREM 5.2.1. An elementary arc is strongly finite. 

Proof. This is true for n = 1; assume that it is true for n — 1. Let U+{p) be 
of order n. 

Let P be a point. If P = A{p), then no (n — 1)-secant of U+{p) contains P , 
by Theorem 3.1.1. Therefore, assume that P ^ A{p) and put L = PA {p). By 
projection from p, there is a Ui+(p) C U+{p) such that An~2{y) C\ L = 0, for 
all y 6 {Ui+{p))n~l. By Theorem 3.3.1, <p(x) = A^^x) Pi L is monotone for 
x e {U!+{p))n. If g G U!+{p) then 

lim <p{q, . . . ,g, r) = A{p). 

Thus, there exists U2
+{p) C U^{p) such that <p(x) ?* P , for all x G {U2

+{p))n. 
Hence, no {n — 1)-secant of U2+{p) contains P . 

Let L be an {n — k — l)-space, 0 ^ k S n — 2. Let P be a point on L. 
Choose U2

+{p) as above. Suppose that there is a hyperplane H through P and 
there are ̂ distinct points pi,... ,pnin U2

+{p) such that A {pi),. . . , A {pn) QH. 
Since U2

+{p) is of order n, H = \Zn
i=iA{pi)\ thus, H is an (n — l)-secant 

containing P , which is a contradiction. Hence, U2
+{p) has order n — 1 on A \P. 
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By the induction hypothesis, there is a Uz+{p) C U2
+(p) such that no ^-secant 

of U%+(p) on A\P meets L. Thus, no ^-secant of Uz+(p) on A meets L. 

THEOREM 5.2.2. Suppose that n ^ 2. An elementary point p of an arc A is 
elementary on any projection À = A\P. 

Proof. By Theorem 5.2.1, there is a U+(p) of order n such that no (n — 1)-
secant of U+(p) contains P. As in the proof of Theorem 5.2.1, U+(p) is of 
order n — 1 o n l . 

THEOREM 5.2.3. A regular elementary point p is ordinary. 

Proof. Let {Hi} be a tower of spaces such that Ak(p) C\ Hn_k_i = 0, 
— 1 S k ^ n. By Theorem 3.4.2, there exist U+(p) and U~(p) of order n 
such that Ak(q) H iJw_,-i = 0, for all a G U(p) = U+(p) U {p} U U~(p), 
— l ^ k ^ n . By Theorem 3.2.2, U(p) is regular; by Theorem 4.1, it is of 
order n. Thus, p is ordinary. 

THEOREM 5.2.4. Suppose that n ^ 2. Let p be an ordinary point or an element­
ary inflection. If P <£ An-i(p), then p is ordinary on A\P. 

Proof. Use Theorems 1.4.3, 5.2.2, and 5.2.3. 

5.3. Continuity properties. 

THEOREM 5.3.1. Let pbea point of an arc A. Given U+(p) and a neighbourhood 
U C&k" of Ak(p), there is a k-secant L of U+(p) with L Ç U(Ak(p)), 
0 ^ k ^ n - 1. 

Proof. This is true for k = 0. Assume that it is true for k — 1, where 
1 ^ H » - 1. Assume that U is open and take g £ U+(p) such that 
A (g) (J_ Ait-tip) and A {q)Ah-x(p) £ U. Let E7' be a neighbourhood of ^4*-i(£) 
such that A{q)M £ 27, for all M Ç £7'. By the induction assumption, there is a 
(k - l)-secant M of U+(p) with M G U'. Put L = A (q)M. 

THEOREM 5.3.2. Let p be a strongly right finite point of an arc A. Then 

Ak(p0,...,pk)-+Ak(p) 

as (po, . . . , pk) —» (p, . . . , p) po > p, . . . , pk > p. Hence, Ak is continuous at a 
strongly finite point, 0 ^ k ^ n — 1; cf. Theorem 3.4.1. 

Proof. By Theorem 2.3.1, we must show that given a neighbourhood 
U(Ak(p)) of Ak(p), there is a U+(p) every ^-secant of which is in U(Ak(p)). 
This is true for ^ = 1; assume that it is true for n — 1. 

Case 1. 0 ^ * ^ » - 2. Let Qu Q2 be points with Qlt Q2 (£ Ak(p) and 
QiAk(p) 7e- Q2Ak(p). Let Ui+(p) be such that no ^-secant of Ui+{p) contains 
Qi or Q2. For i = 1, 2, let Û(QiAk(p)) be a neighbourhood of QiAk{p) mA\Qi 
such that Mi H ikf2 G £7(4* (p)), if M< G Ê7((M*(£))« By projection from Qt 
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and the induction assumption, there is a U+(p) such that every ^-secant of 
U+(p) on A\Qt is in U(QiAk(p)), i = 1, 2. If M is a ^-secant of U+(p) on A 
then QtM is a ^-secant of U+(p) on 4|(? i f i = 1, 2. Since M = Ç i M H Q2M, 
Case 1 follows. 

Case 2. fe = n — 1. Let L be a line with An-2(p) H L = 0. Put 
P = An-i (p) r\ L. Let U(p) be a neighbourhood of P on L, say with end points 
<2i, (?2, and let î/(^n-2(/>)) be a nieghbourhood of ^4W_2(£) such that 
QM e UiA^ip^JorsllQe U(P),Me U(An„2(p)). Take U+(p) such that 
no (w — l)-secant of U+(p) contains Qi or <22 and every (n — 2)-secant of 
U+(p) is in C7(^4n_2(^)). By Theorem 5.3.1, there is an (n — l)-secantof £/+(£) 
which meets U(P). By Theorem 2.1.1, every (n — 1)-secant of U+(p) meets 
U(P). 

5.4. Regular finite arcs. 

THEOREM 5.4.1. A finite arc with at most inflections is strongly finite. 

THEOREM 5.4.2. A regular finite arc with tower is of order n. 

Proofs of Theorems 5.4.1. and 5.4.2. Theorem 5.4.1(1) is true; Theorem 
5.4.2(1) is the same as Theorem 4.1(1). Assume that Theorems 5.4.1 (n — 1) 
and 5.4.2 (n — 1) are true. 

We first prove Theorem 5.4.1 (n). Let P be a point and let {Hi} be a tower 
with Ho = P . Take U+(p) such that Ak(q) H i^_*_i = 0, for all a G U+(p), 
0 ^ fe ^ n - 1. Then £/+(£) is regular on ^ = 4 |P and has tower {i70, . . . , # „ } . 
By Theorems 5.1.1 and 5.4.2 in — 1), U+(p) is of order n — 1 on Â. By 
Theorem 3.1.1, it is (n — 2)-independent on Â. Let M" be a hyperplane through 
P . Since P <£ An^(q), ô(q, M) = ô(g, M), for all g 6 */+(£). Thus, 

dim V AHq>M)(q) ^ Y, (%,M) + 1 ) - 1 
qeu+(p) qeu+(p) 

= E (5(2, AO + 1) — 1 
<z€£/+(p) 

^ rc - 2. 

Hence, ilf is not an (n — l)-secantof U+(p). Thus, no (n — l)-secantof U+(p) 
contains P . 

Let L be an (n — k — 1)-space, 0 ^ k ^ n — 2. Let P be a point on L. Take 
U+(p) such that no (w — 1)-secant of U+(p) contains P and U+(p) is of order 
n - 1 on Â = A\P. By Theorem 5.2.1, there is a £/i+(£) C U+(p) such that 
no &-secant of Ui+(p) on .4 meets L. Hence, no ^-secant of Ui+(p) on A meets 
L and the proof of Theorem 5.4. l(n) is complete. 

By Theorem 5.4.1 (n), a regular finite arc is strongly finite. By Theorem 5.3.2, 
Ak is continuous, 0 ^ k ^ n — 1, and Theorem 5.4.2 (n) follows from Theorem 
4.1. 

THEOREM 5.4.3. A regular finite arc is ordinary. 
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Proof. Let p be a point of the arc and {Ht} be any tower. Take U+(p) such 
that {Ht} is a tower for U+(p). By Theorem 5.4.2, U+(p) is of order w. Hence, p 
is elementary and Theorem 5.2.3 applies. 

5.5. Behaviour of secants. Let p be a point of an arc A. Let P* G -<4*(£)\ 
Ai-i(p), 0 ^ i ^ n. The points P* are independent and are the vertices of 2n 

open n-simpleces. Let S+ be that open ^-simplex which contains some U+(p). 
If 1 ^ i ^ n and i is odd (even), let Et

+ be the open segment of PoP* with 
ends P 0 and Pt which is (is not) an edge of S+. S~ and Ei~, 1 ^ i :g w, are 
defined using U~(p) instead of U+(p). 

Let p be a. strongly right finite point of an arc. Take U+(p) such that no 
^-secant of U+(p) meets an (n — k — 1)-space spanned by points Pu 

0 S k S n — 1. Consider the (n — &)-space P0PmW . . . Pw(w_&), where 
0 < ra(l) < . . . < m(n — k) S n. Let 5 + (w( l ) , . . . , (w — &)) be the open 
(n — &)-simplex with the vertices P0 , P m ( l ) , . . . , P ^ - A O which the ^-secants 
of U+(p) meet; cf. Theorem 2.1.1. 

THEOREM 5.5.1. Pm(o+ is an edge of 5 + (m(l ) , . . . , m(n — k)) if and only if 
i is odd, 1 ^ i ^ n — k, 0 ^ k ^ n — 1. 

Proof. If k = 0, then S+ ( m ( l ) , . . . , m(n)) = 5 + , and the theorem follows 
from the definition of Em^)+ = Et

+. Hence, it is true for n = 1. 
Suppose that n = 2, k = 1. Take a £ U+(p) such that (g, >̂) does not meet 

the line A (p)A (q). S+ is divided into two open triangles by A (p)A (q) ; (q, p) 
is contained in the triangle which has E±+ as an edge. Let r Ç (q, p) be such 
that 4̂ (g)̂ 4 (r) meets Ei+ , £ 2

+ . Thus a 1-secant of U+(p), viz. 4̂ (g)̂ 4 (r), meets 
£ i + , E2+. 

Assume that the theorem is true for n — 1, where n ^ 3. 

Case 1. 1 ^ & ̂ § ^ — 2. The projections of P0 , Pm(2), . . . , Pm(n-k) from 
Pw(i) are P0 , Pw(2)_i, . . . , Pm(n-k)-i, respectively. The projection of 5+ is S+. 
Hence, the projection of Ema)+ is the open segment of P0Pm(i)_i different from 
£m(i_D+, 2 ^ i ^ n — k. But the projection of S+(ra(l) , . . . , rn(n — k)) is 
S+{m(2) — 1, . . . , m(n — k) — 1). Since £+

w(i)_i is an edge of 

S+{m(2) - 1, . . . , m(n - k) - 1) 

if and only if i is even, it follows that E+
m^) is an edge of 

5 + (w( l ) , . . . , m(n — k)) 

if and only if i is odd, 2 S i S n — &. This remains true for i = 1, by projection 
from Pm{n-k) instead of Pm(i). 

Case 2. k = n — 1. We have to show that S+{m) = Ew
+ , for 1 ^ m ^ w. 

Suppose that m > 1. Project 4̂ from -4^_3(g) into the plane P0PiPm. By Case 1, 
E1

+{Em+) is_(is not) an edge_ of 5+(l,m)_. Also, S+ = 5+(l, ra). Hence, 
£i+ = £i+, £2+ = Em

+. Since ^4i(g) meets Ei+ and £2+, ^4«-i(g) meets £i+, 
Em

+. Thus, S+(m) = £m
+ , for all m. 
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6. DUAL DIFFERENTIABILITY 

We introduce the condition that an arc be dually differentiate. This con­
dition is weaker than the condition that the arc be strongly finite; cf. Theorem 
6.1.3. In [11; 12], pathological examples of points on dually differentiable arcs 
in the plane are given. A reader desiring some motivation for our ak

+ and ak~ 
should refer to these papers. The main results of this section are Theorems 
6.2.4 and 6.3.1. The result, Theorem 6.4.2, is an application of dual differenti­
ability. 

6.1. Dually differentiable arcs. In our definition of a projective space &n, 
each &-space L corresponds to a (k + 1)-dimensional subspace of an (n + 1)-
dimensional vector space V. If we associate to L the corresponding (n — k)-
dimensional subspace of V*, then &n is again a projective space, called the 
dual 0>n* of SPn. One has &>,** = ^ V * - i , - l g i g n . 

Let A be an arc in ^ . D e f i n e a mapping A*:J^^0
n* by A*(p) = An^(p), 

for all p G / . We say that A is dually differentiable if A* is an arc in éPn* and 
Ak* = ^4w_fc_i, — 1 ^ k S n. By the definition of an arc, A is dually differenti­
able if and only if 

Ak(p) = lim^n_i(g) nAk+1(p), 

for slip G J, - 1 S k g n - 1. 

THEOREM 6.1.1. If A is a dually differentiable arc, then An-\ is continuous. 
If P G SP™ and p G / , /Aew ^ere is a U\0) such that P (£_ An-i(q), for all 
<ZG uf{p). 

Proof. Use Theorem 1.2.1. 

THEOREM 6.1.2. Let p be a strongly right finite point of an arc A. Let Pt be a 
point on Ai{p) but not on Ai-\(p), 0 ^ i S n. Then 

lim An^(q)r\PkPk+1 = Pk, 
Q-ÏP+ 

0 ^ k ^ n - 1. 

Proof. Let U(Pk) be a neighbourhood of Pk on PkPk+i. Take U+(p) such that 
no /^-secant of U+(p) meets an (n — h — 1)-space spanned by points Pu 

0 ^ h ^ n — 1, and further such that no (n — 1)-secant of U+(p) contains an 
end point of U(Pk). Let L be an (n — k — 2)-secant of U+(p). By the choice of 
U+(p), Ak+1(p) H L = 0. Thus, Ak(p)L is a hyperplane. Also, 

Ak(p)L n PkPk+1 = Pk; 

for, if P*+i C Ak(p)L, then ,4*+i(£) C 4*(£)£ and ,4*+i(» H L ^ 0, which 
is a contradiction. Let U(Ak(p)) be a neighbourhood of Ak(p) such that 
L Pi M = 0 and LM meets £/(P*), for all M G Ï/C4*(p)). By Theorem, 5.3.1 
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there is a ^-secant M of U+(p) in U(Ak(p)). Since the (n — l ) -secant LM 
meets U(Pk), all (n — 1)-secants of U+(p) meet U(Pic) by Theorem 2.1.1. 
Thus , Theorem 6.1.2 is proved. 

T H E O R E M 6.1.3. A strongly finite arc A is dually differentwble. 

Proof. Let p be a point of A and take points Pt as in Theorem 6.1.2. I t is 
sufficient to show tha t 

lim An-^q) r\Ak+1(p) = Ak(p), 
Q-ÏP+ 

- 1 S k ^ n - 1. Take U+{p) such t ha t P0 (£ ^ - i ( g ) if q 6 U+(p). Then 
^4w_i(g) P\ ^4fc+i(£) is a &-space, for all q £ U+(p). Let L be a &-space of 
accumulation of ^L_i(g) P\ Ak+i (p) as # -+p+. Since the lines PoPi, . . . , PkPk+i 
lie in^4 A + i (^) , we h a v e P 0 , . . . , Pk d L, by Theorem 6.1.2. Hence, L = Ak(p). 

6.2. T h e character i s t i c of A*. Let p be a point of an arc A Take Pu S+, 
S~, Et

+, Ef as before for Theorem 5.5.1. 

T H E O R E M 6.2.1. ak(p) = 0 if and only if Ek+i
+ = Ek+r, 0 ^ H w - 1. 

Proof. Let L= P0 . . . Pk+i . . . Pn (the h a t over Pk+i indicates t ha t Pk+\ is to 
be omi t ted) . Since ô(p, L) = k, crk(p) = 0 if and only if L supports A a t p. 
Let Hœ = Pi . . . Pn. L supports A a t p if and only if 5+ and 5~ lie on the same 
side of L. This is the case if and only if the edges of S+ and S~ along P0Pk+i are 
the same, i.e., if and only if Ek+i

+ = Ek+1~~. 
Suppose further t ha t A is a dually differentiable arc. By Theorem 6.1.1, 

there exists U+(p) such tha t Pt (£ An^(q), for all q £ U+(p), 0 ^ i g n. P u t 
<?k+(P) = 0 (ak

+(p) = 1) if A _ i ( g ) meets (does not meet) Ek+!+, for all 
2 £ U+(p), 0 g> k ^ n — 1. Also, pu t (T_I+(/>) = 0 and define <rk-(p), 
— l ^ k ^ n — 1 , similarly. 

In this and in later sections all congruences are to be considered taken modulo 2. 

T H E O R E M 6.2.2. At any point p of a dually differentiable arc 

&** = <Tn-7c-2+ + O'n-k-2 + <Tn-k-2~ + ^ - 1 + + &n-l + 0"rc-l~, 

0 S k ^ n - 1. 

Proo/ . P u t Qt = Po . . . / » - , . . . P„, 0 ^ i £ ». Then A - z _ i ( £ ) C <?, and 
An-i(p) (Z Qi> Thus , the hyperplane Qi is a point Q* of <^w* with 

P u t 

*(g) = i 4 * ( g ) e i * . . . 0 * + i * - . . G » * -

Then Ak*(p) C Co* . . ( W • • • <2«* and ,4*+i*(£) (£ Q0* . . . Qk+i* . . . & * . 
Thus , ak* (p) = 0 if and only if <p(p) supports A* a t p. This occurs if and only if 
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(p has characteristic (2) at p. In 0in, the space Q* . . . Qk+i* . . . Q* is 

<2i c\... n â+i r\...Qn 

= p 0 . . . P«-IPM n . . . r\ ( P „ . . . Pn-ic-i... pn)A n... n Po... pn 

= l^n—k—l-Ln-

Thus, <p(q) = An-i(q) C\ Pn^k-\Pn. Hence, o-k*(p) = 0 if and only if there is a 
U'(p) such that An-i(q) meets the same open segment of Pn-k-\Pn for all 
q 6 U'{p). 

Suppose that - 1 ^ k ^ n - 2. Take £ / + 0) , U~(p) such tha tP* <£ An^(q), 
for all g Ç U+(p) U [/-(£), 0 ^ i S n. Let r 6 £/+(£) and 5 Ç */-(£). By 
Theorem 6.2.1 and the definition of at

+ and af~y An_i(r) meets the same seg­
ment of PoPn-k-i as An_i (s) if and only if 

0V-fc-2+ + Vn-k-2 + Vn-lc-2~ = 0 . 

Considering the triangle with vertices P0 , Pn-jc-i, Pn and also making use of the 
case k = — 1, it follows that An-i(q) meets the same open segment of Pw_fc_iPn, 
for all q G U+(p) U U~(p), if and only if 

((7w_fc_2+ + (Tn-Jc-2 + ^ - fc -2~) + (o"rc-l+ + O'n-l + 0"w-l~) = 0. 

Suppose k = n — 1. ^4n_i(g) meets the same open segment of PQPU if and 
only if an-i+ + vn-\ + crw_f~ = 0. 

THEOREM 6.2.3. For any point p of a dually differentiable arc 

OLk = an-k-.i + (Tn-k-2
+ + CTn-k-2~ + (Tn-k-l

+ + (Tn-k-i~1 

0 ^ k S n - 1. 

Proof. By Theorem 6.2.2 and the definition of the characteristic 

«o* + • • • + <*&* = aw_i + . . . + an-k-i + o-w_fc_2+ + (7W_A;_2~ + o"w-i+ + <rn-i~> 

0 ^ ft ^ ^ — 1. I f l S k ^ n — 1, add this congruence to the corresponding 
congruence with ft — 1 instead of ft. 

THEOREM 6.2.4. Let A be strongly finite. Then 

<xic*(p) = an-k-1(p)y 

for all p G / , 0 ^ ft ^ » - 1. 

Proof. By Theorem 6.1.3, -4 is dually differentiable. With the notation as in 
Theorem 5.5.1 and ft = n — 1, one has that An^i(q) meets P m

+ , 1 ^ m ^ w, 
for all q G l/+(£)- Hence, at+(p) = 0, 0 ^ i ^ » - 1. By Theorem 6.2.3, the 
result follows. 

6.3. The Scherk-Derry duality theorem. 

THEOREM 6.3.1. The dual A* of an arc A of order n is also of order n. 

Proof. By Theorem 5.2.1, A is strongly finite and hence, by Theorem 6.1.3, 
it is dually differentiable. By Theorems 3.2.2 and 6.2.4, A* is regular. By 
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Theorem 3.4.2, A* = An-k-\ is continuous, 0 ^ k S n — 1. By Theorem 
3.1.1, A lip), —1 ^ i ^ n, is a tower for (p, q) on A ; hence 4̂ **(/>) = ^4w_t-_i(^), 
— 1 ^ i ^ w, is a tower for (£, g) on ^4*. By Theorem 4.1, (p, q) is of order n 
on ^4*, and Theorem 6.3.1 follows. 

THEOREM 6.3.2. The dual A* of an elementary arc is elementary. 

6.4. Existence of an elementary singularity. 

THEOREM 6.4.1. Let p be a point of a strongly finite arc. Let 

Pt G 4,(£)V4<_i(£), 0 Si Sn. 

The dual projection of A into the line PkPk+i has the characteristic (ak(p)) at 

p, 0 ^ k S n - 1. 

Proof. By Theorems 6.1.3 and 6.2.4, A is dually differentiate and 
«**(P) = an-*-i(£),forall/> 6 / , 0 ^ * ^ » - l .Pu tÇ* = P0. . . A - z . . . P„, 
0 ^ i ^ n. The hyperplane Çz is a point <2Ï* of Pw* and the point 

is a hyperplane P* = Ço* • • • Qn~* • • • Qn* of Pw*. One has 

(P*P*+I)* = P** r\ P*+1* 

= Ço*... 4- .* • • • G»* n Ço*... &-*-i*... a* 
= Ço • • • Qn-k-1 Qn-k • • • Qn • 

We may project A* from (PkPk+i)* by successively projecting from 
Ço*, • • • , Qn-k-* and then from Qn*, . . . , Ç^-yt-i*. The result is an arc with the 
characteristic («„_*_!*(/>)) = (ak(p)) dit p. 

THEOREM 6.4.2. If a finite arc has a singularity, ^ Àas an elementary singularity. 

Proof. Let w = 1. We may assume that there is a point P œ such that 
-4 (£) F^ P œ , for all p £ J. By Theorem 4.1, every regular subarc of A is of 
order 1. 

Suppose that A has a singularity but no elementary singularity. Then A 
has an inflection pi. There is a neighbourhood (gi, f i) of £i such that 
A(p) 9* A (px), for slip G (qi,r!),p 9^ pi. We may assume that A (qt) = A{rx) 
and that A (p) ^ A (gi), for all p £ (gi, fi). Since p\ is not elementary, at least 
one of the intervals (qi,pi), (pi,ri), say Xi, contains an inflection. Let Y\ 
be the other interval. Note that X± P Fi = 0 and 4̂ (Xi) = 4 (Fi). 

Repeat the above using X\ instead of J. Thus, p2, q2, r2, X2 and F2 are defined. 
Continuing indefinitely, one obtains sequences Xu Yt,i= 1 , 2 , . . . , such that 
Xt nYi = 0, AÇXj) = A (F,) , and Xi+ll Yi+1 CXU i = 1, 2, . . . . I t 
follows that A(Xi+1) = A(Xi+1) CA(Xt), i = 1, 2, Thus, there is a 
point P G Pi i A (Xi). Hence, P meets each Yt. But the Yt are disjoint. Thus, P 
meets [gi, r j infinitely often, contradicting Theorem 1.5.1. 

Thus, Theorem 6.4.2 is true for n = 1; assume that it is true for n — 1. 
First, suppose that A has at most inflections. By Theorem 5.4.3, A has an 
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inflection pi. Let L be a line such t h a t An_2(pi) r\ L = 0. Since pi is finite, we 
may assume t h a t An_2{p) H L = 0, for all p £ J. P u t 

<p{p) = An_i{p)C\L, 

for all p £ J. By Theorems 5.4.1 and 6.4.1, <p is an arc in L with characterist ic 

fa-lip)) 2Ltp. 
Since <p has the singularity £ i , it has an elementary singularity p2. pi is an 

isolated inflection of A. There is a U+(p2) which is regular and has a tower. By 
Theorem 5.4.2, U+(p2) is of order n. Hence, p2 is an e lementary inflection. 

Next , assume only t h a t A has a singularity p%. Let P be a point with 
P (£_ An^i(pz). Since p$ is finite, we may assume tha t P (£_ An_i(p), for all 
p £ J. Iî Â = A\P is ordinary, then A has a t most inflections and the theorem 
follows. If Â has an elementary singularity p±, take U+{p±) and U~(PA) of 
order n — 1 on Â. On A, U+(p\) and U~~ip±) have a t most inflections. If either 
contains an inflection, Theorem 6.4.2 follows. If both are regular, p± is 
e lementary as above. By Theorem 5.2.3, p\ is non-regular on Â. Hence, p± is 
non-regular on A. 

7. MULTIPLICITIES 

We define the multiplicity with which an osculating &-space Ak(p) meets an 
in — k — 1)-space L. T h e use of multiplicities allows us to prove some con­
gruences which hold for any elementary curve; cf. Theorems 7.4.1 and 7.4.2. 
In Theorem 7.5.9, we give a geometric interpreta t ion of multiplicités. From this 
there follows a lower bound for the &-th rank number of an elementary point ; 
cf. Theorem 7.5.10. 

7.1. Def in i t ion of m u l t i p l i c i t i e s . 

T H E O R E M 7.1.1. Let a tower {Ht} of spaces and an (n — k — I)-space L be 

given, 0 ^ k ^ n — 1. Then there exist points PT(o), • . • , PT(n-k-i), where 

0 ^ T ( 0 ) < . . . < r(n - k - 1) ^ n, 

such that L = Vj=o_ 1 PT(j) and PT(j) is on HT^) but not on 

HTU)-U 0 ^ j ^ n - k - l . 

The numbers r ( 0 ) , . . . , r(n — k — 1) are uniquely determined by the spaces Ht 

and L. 

Proof. Suppose t h a t 0 S i S n and dim {Hi C\ L) = d. We show there exist 
points PT(o), . . . , PT(d)j where 

0 ^ r (0 ) < . . . < r{d) ^ i, 

such t h a t HiC\L = V =̂o PrU) a n d PrU) 1S o n ^ - o ) bu t not on HT{j)_i, 
0 èj S d. 

This is t rue for i = 0; assume t h a t it is t rue for i — 1 < n. If 

i2\_i C\L = Htr\L, 
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the statement is clear. Thus, assume that H^i r\ L ^ Htr\ L. Then 
dim (Hi-i C\ L) = d — 1. Let PT(o), • . • , PT(a) be points where 

0 ^ T (0 ) < . . . < r(d - 1) ^ i - 1, r{d) = i, 

such that 
a-i 

H^ n L = V P T 0 ) , PT( j ) CHtC\L 
3=0 

and PT(;) is on -ffVo) but not on i7T(y)_i, 0 ^ j S d. Then Ht r\ L = V^_o PTo) 
and the statement follows. 

If the r(j) were not unique, there would exist more than n — k independent 
points which span L, which is a contradiction. 

Let p be a point of an arc and let L bean (n — k — l)-space, 0 ^ & ̂  w — 1. 
Putting Ht = At(p), —1 S i ^ n, Theorem 7.1.1 implies there exist points 
PT(0), . . . , PT(n-ft-i), where 0 ^ r(0) < . . . < r(# — & — 1) ^ w, such that 
L = V^S"1 P T 0 ) and T(PT(J)J p) = T(j) - 1, 0 ^ j ^ n - k - 1. We say 

that L has the type (r(0), . . . , r(w — k — 1)) relative to ^. Thus, every space 
L has a uniquely determined type relative to p. 

THEOREM 7.1.2. Suppose that n ^ 2. Let P be a point of an (n — k — l)-space 
L.SupposethatPùonAT(r)(p)butnotonAT(r)_i(p),whereO ^ r ^ n — k — 1. 
Then the type of L relative to p on Â = A \P is given by 

_ irii) if 0^i<r 
W-\r(i+l) L) - 1 if r < i + l ^ n - k - l . 

Proof. Choose points PT(i), O^i^n — k — 1, as in Theorem 7.1.1 with 
Ht = At(p), - 1 g i S n. We may take PT(r ) = P . Then 

L = (PPT(0)) . . . (PPT(r_l))(PPT(r+l)) . . . (PPT(n-fc-l)), 

and the statement follows. 

Let p be a point of an arc and let L be an (n — k — l)-space, 0 ^ k ^ n — 1. 
The multiplicity with which L meets Ak is denned as 

ra—fc— 1 i+k 

i=0 ;=T(i) 

where (r(0), . . . , r(n — k — 1)) is the type of L. Thus, if L is a hyperplane, 
then 

M ( £ , £ ) = Z «<(£) = PHV,D(P). 

THEOREM 7.1.3. Suppose that n ^ 2. L ^ P be a point of an (n — k — 1)-space 
L. For Â = A\P, one has 

k 

i=7T(P,p) + l 

0 ^ & ^ » - 2. 
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Proof. Put T = TT(P, p). By Theorem 1.4.3, 

t2 

E 

12+1 

X) «*(£) if 7T < ii 
= û + l 

«•z i «.2 + 1 

Choose points PT(o, 0^*i^n — k — 1, as in Theorem 7.1.1 with 
i?« = -4i(P)t — 1 ^ i ^ », such that PT ( r ) = P , where 0 ^ r g » - i - 1. 
Then TT = r{r) - 1. By Theorem 7.1.2, 

w—A;— 2 i+k 

t(P, £) = E E a^) 
r—1 i+k n—k—1 i+k—1 

= E E a,(£) + E E a,(p). 
t = 0 j=T(i) i=r+l i = T ( i ) — 1 

Case 1. 7T < r(0). Since 7r = r{r) — 1, r = 0. Hence, 
n—k—1 i+k— 1 

£(/>,£) = E E a>(P) 
i = l j=T(i) — 1 

w—A:—1 i+fe 

= E E «,(*>) 
k 

= »(P,L) - X a,(p). 
j=T(0) 

Case 2. r(0) ^ w ^ k. Since r(> — 1) ^ x < r(r + 1) — 1, we have 
r— 1 t+f t+1 n—k—1 i+k 

&(p,L)= E E «*(/>)+ E E «>(*>) 
Î = 0 j=r(i) i=r+l j=T(i) 

r+k r+k 

= *»(/>.£) - E «>(£) + E «>(/>) 
i = r ( r ) .?'=&+1 

A: 

= v.(P,L) - E «>(£)• 
j=T( r ) 

Case 3. & < 7T. Since r{r — 1) ^ 7 r < r ( r + 1) — 1, we obtain 
7T—A;—1 i+A: r—1 i+k n—k—1 i+k—1 

P(P,L)= E E »>(/>)+ E E &i(p) + E E ay(/0 
t = 0 j = r ( i ) i=TT—k j=T(i) i=r+l j=r(i) — l 

ir—k—1 i+k r—1 t+Ac+l w—A;—1 i+k 

E E «,(*>) + E E «,(p) + E E «>(*>) 
v_n „_w„-\ .-_„_ 7, «•_,/ '^ i = r + l j=r(i) 
i=0 j=T(i) i=TT—k j=r(i) 

/"TA/ /"TA/ 

= H(P,L)- E «>(*>) + E «*(*>) 
j=r(r) j=ir+l 

7.2. Multiplicities for ^4*. 

THEOREM 7.2.1. Let A be dually differentiable. Let (r(0), . . . , r(n — k — 1)) 
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be the type of an (n — k — 1)-space L relative to p. Then the type of L relative to p 
on A* is given by 

i if 0 S i < n — r{n — k — 1) 
i + 1 if n — r(n — k — 1) < i + 1 < n — r(n — k — 2) 

T*d) = 

[i — n — k if n — r(O) < i + n — k ^ n. 

Proof. Choose points Pt £ Ai(p)\At-i(p), 0 ^ i S n, such that PT ( ; ) C L, 
0 ^ j ^ n - k - 1. Put Qt = Po . . . Pn-i. . .Pny0 Si Sn. The hyperplane 
Q, is a point <2** of 0>n*. The point P , = Q0 P . . . P Qn_i H . . . Pi Qn is a 
hyperplane P<* = Q0* . . . Qn-i* . . . (?„* of ^w*. The (n - & - l)-space L 
is a fc-space L* of ^ w * . 

£ * _ p*T ( 0 ) P . . . P P- T(W_fc__i) 

= <2o* • • • C U « , ) * . • . Qn* H . . . H C o * • • • & - r < - * - l ) * . . . Qn* 

= Qo . . . Qn-T(n-jc-l) . . . Qn-T(0) • • • Qn • 

THEOREM 7.2.2. Let A be a strongly finite arc. Then 

f(p,L) = ii(p,L), 

for every (n — k — l)-space of SPn, 0 S & ^ n — 1. 

Proo/. By Theorems 6.2.4 and 7.2.1, 
* i+n-k-1 

n*(p,L) = Z Z «/(/>) 
i = 0 j=T*(i) 

n—T(W-A;—1)-1 <+w—*—1 w — T ( W - A ; - 2 ) - 1 i+n-k-2 

= Z Z «/(/>) + Z Z «,*(*>) 
i = 0 ; '= i i=n— r{n—k—1) + 1 j = 2 

n _ T ( 0 ) - l i 

+ . . .+ Z E «,*(*>)+o 
f = n - T ( l ) + l j = i 

n—T(W—fc—1) —1 w—i—1 w— T(n—fc— 2) — 1 n— i— 1 

= Z Z «,(*>) + Z Z 
i=0 j=k—i i=n—T(n—k—l) + l j=k—i+l 

W - T ( 0 ) - 1 n - 2 - 1 

+ . . .+ Z Z «,(/>) 

,(*>) 

z z 
i=n— T ( 1 ) + 1 j*=w—i—1 

w—1 T(W—fc—1) 

= Z «,(*>) + • • • + Z <*I(P) 
j=k j=k—(n—T(n—k—l))+l 

r(n—Jfc—1)-2 T(n-fc—2) 

+ Z «,(/>) + . . .+ Z «,(*>) 
j=k—(n—T (n—k— 1) ) ;=fc— (n— r (n—A;— 2) ) + 2 

T ( l ) - 2 T(0) 

y = T ( l ) - 2 J=T(0) 
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The last equality follows since the sum of the (m + l)-st terms is 

^ aj(p)y O r g m ^ f z — k — 1. 

7.3. Reduced rank numbers. Let K be an oriented circle. A mapping 
C: K —> &Q1 is directly differentiate at p £ K if the restriction of C to a 
neighbourhood of £ is directly differentiate at p. C is a cwn;e if it is directly 
differentiable at each of its points. 

THEOREM 7.3.1. Let C be a curve. Then 

for any two hyper planes Lx and L2. 

Proof. By Theorem 1.5.1, both sides are finite. 
Suppose that n — 1 and Li ^ L2. Let S be one of the two open segments of 

<^V determined by Li and L2. If C(£>) = Lz-, let m^p) be the number of one­
sided neighbourhoods of p which are mapped into 5. Thus, 0 ^ nii(p) ^ 2. Put 

C(p)=Li 

Then 

VdK 

But ni\ + m2 is twice the number of intervals (p, q) mapped into 5 with 
{C(p), C(q)} C {LlyL2}. Hence, m\ = m2. 

Assume that the theorem is true for n — 1. Let L be a hyperplane and let P 
be a point on L not on C We project from P and use Theorem 1.4.3. 

Case 1. P <t CHp,L)(p). Then ô(£, L) = ô(p, L) and $(£, L) + 1 ^ TT(P, £ ) . 
Hence, 

p(£ ,L) = ft = ft = iS« = /*(£,£)• 

Owe 2. P C Ca(ffti)(^). Then ô(p, L) = ô(p, L) - 1 and 0 ^ ir(P,p) < 
8(p, L). Hence, 

~HP,L) 

Ji{p,L) = X) ôLiiP) 
i=0 

r(P,p)-l 8(p,L)-l 

= 23 ai(P) +a*(P,p)(P) +«x(P,p) + l(P) + S OLi+l(p) 
i=0 i=r(P,p) + l 

S(p,£) 

= Ê «*(̂ ) 

Except possibly when n = 2, there is a point P C Li P\ L2 not on C. 
Then the induction hypothesis and the above cases apply. If n = 2 and 
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L\ C\ L2 is on C, let Pt be a point on Lt not on C, i = 1, 2. Put L = PiP 2 . 
Then 

E /«(£. i i ) = E /*(*>, i ) = E /*(£, i 2 ) . 

THEOREM 7.3.2. Let C be a strongly finite curve. Then 

]£/*(£. la) = Z M(^,^2), 

for any two (n — k — l)-spaces Li and L2, 0 ^ k ^ n — 1. 

Proof. Since C is a finite curve, both sides are finite. The theorem is true for 
n = 1, by Theorem 7.3.1 ; assume that it is true for n — 1. 

First, assume that 0 ^ k ^ n — 2. We may assume that Li, L2 have a point 
P in common. Then the induction hypothesis and Theorem 7.1.3 apply. 

If k = n — 1, then Theorems 7.2.2 and 7.3.1 apply. 

Let C be a curve such that 

X) niPiLx) = X) /*(£, £2), 

for any two (n — k — 1)-spaces Li and L2, 0 ^ k ^ ^ — 1. The reduced &-th 
mw& number pk of C is defined to be 0 or 1 such that 

Pa = X) n(p,L), 

where L is an (n — k — l)-space, 0 S k ^ n — 1. Also, put p_i = pn = 0. 
By Theorem 7.3.2, the reduced &-th rank number of a strongly finite curve is 
always defined. 

THEOREM 7.3.3. Let C be a strongly finite curve. If n ^ 2 and one projects C 
from a point P , then 

k 

Pk = Pk — X X «*(/>)> 
P^K i=7T(P,P) + l 

- 1 ^ jfe ^ » - 1. 

Proof. For & = — 1, this is clear. For 0 ^ k ^ n — 2, use Theorem 7.1.3. 
U k = n — 1 then the type of P relative to >̂ is r = 7r(P, >̂) + 1. Hence, 

n— 1 w—1 

; = T i=vr (P ,p )+ l 

THEOREM 7.3.4. Le/ C be a strongly finite curve. The reduced &-th rank number 
pfc* 0/ C* is defined and 

«jc 

Pk — Pn-k-U 

- 1 ^ k ^ W. 

Prw/. Use Theorems 7.2.2 and 7.3.2. 
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7.4. Congruences for elementary curves. 

THEOREM 7.4.1. Let C be an elementary curve. Then 

E (ak(p) — 1) = Pk-i + Pk+u 

0 ^ k ^ n - 1. 

Proof. Suppose that n = 1. Since C is elementary, each of the h singularities 
is an inflection. Since C changes direction an even number of times, h is even. 
Thus, h = ^p£K (OLO(P) — 1) is even. 

Assume that the theorem is true for n — 1. 

Case 1. 0 ̂  k ^ n — 2. Projecting from a point P , we obtain 

E &*(P) - i) s E («*te) - i) + E («*(/>) + «*+I(P) - i) 
pCiE k<ir(P,p) k-=ir(P,p) 

+ E k i W - i) 
7r(P,p)<fc 

= E («*(*>) - i) + E «*+*) 
pÇ-RT k=ir(P,p) 

+ E («H-I(P) -«*(/»)). 
TT(P,p)<k 

By Theorem 7.3.3, 
*—l *+i 

pk-l + pk+l = P*-l + P&+1 — E E ai(P) — E E «i(^) 
P€K i=7T(P,p) + l p^K" i=7T(P,p) + l 

= Pk-i + Pk+i + E (Pk(P) +&k+i(p)) + E a*+i(^)-
ir(P,p)<k ir(P,p)=k 

Case 2. k = n — 1. By Theorem 7.3.4, 

E K-i(£) - i) = E («o*(/o - i) 
PCK pes: 

^ P-i* + Pi* 

= Pn + Pn-2» 

THEOREM 7.4.2. Let C be an elementary curve. Then 

n - l 

E E faiiP) — 1) = PO + Pn-l, 
pes: t=o 

E £ (» - *)(««(*>) - i) ^ (» + I)PO. 

Proof. Use Theorem 7.4.1. For the significance of the left hand sides compare 
with Theorems 8.9.2 and 8.10.1. 

In [7], it is proven that the &-th rank number of a curve of order n is bounded 
and it is conjectured that the &-th rank number is (k + l)(n — k). The follow­
ing shows that the &-th rank number, with multiplicités taken into account, is 
at least congruent to (k + l)(n — k) modulo 2: 
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THEOREM 7.4.3. Let C be a curve of order n. Then 

Pk= (k + l)(n-k). 

Proof. By Theorem 3.2.2, each point of C is regular. By Theorem 7.4.1, 
Pfc-i + Pic+i = 0, if 0 ^ k ^ n — 1. From pn + pw_2 = pn-2 + pn-4 = • • • and 
pw_i + p„_3 = pw_3 + pn~b = . . . it follows that 

= (Oifk = n 
pk ~ \n if k = n - 1. 

In both cases, pk = (k + l ) (n — &). 

THEOREM 7.4.4. Le/ C fre an elementary curve with tower. Then pk = 0, 
— l ^ k ^ n , and J^p(zK (ak(p) — 1) is even, 0 S k ^ n — 1. 

Proof, pjc = 2 P € ^ M(£, Hn-k-i) = 0. Thus, Theorem 7.4.4 follows from 
Theorem 7.4.1. 

7.5. Interpretation of multiplicities. 

THEOREM 7.5.1. Let A be an ordinary arc and let H be an (n — k)-space such 
thatA^iq) H H = 0, for all q G / , 0 ^ ^ » - l . Then A {q) = Ak(q) f\ H 
is an ordinary arc in H. 

Proof. Since Ak_i(q)H has dimension n, An_k*(q) Pi i7* = 0. By Theorem 
6.3.1, AQ* is an ordinary arc. The projection A0*\H* of ^40* from the (k — 1)-
space H* is ordinary, by successive applications of Theorem 5.2.4. In 
gPn, A0*(q)H* is a hyperplane An-X{g) C\HoiH. By Theorem 6.3.1 applied to 
the dual of the projective space H, Â(q) = Ak(q) C\ H is an ordinary arc of H. 

THEOREM 7.5.2. Let p be a point of an arc A of order n and let L be an 
(n — k — 1)space, 0 S k ^ n — 1. If \x{p, L) = 1, then there is a neighbour­
hood U(L) of L such that, for every M G U(L), there is a q G J with fx(q, M) = 1. 

Proof. Choose points Pt G Ai(p)\Ai^1(p), 0 ^ i ^ n, such that 

L = PkPk+2 • • • Pn-

Let Hœ be a hyperplane with P0, . . . , Pk (£_ Hœ and Pk+i, . . . , Pn C #oo- The 
equations 

7.5.3 4 w ( g ) n P w M = 0 

7.5.4 Ak(q) C\ Pk+1{MC\Hœ) = 0 

7.5.5 Ak+l{q)C\ {M C\ HJ = 0 

hold for q = p, M = L. There exist neighbourhoods U(p) and U(L) such that 
7.5.3, 7.5.4, and 7.5.5 hold, for all q G U(p), M G U(L). By 7.5.5, Pk+1 <£ M 
and M <t Hm, for all M G U(L). 

https://doi.org/10.4153/CJM-1972-012-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-012-1


128 RALPH PARK 

By Theorems 7.5.1 and 7.5.3, p is an ordinary point of the arc 

A(q) = Ak{q) P Pk+1L. 

Since Âi(p) = PkPk+i, L cuts Â at p. Take r, s G U(p) with r < p < s such 
that Â (r) and Â (s) are separated in Pk+\L by L and Pk+i(L P i7œ). We may 
assume that Ak(r) P Pk+iM and Ak(s) P Pk+\M are separated in Pk+\M by M 
and Pk+i(M P H J, for all M G C7(L). 

Let M G [/(L). By 7.5.3, .4,(g) P P,+iM" is a point of P*+iikf for all 
<Z £ U(p); by 7.5.4, this point does not lie on Pk+i(M P Hœ). Hence, 
Ak(q)r\M^0, for some q € (r, s). By 7.5.3, Ak^(q) C\ M = 0. If 
^4fc+i(g) Pi M were a line, the infinite point on this line would contradict 7.5.5. 
Thus, there is no point of M in Ak+i(q)\Ak(q). Hence, fx(q, M) = 1. 

THEOREM 7.5.6. Let p be an elementary point and let L be an (n — k — 1)-space 
of type (r(0), . . . , r{n — k — 1)), 0 ^ k ^ n — 1. Suppose that there is a j 
such that either r(j) + 1 < r(j + 1), 0 ^ j S n — k — 2, or r{j) < n, 
j = n — k — 1. Then any neighbourhood U(L) of L contains a space M of type 

(r(0), ...,r(j- 1), r(j) + 1, r(j + 1), . . . , r(n - k - 1)), 

for which there exist aT(j) (p) ordinary points q with fx(q, M) = 1. 

Proof. We may assume that each point q ^ p is ordinary. Choose 

Pt G Atip^At-ilp), 0 S iS n, 

such that L = PT(o) • • • PT(w-fc-i)- Put G = PT(o) • • • PTU-D^TU+I) • • • PT(n-k-i) 
and i^ = PT(j)+iL. Then G C L C H. By Theorem 5.2.1, we may assume 

7.5.7 i M ( 2 ) n i 7 = 0, 

7.5.8 ^*+i(<z) n G = B , 

for all q 5e p. 
By Theorem 5.2.2, p is an elementary point of Â = A\G. Since 

H = (PTU)G)(PT(J)+IG), one has H = Pr(j)-jPT(j)-j+i- Let <p be the dual pro­
jection of Â in i î . By Theorem 6.1.2, <p(p) = PT( ; )_ ;; by Theorems 5.2.1 and 
6.4.1, <p has the characteristic (&Tu)-j(P)) a t P- Thus, <p(p) = L\ since 
T 0 ) + 1 < r 0 ' + 1)> <P n a s the characteristic {OLTU)(P)) a t p. 

If g ^ £, then 
*(<Z) = i î * ( g ) n ^ 

= M ) G H F 

Thus, <p may be regarded as the projection of an arc in H from G. Hence, any 
neighbourhood U(L) of L = <p(p) contains a space M 9e L with G C M C H 
for which there exist aT(j)(p) ordinary points q with <p(q) = ikf. 

We show that n(q, M) = 1. By 7.5.7, Ak^(q) C\ M = 0. Since <p(q) = M, 
Ak{q) C\ M ?£ 0. The space Ak+1(q) Pi i f cannot be a line, for, otherwise, it 
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would meet the hyperplane G of M in a point, contradicting 7.5.8. Thus, M has 
the type (k, k + 2, . . . , n) relative to q. By Theorem 3.2.2, q is regular. Thus, 
MfoM) = 1. 

Since M ^ L and L = PT(j)G, PT{j) <Z M. Thus, the line PT(j)PTij)+i meets 
the hyperplane M oî H in a point P G ̂ 4To)+i(/?)V4r0) (£). Since G CM, M 
has the required type. 

THEOREM 7.5.9. Let p be an elementary point and let L be an (n — k — 1)-space 
0 ^ k ^ n — 1. Any neighbourhood U(L) of L contains a space M for which 
there exist n{p, L) distinct ordinary points q with fi(q, M) = 1. 

Proof. By successive applications of Theorem 7.5.6, one is able to construct 
the n(fi, L) ordinary points. By Theorem 7.5.2, no points obtained in preceding 
steps need be lost when new points are gained. 

THEOREM 7.5.10. The k-ih rank of an elementary point p is at least 

n—Jc—l i+k 

Proof. By Theorem 7.5.9, with L = An-k-.i(p), there is an (n — k — l)-space 
meeting p(p, An-k-i(p)) osculating ^-spaces. But 

n—Jc—l i+Jc 

8. BARNER ARCS 

In [1], strongly convex arcs in SPn were defined. In the plane, the condition 
that an arc be strongly convex is roughly that through each point p of the arc 
there pass a line B (p) which depends continuously on p and meets the arc only 
at p. Using analytic methods, Barner proved that strongly convex arcs satisfy 
an inequality similar to that of Theorem 8.6.1. Later, Haupt studied similar 
arcs which he called arcs without (n — 2, k)-secants in the strong sense. His 
work is completely synthetic and is outlined in [7]. 

The Barner arcs which we define may seem to have little in common with 
Barner's or Haupt's arcs; cf. 8.1.1. Nevertheless, we are able to prove (cf. 
Theorem 8.6.1), the analog of Barner's theorem. Perhaps the most significant 
way in which our arcs differ from Barner's or Haupt's is that they can have 
other points than regular points and inflections; cf. Theorem 8.4.1. 

It is after our study of Barner arcs that we discovered arcs with tower. 
Such arcs satisfy a Barner-type inequality; cf. Theorem 8.7.1. By the early 
introduction, in § 4, of arcs with tower this theory has been considerably 
simplified. In Theorem 8.8.1, the inequality for arcs with tower is used to 
establish Denk's theorem. 
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8.1. Existence of Barner arcs. An arc is a Barrier arc if there exists a 
continuous mapping B: Jn~l —> SPn

n-\ such that 

8.1.1 d(p,B(x)) = py<j,,x)(p) - 1, 

for all p € / , * G Jrw"1. 

THEOREM 8.1.2. Le/ 4̂ &e an arc with tower which has at most inflections. 
Assume that Ak is continuous, 0 ^ k ^ n — 2. TTzew 4̂ is a Barner arc. 

Proof. For w = 1, any arc whose image is not &V is a Barner arc. Therefore, 
assume that n ^ 2. Let {i^} be a tower for ^4. Â = A \H0 is a regular arc with 
tower {Ho, . . . , Hn}. Âk(p) = Ak(p)H0 is continuous, 0 ^ k ^ n — 2. By 
Theorem 4.1, J is of order w - l.PutB(x) = l 7 ^ 2 ^ ) - By Theorem 3.4.1, 5 is 
continuous. By Theorems 2.3.2 and 3.1.1, ô(p,B(x)) = ô(p, Ân~2(x)) = y(p,x) 
Since y(p, x) ^ n — 2 and >̂ is at most an inflection, 

y(p,x) 

Py<p,z)(P) ~ 1 = H 1 - 1 = y(p,x). 
0 

Thus, A is a Barner arc. 

For the remainder of § 8, we shall assume that A is a Barner arc. 

8.2. Projection of Barner arcs. 

THEOREM 8.2.1. A (p) C B(p!, . . . , pn~i) if and only if p Ç {pu . . . , pn-i}. 

THEOREM 8.2.2. ô(p, B(p, . . . , p)) = pn-2(p) - h for all p e l . 

THEOREM 8.2.3. An_2(p) C B(p, . . . , p), for all p Ç / . 

THEOREM 8.2.4. If p ^ q, then A (p) (£ An_2(q). 

Proof. By Theorem 8.2.1, A (p) <£ B(q, . . . , q). By Theorem 8.2.3, 
An-2(q) CB(q, . . . ,q). 

THEOREM 8.2.5. If n è 2, A is simple, i.e., if p ^ q, then A(p) ^ A (q). 

THEOREM 8.2.6. If p ^ q and A (p) C An-i(q), then /5w_2(g) = n — 1. 

Proof. Since 4 (£) C 4„-i(g), B(q, . . . , q) ^ 4„-i(g), by Theorem 8.2.1. 
Thus, Ô(g, 5 (g, . . . ,q)) S n - 2. By Theorem 8.2.3, 3(q, B (q, . . . ,q))=n-2. 
The statement now follows from Theorem 8.2.2. 

THEOREM 8.2.7. Suppose that n ^ 2, q Ç I. If A has at most inflections, then so 
has A\q. 

Proof. By Theorem 1.4.3, q is at most an inflection of A\q. If p 9e q, p is at 
most an inflection of A\q by Theorems 1.4.3 and 8.2.4. 

THEOREM 8.2.8. Suppose that n ^ 2, q Ç I. Ifa0(q) = 1, then A\q is a Barner 
arc. If a0(q) = 2, / ^ n the restriction of A\q to either component of I\{q} is a 
Barner arc. 
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_ Proof. Given y = (ph . . . , £w_2),putx = (q, pi, . . . , pn-2) and B(y) = B(x). 
B is continuous. 

Suppose that p = q, <x0(q) = 1. Then b(p,B(y)) = b(p,B(x)) - 1. By 
Theorem 1.4.3, ft (£) = ft+iO) - ft(£),for-l ^k ^n - 2. Since ft (£) = 1 

By(.v,v)(P) = Py(v,v)+i(P) ~~ 1 = Py(i>,x)(p) ~ 1-

Thus, by 8.1.1, 

8.2.9 Kp,B(y)) = py(p,y)(P) - 1. 

Next, suppose that p 9^ q, A(q) C An-i(p). By Theorem 8.2.4, 

i4(g) <ZAn-2(p); 

hence, ir(q, p) = n — 2. By Theorem 8.2.6, ft_2(^) = w — 1; hence, 

b(p,B(x)) = P7(PtX)(p) - 1 < ft-2(£) - 1 = » - 2. 

By Lemma 1.4.1, 

8.2.10 «(MCy)) = % « W ) . 
If £ ^ g and 4̂ (g) (£ An-i(p), then ir(q,p) = n — 1 and 8.2.10 again holds. 

If p 9^ q, then y(p,y) = y(p, x) < n — 2 S ir(q, p), so by Theorem 1.4.3, 

Py(p,v)(P) = Py(v,v)(P) = Py(p,x)(p)-

By 8.1.1 and 8.2.10, it follows that 8.11 also hold if p 9* q. 

8.3. Independence properties. Suppose that A is a Barner arc in ^ 4 and 
£, g are distinct points with characteristic (2, 1, 1, 1). Then 

A1(p)A1(q) CB(p,q,r), 

for all r 6 J. If ^4i(̂ >) P\ ^4i(g) = 0 , then the inclusion is improper and the arc 
lies in the hyperplane Ai(p)Ai(q), contradicting Theorem 1.2.1. Thus, A has 
a dependent 2-secant, namely Ai(p)Ai(q). 

THEOREM 8.3.1. An (n — 2)-space L can meet a Barner arc in at most n — 1 
distinct points. 

Proof. Suppose that there are distinct points pi, . . . , pn such that A(pt)C. L, 
1 S i ^ n. Then for some j , A (pj) C V i9éjA(pi). Putx = (pu . . . , pjy . . . ,pn). 
Then A (pi) C B (x), for all i ^ 7. Thus, 4̂ (£y) C B(x), contradicting Theorem 
8.2.1. 

THEOREM 8.3.2. Suppose that n ^ 3, 1 ^ k ^ n - 2. 7/ ft_2(» = ife - 1, 
/or a// p £ J, then A is k-independent. 

Proof. By Theorem 8.3.1, a line can meet A in at most 2 points. Hence, by 
Theorem 8.2.4, A is 1-independent and Theorem 8.3.2 is true if k = 1. 
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Assume that it is true for k — 1, where 2 ^ k S n — 2. Let L be a ^-secant 
of 4̂ and let 4̂ (g) C £• Then ao(g) = 1 ; by Theorem 8.2.8, A \q is a Barner arc. 
By Theorem 1.4.3, &_3(g) = A-2(g) - 0o(g) = * - 2. If £ ^ g, then 
& - 3 < r c - 2 ^ w(q, £) by Theorem 8.2.4; hence, pks(p) = ftt-sC/O = & - 2. 
Thus, ^4|g is (& — 1)-independent; in particular, L is independent on A\q. 
Thus, 

* - 1 = £ (ô(^,i) + i) - i. 

Now Ô(g, L) = <5(g, L) - 1. If £ ^ g, then .4(g) (£An-2(p), by Theorem 
8.2.4; since .4(g) C L and dim L ^ » - 2,ô(p,L) ^ » - 3 < ir(q,p). Hence, 
if £ ^ g, ô(£, L) = <5(£, L). Thus, L is an independent secant of A. 

THEOREM 8.3.3. / / A has at most inflections it is in — 2)-independent. 

8.4. The characteristic. 

THEOREM 8.4.1. If p £ J, then at(p) = 2, for at most one i, 0 ^ i 5* n — 1. 

Proof. For w = 1, this is obvious. 
For n = 2, suppose that a0(£) = «i(£) = 2. Take £/'(£) and a line iJ^ such 

that A(p) <Z Hm and 

A{q) d A,(p),A(q) £ ffœl for all g G E7'(£). 

If one projects from p, a0(p) = ai(p) = 2. Thus, there exist points 
Pi,p2 € U' (p) and a line L such that £i < p < p2snidA(p1),A(p),A(p2) CL. 
Since <ri(p) = <*o(£) + <*i(£) = 4 (mod 2), A (pi), A (p2) lie on the same side of 
Ai(p). If, say, A (pi) lies between A(p) and 4̂ (p2) on L, then there is a. 
<Z G [p> P2] with 4̂ (g) C B(pi), which is a contradiction. 

Assume that the theorem is true for n — 1, and suppose that for some p, 
*i(p) = aj(p) = 2, where i < j . Since ô(p, B(p, . . . , p)) ^ n - 1, (3n_2(p) Sn 
by Theorem 8.2.2. Thus, in our case, fin_2(p) = w and j = n — 1. Also, i = 0, 
for, otherwise, projection from p gives a contradiction. Projecting from 
An-2(p) and using an-i(p) = 2, one obtains points £1, p2 with p\ < p < p2 

such that 4̂ (̂ >i) C ^L-2(/>M (p2). But this is impossible since 

An_2(p)A(p2) = B(p,...,p,p2), 
by a0(p) = 2. 

8.5. Ordinary subarcs of Barner arcs. 

THEOREM 8.5.1. / / (p, q) is ordinary, then A (p) (£_ An-i(q). 

Proof. The theorem is true for n = 1, by Theorem 4.1 ; assume that it is true 
for n - 1. If a0(q) = 2, then An^(q) = B(q, . . . , q) and A(p) <£ An-x(q). 
Hence, we may assume that a0(q) = 1. 

Suppose that A(p) C An-i(q). Then Â = A\q is a Barner arc with 
Â (p) C Ân^2(q). By the induction assumption, (p, q) is not ordinary on Â. By 
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Theorem 5.2.4, there exists pi G (p, q) such tha t A(q) C An-i(pi). We now 
project the interval (pi, g) on A from pi obtaining qi G (pi, q) such t h a t 
i4(^i ) CAn_i(qi). 

Consider the set 5 of intervals (r, s) of (pi, qi) such tha t yl (r) C ^ L - i ( s ) . 
Repeating the above argument , S T6- 0. Let s0 be the infimum of the 5 G (£i, gi) 
for which there exists an r with (r, 5) G S. Since />i is ordinary, pi < sQ by 
Theorem 3.1.1. Let ru st be such tha t (ru st) G S, rt converges, say, to r0 and 
Si —•» 5o. Since s0 is ordinary, r0 < So and A (r0) d An-i(so). Repeating the 
a rgument of the preceding paragraph we obtain (r, s) £ S with 5 < s0, con­
tradicting the definition of s0. 

T H E O R E M 8.5.2. / / (p, q) is ordinary, then [p, q] is of order n; thus, an ordinary 
Barner arc is of order n. 

Proof. The theorem is true for n = 1, by Theorem 4 .1 ; assume tha t it is t rue 
for n — 1. Suppose tha t pi, . . . , pn+i lie in a hyperplane, where 

P£pi<...< Pn+i ^ q. 

Since p2 G (p, q), ao(p2) = 1, by Theorem 3.2.2 and A\p2 is a Barner arc. By 
Theorem 3.1.2, p2 is ordinary on A\p2. If r G (p, g), r 9^ p2, then 

A(p2) <tAn_i(r), 

by Theorem 8.5.1; hence, r is ordinary on A\p2, by Theorem 5.2.4. By the 
induction assumption, [p, q] is of order n — 1 on A\p2. This is a contradiction 
since pi, pi, . . . , pn+i lie in a hyperplane in 0>n~1(A (p2)) 

T H E O R E M 8.5.3. If p < q < r and (q, r) is ordinary, then 

A(p) (tAn_i(q)r\An_i(r). 

Proof. T h e theorem is true for n = 1 ; assume tha t n ^ 2. By Theorems 8.5.2 
and 3.4.1, An_2 and An-i are continuous on [q, r]. 

Suppose t h a t A(p) C An-i(q) C\ An_i(r), p < q < r. By Theorem 6.3.1, 
there is an s0 G (g, r) such tha t A (p) (£_ An^i(s0). Thus , there exist q0, r0 such 
t ha t q ^ qo < SQ < rQ ^ r, 

8.5.4 A(p) (tAn_i(s), 

for all 5 G (go, ^0) and 

8.5.5 A (p) C ^ W f f o ) r\ An_i(r0). 

By 8.5.4 and Theorem 5.2.4, (q0, r0) is ordinary on A\p. 
By Theorem 8.3.1, A(p), A (g0), A(r0) span a plane ikf. P u t Lx = ^4(£)^4(g0), 

L2 = 4̂ (£)^4 (r0). If 5 G (go, ^o], then An-2(s) C\ Li = 0; otherwise, projection 
from £ yields a contradiction of Theorem 8.5.1. Thus , An-2(s) Pi ikfis a point 
for all 5 G [go, fo] and does not lie on Lx or L2, if s G (go, fo). Since it depends 
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continuously on s, there is a line L such that A (p) C L C M and 
4W_20) H L = 0, for all 5 e [go, r0]. Put 

<p(s) = An_±(s) H L, *(*) = B(s, . . . , s) r\ L, 

for all 5 6 [qo, rQ]. <p and ^ are continuous. By Theorem 7.5.1, <p is monotone. By 
8.5.5, <p(s) moves from A (p) to A (p) when 5 moves from q0 to r0. If s Ç (g0, fo), 
5 is regular, by Theorem 3.2.2 and so <p(s) 9^ ̂ (s), by Theorem 8.2.2. Also 
\l/(s) y£ A (p), for all s Ç [qQ, r0]. Such <p and \f/ cannot exist. 

8.6. Barrier's theorem. We define the multiplicity of a point p as 

n - l 

v(p) = 2 (»-*)(«*(?) ~ 1). 
t=0 

THEOREM 8.6.1. Let A be an elementary Barner arc. Then 

Z /*(£,£) ^ Z "(0) + », 
for every hyper plane L. 

Proof. Suppose that the theorem is true for YIPZJ V(PJ L) finite. Then 

Z »(P,L) ^ Z viP) +n 
P1<P<P2 P1<P<P2 

^ Z viP) + n. 

If YlviPy L) is infinite, then so is ^2P^j v(p) and the theorem is true. We may, 
therefore, assume that J^p^j ix{p, L) is finite. We may also assume that 
JIPZJ

 V(P) ls finite. Then A has only finitely many non-regular points. 
Suppose that n = 1. If^L(^) = L, for & points p, and h of these points are 

inflections, then ^2P^j \x(p, L) = h + k. Since A is a Barner arc, each of the 
k — 1 open intervals determined by these k points contains an inflection. Thus, 

* - 1 + h £ Z "(P). 
P<LJ 

Assume that the theorem is true for n — 1 and let L be a hyperplane. 

Case 1. There is a point q with a0(q) = 1 and A (q) C L. 
Put A = A\q. 

LEMMA 8.6.2. 

£ P(P, i ) ^ D »(*>) + » - 1. 

Proof. Use Theorems 5.2.2 and 8.2.8 and the induction hypothesis. 

LEMMA 8.6.3. LetX be the set of inflections r 9^ qof A with An-\{r) = L. Then 

Z P(P,L) = Z n(P,L) -2\X\ - 1 . 
p£J PU 

Proof. Write /*, fc, 5 instead of /x(/>, L), &(£), <5(p, L). Note that X is finite. 
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Case (i). p = q. By Lemma 1.4.1, 5 = 5 — 1. Thus, by Theorem 1.4.3, 
fi = ft = ft_i = ft — ft = 0a — 1 = M — 1, since a0(g) = 1. 

Casé? (ii). 7r(g, p) = w — 2, 5 < n — 2. One has 5 = 5; so /Z = ft = & = 
ft = /i-

Case (iii). ir(q, p) =n — 2, 8 = n— 1. One has 5 = 5 — 1. Also, 

P = 0 *= X) «,(£) 
î=0 

and 
n - l 

M = ft = X) «*(£)• 
z=0 

If £ is regular /Z = /x; if p is an inflection /z = /x — 2; by Theorem 8.2.6, only 
these possibilities can occur. 

C<zs£ (iv). ir(q, p) = n — 1. Here, 5 < n — 1 and 5 = 5. Thus, 

p, = ft = ft = ft = M-

LEMMA 8.6.4. Le/ F&e 2Ae ^ of regular points r ^ g 0/-4 wi/A 4̂ (q) C ^L-i M i 
let Z be the set of non-regular points r ?± q. Then 

E *(P) = E »(P) + \Y\- \Z\. 

Proof. We are assuming that Z is finite. By Theorems 5.2.3 and 8.5.3, Y is 
finite. 

Case (i). p = q. Then 

v= £ (»-*- l ) (a<(£) - 1 ) 

= E ( » - * - i ) ( « « . i f o ) - i ) 
i=0 

= E (»-*)(«<(/>) - 1) = ". 
i= i 

since ceo(g) = 1-
Case (ii). ir(q, p) = n — 2. If £ is regular, then v = 0, 5? = 1. If £ is an 

inflection, then v = 1, ? = 0. 
Case (iii). ir(q,p) = n — 1. 

* = £ ( * - * • - 1 ) ( « « G o - i ) 

= E (» - *)(««(*>) - i) - E («<(*>) - i) 
1=0 

- l 

= ^ E (««GO - D-
t = 0 

Thus, V = v iî p is regular; otherwise, v = v — 1, by Theorem 8.4.1. 

https://doi.org/10.4153/CJM-1972-012-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-012-1


136 RALPH PARK 

LEMMA 8.6.5. Let X, Y, Z be as in Lemmas 8.6.3 and 8.6.4. Then 

2\X\ + \Y\ - \Z\ ^ 0 . 

Proof. The set X KJ Y U {q} determines \X\ + \Y\ open intervals. By 
Theorems 8.5.1 and 8.5.3, none of these intervals is ordinary; by Theorem 5.2.3, 
each of these intervals contains a non-regular point. Hence, 

\X\ + \Y\ ^ \Z\X\ = \Z\ - \X\. 

By Lemmas 8.6.2-8.6.5, 

Zn(P,L) =Zfi(P,L)+2\X\ + l 

^EKp) + ( » - 1) +2\X\ + 1 
= E"(P) + |F| - \Z\ +2\X\ +n 

^X>0) +»• 
This concludes the proof of Theorem 8.6.1 in case 1. 

Case 2. a0(q) = 2, for all a with A (q) C L, and there are at least two such 
points. By Theorem 8.2.6, d(q, L) ^ n - 2, for all q with A(q) C L. By 
Theorem 8.4.1, n(q, L) S n = v(q), for such q; hence, 

E /*(*>,£) ^ E v(p) ^ E v(p)+». 

Case 3. There is only one point q with A(q) (Z L and this point satisfies 
a0(q) = 2. Then £ M(£, L) ^ n + 1. Let M = An-2(q)A(r), r ^ q. Then 
w + 1 ^ 2 /t(^, M), so J2 v(p, L) ^ X) M (A M) and Barner's theorem 
follows. 

THEOREM 8.6.6. The inequality of Theorem 8.6.1 holds if A is a Barner arc 
with at most countably many singularities. 

Proof. Suppose that A is regular. By Theorem 3.2.1, the set 5 of singularities 
of A is closed. By Theorems 5.2.3 and 8.5.2, S contains no isolated points. Since 
a non-empty perfect subset of / is uncountable, 5 = 0; cf. [8]. By Theorem 
8.5.2, A is of order n. 

Suppose that A is not regular. We may assume that J ^ j - v(p) is finite. Then 
the non-regular points decompose A into finitely many regular arcs. Thus, A 
is elementary and Theorem 8.6.1 applies. 

8.7. Main theorem for arcs with tower. 

THEOREM 8.7.1. Let A be an elementary arc with tower. Then 

H v.(p,L)^^r £ (at(p) -l)+n, 

for every hyperplane L. 
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Proof. As in Theorem 8.6.1, we may assume that both sides are finite. 
For n = 1, Theorems 8.6.1 and 8.7.1 are the same. We may, therefore, assume 

that Theorem 8.7.1 is true for n — 1. Let {H{} be a tower for A. 
Suppose that H0 C L. By Theorem 5.2.2, Â = A\H0 is an elementary arc 

with tower {H0, . . . , Hn\. Hence, 

s.7.2 E nip,L) è E E M) - i) + » - i. 

Since H0 <£ A - i O ) we have <5(>, L) S n - 2 and 5(/>, L) < 7r(iJ0, £)• By 
Theorem 1.4.3, /Z = fa = jff« = PÔ = M and â*(£) = on(p), 0 ^ i ^ n — 2. 
Thus, Theorem 8.7.1 follows from 8.7.2. 

Next, assume that H0 ÇL L. Put P = L C\ Hi. As before, 8.7.2 holds for 
A = A\P. 

LEMMA 8.7.3. Let X be the set of all points p such that P C An_i(p). Then 

E c^!(p) ^ E («»-I(P) - i) + i. 
vex Pej 

Proof. By Theorems 5.2.1 and 6.4.1, <p(p) = An^i(p) P\ Hi is an arc with 
tower in Hi with characteristic (an-i(p)) at p. Thus, Lemma 8.7.3 follows from 
Theorem 8.7.1 for n = 1. 

Suppose that 8(p, L) S n — 2. Since An_2(p) P\ i?i = 0, we have 

n - 2 ^ ir(P,p). 

If ô(p, L) = n - 2, then P <£ An_i(p) and ir(P,p) = n - 1. Thus, 

Ô(£,L) <TT(P,P). 

By Lemma 1.4.1 and Theorem 1.4.3, /I = fo = jffg = /3g = ju. 
Suppose that 8(p, L) = ^ — 1. Then 

n - 2 

p(p, i ) = E *i(p) 

= VL(P,L) - (an-2(p) +*n-l(p)) +*n-2(p). 

Combining these cases and using the fact that p Ç X if b(p, L) — n — 1, 
one has 

E M(£>L) = E /*(£,£) + E K-2&0 + <*,-i(£) -â„_2(£)) 
p€^ P € / 5(p,£)=w-l 

l £ p f e i ) + E (f*nr-*(P) +<*n-l(P) - 5 B - 2 ( ^ ) ) . 

Also, 

E E fate) - i) = E E M*>) - i) + E (*-»(*>) -1 ) 
p£J i=0 p£J 1=0 p£X 

+ E («n-2(̂ ) - 1). 
p$X 
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By 8.7.2, 

£ »(P, L) g £ £ MP) - 1) + Z «-i(?) + » - 1. 

Now Theorem 8.7.1 follows from Lemma 8.7.3. 

8.8. Denk's theorem. 

THEOREM 8.8.1. The order with or without multiplicities taken into account, of 
an elementary point p is YTï=o 0Lt(p). 

Proof. Let ord(^) (Ord (p)) denote the order of p without (with) multiplici­
ties taken into account. One has ord (p) ^ Ord (p). By Theorem 7.5.10 with 
* = 0, 

7 1 - 1 

E <*t(p) g ord(p). 

By Theorem 3.4.2, Ak is continuous at p, 0 ^ k ^ w — 1. Thus, some neigh­
bourhood U(p) of >̂ is an elementary arc with tower and contains only regular 
points except possibly p. By Theorem 8.7.1, 

Ord(£) ^ £ (at(p) - 1) +n 

n-l 

= E <*t(p). 

8.9. Earner curves. Barner curves are defined similarly to Barner arcs. 

THEOREM 8.9.1. Barner curves exist in every dimension. 

Proof. For n = 1, any curve whose image is not &V is a Barner curve. 
Therefore, assume that n ^ 2. Let C be a curve with at most inflections for 
which Cjç is continuous, 0 ^ k ^ n — 1. Assume that there is a point p such 
that the restriction A of C to i£\{^>} is an arc with tower {ijTz} with 
Ho ÇL Cn-i(p). As in the proof of Theorem 8.1.2, Â = A\H0 is of order n — 1. 
By Theorem 3.1.1, C = C\H0 is (n — 2)-independent. The remainder of the 
proof is as for Theorem 8.1.2. 

THEOREM 8.9.2. Let C be an elementary Barner curve. Then 

£ niP.L) ^ Z v(p), 

for every hyperplane L. Both sides are congruent to n + 1 (mod 2). 

Proof. The proof is the same as for Theorem 8.6.1 with slight modifications. 
In particular, the inequality of Lemma 8.6.5 can be improved to 

2\X\ + \Y\ - \Z\ + 1 ^ 0. 
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By definition, p0 = ^2P^K v(p, L). Choose L = B(q, . . . , q). Then 

po = n(q,B(q, . . . ,q)) 

= Z 0Lt(q). 

If q is at most an inflection, then 8(q, L) = n — 2 and this sum is n — 1; 
otherwise, d(q, L) = n — 1 and, by Theorem 8.4.1, the sum is n + 1. In any 
case, po = n + 1. By Theorem 7.4.2, 

Z K£) ^ (» + 1)PO = n + l. 

8.10. Curves with tower. It is clear that curves with tower exist in every 
dimension. For example, if A is an arc with tower and p < q, then the curve 
obtained by going from p to q and back to p again is a curve with tower. 

THEOREM 8.10.1. Let C be an elementary curve with tower. Then 

E r(P,L)z £ I) (a,(*0-l). 
Both sides are even. 

Proof. The proof is the same as that of Theorem 8.7.1 with slight modifica­
tions. Use Theorem 7.4.4. 

8.11. Index of a curve. The index of a curve is the minimum number of 
points which can lie in a hyperplane. The points are not counted with 
multiplicity. 

THEOREM 8.11.1. Suppose that there is a hyperplane L which meets C in only 
one point. Then the index of C is 0 or 1, according as L supports or cuts C at p. 

Proof. The index is either 0 or 1. 
Assume that L supports C at p. If n = 1, it is clear the index of C is 0. 

If n ^ 2, take an (n — 2)-space M C L with C(p) Ç£_ M. Projection from M 
shows that C has index 0. 

If L cuts C dit p, then the supposition that there is a hyperplane Hœ not 
meeting C leads to a contradiction. Hence, C has index 1. 

THEOREM 8.11.2. The index of a curve of order n (of a Barner curve) is 0 or 1, 
according as n is even or odd (odd or even). A curve with tower has index 0. 

Proof. If C is a curve of order n then, by Theorem 3.1.1, Cn-\(p) meets C only 
in p. By Theorem 3.2.2, p is regular; thus, an-i(p) = n. Hence, Cn-i(p) 
supports or cuts C according as n is even or odd and Theorem 8.11.1 applies. 

If C is a Barner curve and L = B (q, . . . , q) then, from the proof of Theorem 
8.9.2, (ih{q,L) = n + 1, and Theorem 8.11.1 applies. 

If C is a curve with tower {Hi}, then Hn-i does not meet C. 
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9. REGULAR ARCS 

If one were able to show that every regular Barrier arc is of order n, then the 
inequality of Theorem 8.6.1 would hold for all Barner arcs. For then the 
assumption that Ylvv(P) *s finite implies that the arc is elementary and 
Theorem 8.6.1 applies. Unfortunately it is not known whether or not every 
regular Barner arc is of order n. 

A large part of this section consists of the proof of Theorems 9.1.1 and 9.1.2. 
From Theorem 9.1.1, it follows that the inequality of Theorem 8.6.1 holds for 
any Barner arc for which An_2 is continuous. Haupt's work on order-homo­
geneous arcs is related to Theorem 9.1.2; cf. [7]. From Theorem 7.5.10 and 9.1.2, 
it follows that the &-th rank of any arc is at least (n — k) (k + 1) ; cf. [13]. 

One may ask whether or not a regular in — 2)-independent arc is necessarily 
ordinary. In Theorem 9.2.3, we show that this is the case if n = 2. 

9.1. The existence of an ordinary point. 

THEOREM 9.1.1. If A is a regular Barner arc and An_2 is continuous, then A is of 
order n. 

THEOREM 9.1.2. Every arc has an ordinary point. 

THEOREM 9.1.3. If A is a Barner arc with at most inflections and An_i is 
continuous, then either A is of order n or A has an elementary singularity. 

Proof of Theorems 9.1.1, 9.1.2, and 9.1.3 for n = 1. Use Theorems 6.4.2 and 
4.1. 

Assume that Theorems 9.1.1, 9.1.2, and 9.1.3 are true for n — 1. 

LEMMA 9.1.4. Let A be a Barner arc with at most inflections in £fPm. If Am—\ is 
continuous at p, then so is Am_2. 

Proof. By Theorem 8.2.2, 5(q, B(q, . . . , q)) = m - 2, for all g G J. Hence, 
Am-2(q) = Am^(q) r\ B(q, . . . , q), for all q G / . 

LEMMA 9.1.5. Let A be an arc with at most inflections. Assume that An_2 is 
continuous. Then there is a point at which An_i is continuous. 

Proof. We may assume that there is a line L such that An_2(p) C\ L = 0, for 
all p G J . Let [Pt\ i = 1, 2, . . .} be a set of points of L which is dense in L. 
By Theorem 9.1.2(n — 1), there exists a sequence Xu i = 1, 2, . . . of open 
intervals such that Xt has order w - I o n A\P\ and Xi+± C Xu i = 1, 2, . . . . 
Take p G H?=i Xt and put P = An^(p) Pi L. 

To show An„i that is continuous at p it is sufficient to show 

hm An^(q) C\ L = P. 

Let U(P) be a neighbourhood of P on L, say one with the end points Piy Pjt 

where i < j . Take q, r G Xj with q < p < r. Since Xj is of order n — 1 on 
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A \Pj, A (s) (jL An-.2(t), for all s, t G X h s 9^ t. We may define a continuous pa th 

in ^ V i by: 

An^(p) & An.2{p)A (r) & An.2{q)A (r) ^-3 ^ ( g ) 

where 
*>i(s) = i4 n _ 2 (p )4(s ) if ^ G (p,r) 

<p2(s) = i4 n_ 2 (5)4(r) if 5 G (q,p) 

<Pz(s) = 4 n _ 2 ( g M ( 5 ) if 5 G (g , r ) . 

Since Xi is of order ^ — 1 on A\P u A\Pjy no hyperplane of this pa th , except 
possibly An-i(q), contains Pt or Pj. Hence, An-i(q) C\ L G (U(P))~, where 
(U(P))- is the closure of U(P). Similarly, An^{r) C\ L G (U(P))~. Since 
g and r are arbi t rary points of Xj with q < p < r, the continuity of ^4n_i a t £ 
follows. 

LEMMA 9.1.6. Every arc A contains a Barner arc with at most inflections on 
which An-2 is continuous. 

Proof. We may assume tha t there is a hyperplane Hœ not meeting A. Let 
P i , . . . , Pn be independent points of Hm. By Theorem 9.1.2 (n — 1), there are 
subarcs X\, . . . , Xn such t ha t Xt has order n — 1 on ^4|i\-, I ^ i ^ n, and 
Xw C • • • C X i . Xw has a t most inflections on A ; for, if p G Xw, there is an i 
such tha t Pi (£_ An-i(p). By Theorem 3.2.2, p is regular on A\Pt. By Theorem 
1.4.3, £ is either a regular point or an inflection on A. 

If p G Xw, then P^ (^ An-2(p), for all i, 1 ^ i S n. For, otherwise, by 
Theorem 1.4.3, and Pt ^ A (p), one has aj(p) = 2, for s o m e j , 0 S j S n — 2, 
contradicting the above argument . Hence, An^2(p)Pt is the osculating (w — 2)-
space of ^4|P2-, for all p G Xw, 1 ^ i ^ n. Since 

^in_2(^) = n An-2(p)piy 

for all £ G Xw, 4̂W_2 is continuous on Xn\ cf. Theorem 3.4.1. 
By Lemma 9.1.5, there is a point p G Xw a t which An-\ is continuous. T a k e 

P (2 4 n - i ( £ ) and U(p) C X„ such tha t P <£ -4»_i(g) for all q G £/(£). By 
Theorem 9.1.2 (n — 1), there is a subarc X C U(p) which is of order n — 1 
on ^ = A\P. P u t £ ( x ) = In-2(x). As in the proof of Theorem 8.1.2, X is a 
Barner arc. 

Assumption. From now until the end of the proof of 9.3(n), we assume t h a t 
A is a Barner arc with a t most inflections and tha t An_2 is continuous. This is 
possible by Lemmas 9.1.4 and 9.1.6. 

If Hœ is a hyperplane and P and Q are distinct points not on Hœ, then 
Lœ (Lf) will denote the open segment of the line L = PQ which does (does no t ) 
contain L P\ Hœ. 

LEMMA 9.1.7. Suppose that (p, q) is of order n and Hœ is a hyperplane not 
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meeting [p, g]. PutL = A (p)A (g). If n is odd (even), thenAn-i(r) Pi L G Lf(Lœ), 
for all r G (p, q). 

Proof. By Theorem 3.1.1, An-i(r) meets [p, g] only at r. If n is odd (even), 
then An_i(r) cuts (supports) i a t r ; cf. Theorem 8.11.2. Thus, A (p) and A (g) 
lie in different open half spaces (the same open half space) determined by 
An^(r) and Hœ. 

LEMMA 9.1.8. Suppose that p < q < r. Let Hm be a hyperplane not meeting 
[p, r]. Put L = A(p)A(q). If (g, r) is of order n and A(p) C An_i(r), then 
An-i(s) meets Lf,for all s G (q, r). 

Proof. Since Lemma 9.1.8 is true for n — 1, we may assume that n ^ 2. By 
Theorem 8.2.5, A (p) ^ A (g) ; hence, L is a line. 

By Theorem 8.5.3, A(p) (£_ An-i(s), for all 5 G (g, r). Hence, by Theorem 
5.2.4, each s G (g, r) is ordinary on A\p and (g, r) is of order n — 1 on A\p, 
by Theorem 8.5.2. Using this and Theorem 8.5.1, we obtain 

An_2(s)r\L ^ 0 , 

if s G (g, r], and 

A(p) Ç£An-*(s,...,s,t), 

if 5, / G (g, f), s 9e t. By Theorem 8.5.3, this is true even when s — t. By 
Theorem 3.1.1, 

A(q) (tAn^(s,...,s,t), 

if s, t G (g, r) . By the continuity of An~l on (g, r), An~l(s, . . . , s, t) meets 
either Lf, for all s, £ G (g, f), o r A»> for all s, t G (g, f). 

Since ylw_2(r) H L = 0, 

<?(/) = A"-1^, . . . , r , 0 r\L 

is a point of L, for all / G [g, r]. Since [̂ >, g] lies in one of the open half spaces 
determined by B(r, . . . , r) and Hœ, B(r, . . . , r) C\ L G Lœ. Now 

*>(*) ^ B ( r , . . , r ) n i , 

for all / G (g, r) . Since <p(£) moves continuously from A (g) to A (p) as / moves 
from g to r, there is a /0 G (g, r) such that <p(to) G £/• Thus, 

An-2(r)A(t0)riL G L,. 

By the continuity of An_2 on [g, r], there is an s0 G (g, r) such that 
An~l (s0, . . . , s0y t0) meets Lf. Thus, ^4W_1 ( 5 , . . . , s, t) meets Lf for all 5, t G (g, r ) . 

LEMMA 9.1.9. Suppose that A is regular and there exist p < g, g ordinary, such 
that A(p) C ^L-i(g). 77z£w //^re &m/ f, s, with s singular, such that An_i(s) 
cuts A atr. 
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Proof. Take 5 as small as possible such t ha t (s, q) is ordinary. By Theorem 
8.5.1, p < s < g and s is singular. By Theorem 8.5.2, (s, q) is of order n. 
Let Hœ be a hyperplane which does not meet [p, q] and pu t P = A (s)A (g), 
S = A (p)A (g), Q = A (p)A (s). For any t G (s, q), An_i(t) meets Pf(PJ if n 
is odd (even), by Lemma 9.1.7; An-i(t) meets Qf, by Lemma 9.1.8; thus , 
An-\(i) meets Sœ(Sf) if n is odd (even). Since A (p) (£_ An-i(s), by Theorem 
8.5.3, and A(q) Çf An-i(s), by Theorem 8.5.1, i t follows t h a t An_x(s) meets 
Sa>(Sf) if n is odd (even). But , 5 being regular, An-i{s) cuts (supports) A a t 5 
if n is odd (even). Since An_i(s) does not meet (s, g), there is an r £ (p, s) 
such t h a t An-i(s) cuts 4̂ a t r. 

LEMMA 9.1.10. / / A is not of order n, then there exist p, q, with p < q, such that 

ô(p,A*-i(g)) = 0. 

Proof. Some hyperplane contains points p, pi, . . . , pn, where 

p < pi < . . . < pn. 
Consider Â = A\p. By Theorem 8.2.4, Ân-2(q) = An„2(q)A (p), for all 
q G (PiPn)', thus, Ân_2 is continuous on (p,pn). By Lemma 9.1.4, Ân-.% is 
continuous on (p, pn). By Theorem 8.2.7, (p, pn) contains a t most inflections 
of Â. Now (p,pn) contains an inflection of Â; otherwise, by Theorems 
9.1.1 (n — 1) and 8.5.2, [p,pn] would be of order n — 1 on Â, contradicting 
the fact t ha t pi, . . . , pn lie in a hyperplane. 

If there is only one inflection q of Â in (p, pn), then (p, q) is of order n — 1 
on Â, by Theorem 9.1.1(n — 1), and Â(p) (£Ân-2(q), by Theorem 8.5.1. 
Since q is an inflection of Â, q is regular on A and A (p) C An-i(q). Since 
Â(p) (Z Ân-2(q), A lip) <t An_i(q) and Lemma 9.1.10 holds. 

Suppose t ha t qx < q2 are inflections of Â in (p, pn). By Theorem 9.1.2 (n — 1), 
there is an ordinary point g3 of Â in (qu q2). Take g4, g 5 such tha t 

qi fk q± < qz < q$ S q2, 

(g4, g5) is regular on Â, and every neighbourhood of g4 and g 5 contains inflections 
of Â. By Theorem 9.1.1 (n — 1), (q^qs) is of o r d e r s — l o n Z . If Â(p) C ^ - 2 ( 5 ) , 
for all inflections q of Z in (p,pn), then ^4(^>) C ^ - 2 ( ^ 4 ) ^ Z^_2(g5), con­
tradict ing Theorem 8.5.3. Hence, Â(p) (J_ Ân_2(q), for some inflection q of Â 
in (p, pn), and Lemma 9.1.10 follows, as in the preceding paragraph. 

LEMMA 9.1.11. If A is regular but not of order n, there exist p, g, r, with 
p < q < r, q singular, such that A (p)An-2(q)A (r) is a hyperplane which cuts A 
at p. 

Proof. By Lemma 9.1.10, there exist s, g, with 5 < g, such t h a t 
ô(s, An_i(q)) = 0. Since ao(s) = 1, An-i(q) cuts A a t s. By Lemma 9.1.9, 
we m a y assume t h a t g is singular. By projection from An-2(q), there is an r 
with q < r such t ha t An-2{q)A (r) cuts A a t a point p < q. 

Proof of Theorem 9.1.1 (w). Suppose t ha t A is not of order n. T a k e £1, gi, r i 
with the properties of p, q, r in Lemma 9.1.11. Let Xi be a neighbourhood of q\ 

https://doi.org/10.4153/CJM-1972-012-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-012-1


144 RALPH PARK 

such that Y\ G Xi and that for all g G Xi, An^2(q)A(ri) meets A in a. point 
p (I X\, p < gi. Since gi is a singularity, we may repeat this argument using X\ 
instead of / and obtain p2, g2, r2 and X2. Continuing, one obtains pt, qu ru Xu 

i = 1, 2, . . . , such thatX^+i C Xu rt G Xu qt < ru and An_2(q)A (ri+1) meets 
X ^ \ J ^ + i i n a p o i n t ^ < q i+i, whenever q G Xi+i,i = 1, 2, . . . .We may assume 
that Pl?=iXz- = {q}. Then q < r u i = 1, 2, . . . . Also, ^4w_2(g)^4 (ri+i) meets 
X^ in a point p < q, i = 1, 2, . . . . Since g is regular on A, q is regular on 
I = ^ M w _ 2 ( g ) . T h u s , t h e r e e x i s t ^ + ( g ) , i 7 - ( g ) w i t h l ( { 7 + ( g ) ) n l ( D r - ( g ) ) = 0 . 
Taking J j C U~(q) U {g} U U+(q), we obtain a contradiction. 

LEMMA 9.1.12. Suppose that An_i is continuous at each point of a non-empty 
set W. Then there is a subarc X which contains a point of W such that, if p,q G X, 
p 7e q, p G W, then An-i(p) does not cut A at q. 

Proof. Suppose that for every subarc X with X C\ W =̂  0 there exist 
p, q G X, p j* q, p G W such that An-i(p) cuts A at q. Take pi, qx G / , 
pi ^ qu pi £ W such that -4w_i(^i) cuts A at gi. Since pi G PT, there are dis­
joint neighbourhoods Xi, Fi of pi, gi, respectively, such that if p G Xi, then 
-4n-i(/>) meets Fi. Since pi G Xi, we may repeat this construction replacing 
/ by Xi. This yields two intervals X2, F2 of Xi. Thus, X2, F2 C Xi. Con­
tinuing, one obtains sequences Xu Yu i = 1, 2, . . . , with X* Pi F* = 0 and 
X2 + i , Fi+i C Xiy such that if £ G X*, then An_i(p) meets F*. Since X*+i C Xu 

there is a point p G H?=i X*. Thus, An-i(p) meets every Yt. Since the Yt are 
disjoint, An-i(p) meets the compact set Xi infinitely often, contradicting 
Theorem 1.5.1. 

Notation. The following notation will remain fixed: p0 is a point at which An_t 

is continuous; cf. Lemma 9.1.5; (pi, p2) is a neighbourhood of p0 and H^ 
is a hyperplane such that ifœ does not meet [pi, p2], An^i(p0) meets [pi, p2] 
only in p0 and A (pi) (£ An_i(p), for all p G (po, p2); L = A (pi)A (po), a line 
by Theorem 8.2.5, Lœ(Lf) is the open segment of L with the end points 
A (pi), A (po) which meets (does not meet) Hœ. 

LEMMA 9.1.13. (po, p2) has order n — 1 on A\pi, An_2(p) Pi L = 0, for all 
P G (po,p2). 

Proof, (po, P2) is regular on Â = A\pi. By Theorem 8.2.4, 

An_2(p) = An_2(p)A(Pi), 

for all p G (po, £2). Hence, Ân_2 is continuous on (p0, p2). As Ân-z is continuous 
on (£0, P2) by Lemma 9.1.4, the first statement follows by Theorem 9.1.1 (n— 1) 
and the second by projection from pi and Theorem 8.2.4. 

LEMMA 9.1.14. Suppose that po is an inflection. If there is a p% G (po, P2) such 
that (po, pd) has order n — 1 on A\p0, then for each p G (po, pz), either An_i(p) 
meets Lf or A (po) C An-i(p). 
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Proof. By Theorem 3.4.1 applied to A\p0, A (p0)An_2(p) tends to An_i(p0) as 
p —> po+. If n is odd (even), pi, pz lie on the same side (opposite sides) of 
An-i(po). Take p 4 G (po, pz) such tha t if n is odd (even), pi, p% lie on the same 
side (opposite sides) of A (p0)An_2(£4). By Theorem 3.2.2, p 4 is regular on 
A \p0. Hence, by projection from p 0 and Theorem 1.4.3, A (p0)An_2(pi) supports 
(cuts) A in pi if n is odd (even). Since A (p0)An_2(pi) meets (po, pz) only in 
p±, pi and (po, pi) lie on the same side of A (p0)An_2 (pi), for n odd or even. Now 
by projection from An_2(pi), there is a p 5 G (p0, £4) such tha t A (p-Q)An_2(pi) 
meets Lf. 

Since (po, pz) has order n — 1 on ^4|pi, by Lemma 9.1.13, and on A\p0, by 
hypothesis, it follows, by Theorem 3.1.1, t ha t neither A (pi) nor A (p0) lie on 
A (p)An_2(q), if po < p < q < pz. Thus , A (p)An_2(q) meets Lf, if 

£0 < P < q < pz, 

and Lemma 9.1.14 follows. 

Proof of Theorem 9.1.2(#). Let W be the set of all points a t which An_i is 
continuous. By Lemma 9.1.5, W ^ 0. Choose X according to Lemma 9.1.12; 
po G X H W. We may assume tha t X = J. Then if p G W, ^4„_i(p) does not 
cut A a t any point except possibly p. 

Case 1. £0 is regular. Then pi, p2 lie on the same side (opposite sides) of 
An-i(po), if n is even (odd). Take p% G (p0, P2) such tha t £1, p 2 He on the same 
side (on opposite sides) of An_i(p), for all p G (po, P%)> Thus , An_i(p) supports 
(cuts) A a t p, for all p G (po, £3) H W. Hence, each point £ G (po, £3) H W 
is regular. 

Let q be a point of (po, £3). By Lemma 9.1.5, there are points 

at G (Po,p3)n w f ; = 1 ,2 , . . . 

such t ha t qi—^q. Let Af be any hyperplane of accumulation of the sequence 
An-i(qt). Let (ru r2) C (po, pz) be a neighbourhood of g such t ha t An_i(q) 
meets [>i, f 2] only in g. There is an i with g^ G (ri, r2) such tha t fi, r2 lie on the 
same side of An-i(qt) if and only if they lie on the same side on M. Since qt is 
regular, this is the case if and only if n is even. Hence, M supports (cuts) A a t q, 
if n is even (odd). Since An^2(q) C M, q is regular. By Theorem 9.1.1 (n), 
(po, pz) is of order n. 

Case 2. po is an inflection and there exists p 3 G (po, pi) such t ha t (p0, pz) has 
order w - 1 on ^4|po- By Lemma 9.1.5, there is a point p G (po, P3) C\ W. If 
An-i(p) meets Lf, then ^4w_i(p) cuts A a t a point of (pi, p0) which is a con­
tradiction. Hence, by Lemma 9.1.14, A (po) C An_i(p). If Ai(po) (JL An_i(p), 
An-i(p) cuts A a t po, which is a contradiction. If ^4i(p0) C An_i(p), projection 
from po yields a contradiction. Hence, Case 2 cannot occur. 

Case 3. po is an inflection and no U+(po) has order n — 1 on ^4|po. By 
Theorem 9.1.3(w — 1) applied to ^4|po, there exist points pz, pi, p*> such t ha t 
po < p4 < p3 < p5 < P2, Pz is an inflection on ^4|p0 and (pi, pz), (pz, PÔ) are 
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of order n — 1 on A\p0. Hence, pz is regular on A and A (po) C An^i(pz). 
Since pz is regular on A\An_2(pz), there is a pG G (£4, £3) ^ (£3. £5) such t h a t 
4 (pQ)An^2(pz) meets Lf. 

Suppose t ha t pe G (p±, £3). Projection irom plf p0 shows 

A(p1),A(p0) <ZA(p)A^2(q), 

if pi < p < q ^ pz. Thus , A (p)An^2(q) meets L / ? for these p, q and ^4w_i(r) 
meets Lf\J {A(p0)}, for all r G ( ^ , £ 3 ) . T a k e r b r2 G ( ^ , £ 3 ) H ^ r ^ r2 . 
T h e arguments of Case 2 show a contradict ion occurs unless 

AM C ^ ( r i ) H A-i(r2). 

But this gives a contradiction of Theorem 8.5.3, by projection from p0. Simi­
larly, pQ G (pz, pb) gives a contradiction. Thus , Case 3 cannot occur. 

Proof of Theorem 9.1.3(n). Let W be the set of inflections of A. By Theorem 
9.1.1 (n), we may assume t h a t W 9^ 0. As in the proof of Theorem 9.1.2 (n), we 
m a y assume t h a t the subarc X of Lemma 9.1.12, is / . Le t p0 G T^. 

Case 1. There exists pz G (po, p2) such t ha t (£0, pz) has order w — 1 on A\p0. 
If there is a p G (£0, £3) ^ W, Lemma 9.1.14, and an a rgument as in Case 2 
above give a contradiction. Thus , (po, pz) is regular; by Theorem 9.1.1(w), 
it is of order n. 

Case 2. No U+(po) has order w — 1 on A\p0. By Theorem 9.1.1 (n), every 
U+(po) contains an inflection on A\p0. By Theorem 9.1.3(n — 1), there exist 

£3, ^4, ^5 such t h a t po < p± <pz < pb < pi, pz is an inflection on A\p0\ (p±,pz), 
(pz, ph) are of order n — 1 on A\p0) and every neighbourhood of p± and p5 

contains inflections of A\p0. If p is an inflection of A\p0 and p 9^ po, then p is 
regular on A and 4̂ (/>0) C An_i(p). By the cont inui ty of An_i, 

A (po) C 4 „ - i ( p 4 ) H i4 n _i(^ 6 ) . 
Since £3 is regular on 4̂ and A (po) C ^ - 1 ( ^ 3 ) , it follows by projection from 
An-2(pz) t h a t there is a £ 6 G (£4, £3) ^ (^3,^5) such t h a t A(pQ)An„2(pz) 
meets Lf. Suppose t h a t p6 G (p\, pz)- Then , as in Case 3 above, for each 
£ G (PA,PZ), An_i(p) meets Lf\J {A(p0)}. Theorem 8.5.3, (PA, pz) is not 
ordinary; by Theorem 9.1.1 (n), there is an r± G (PA, pz) ^ W. Since An-i(ri) 
meets LfKJ {A(p0)}, Ax(po) C ^4w_i(ri), as in Case 2 above. Repeat ing this 
a rgument , one obtains r2 G ( ^ 1 , ^ 3 ) ^ ^ . Again ^4i(^o) C An_i(r2). Th i s 
contradicts Theorem 8.5.3 applied to (r\, r2) on A\p0. Similarly, p6 G (pz, pb) 
gives a contradiction. Hence, Case 2 cannot occur. 

W e conclude t ha t po has a r ight neighbourhood of order n. Symmetr ical ly 
po has a left neighbourhood of order n. T h u s po is an elementary inflection. 

T H E O R E M 9.1.15. Let A be a regular Barner arc. If An^i is continuous at p, 
then p is ordinary. 

Proof. This is t rue for n = 1; assume t h a t it is t rue for n — 1. T a k e pu p2 

with A (pt) ÇTAn-xlp), i = 1, 2, and An^2(p)A(pl) 9* An_2(p)A(p2). T a k e 
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Ui(p) such that A (pi) <£ An_i(q), for all g G Ui(p),i = 1,2. P u t , 4 ^ = 4 | £ , . 
Ui(p) is regular on-4 ( < ) . By Lemma 9.1.4, An_2 is continuous a t / ? ; by Theorem 
8.2.4, ^L_2(z) is continuous a t p. Hence, p is an ordinary point of A(i); in 
particular, there is a U2(p) C £7i(£) on which An-2

(i) is continuous. T a k e 
U(p) C £/2(/>) such t ha t An-2(q) = f l L i An_2(q)A (pt), for all g G Z7(£). 
Then ^4W_2 is continuous on U(p); by Theorem 9.1.1, £/(£) is of order n. 

9.2. R e g u l a r s i m p l e arcs i n ^ 2 . 

LEMMA 9.2.1. Let (p, q) be an ordinary simple subarc of an arc A in SP2. 
Suppose that {Hi} is a tower of spaces such that Hi does not meet A. If the lines 
L = A (p)Ho and M = A (q)H0 are distinct and do not cut (p, q), then (p, q) is 
of order 2. 

Proof. First , assume t h a t p and q are ordinary. By Theorem 5.2.1, there are 
only finitely many points r Ç (p, q) with H0 C Ai(r), say r± < . . . < rk. P u t 
r0 = p, rk+i = q and Lt = HoA(rt), 0 ^ i ^ k + 1. Thus , Lt = Ai(rt), 
1 S i ^ k. By Theorem 4.1, each of the intervals (r^_i, rt), 1 ^ i ^ k + 1, is 
of order 2. Thus , if k = 0, (£, g) is of order 2. 

Suppose t h a t k ^ 1. We think of the lines through H0, other than i? i , as 
being vertical and order them so tha t L < M. We may assume t h a t (p, r±) 
lies above the line A(p)A(r1). Since f\ is regular (ri, r2) lies below the line 
4̂ (ri)^4 (r2) and L ^ L2 < Li ^ M. Thus , k ^ 2. Since r2 is regular (r2, ^3) 

lies above the line A (r2)A (r3). Since (p, q) is simple, (r2, r$) lies in the region 
determined by L 2 and (£, r2). Thus , Z 2 < L 3 < L i and & §; 3. Continuing, it 
follows t ha t k is arbitrari ly large, which is a contradiction. 

Suppose t ha t p is not necessarily ordinary. Take r £ (p, q) such tha t the lines 
L and 4̂ ( r ) ^ are distinct and do not meet (p, r). For any pi £ (p, r), there is a 
£2 G (£, pi) such t ha t 4̂ (p2)H0 does not meet (£2, r)- By the preceding para­
graph, (p2, r) is of order 2. Thus , (pi, r) C (P2, r) is of order 2. Since £1 is 
arbi t rary , (p, r) is of order 2. Similarly, g has a left neighbourhood of order 2 
and Lemma 9.2.1 follows. 

LEMMA 9.2.2. Suppose that a regular simple arc in SP*1 has a singularity p0. 
Let {Ht} be a tower such that Hi does not meet A. Then there exist points pi, qi, ri 
such that pi is a singularity, pi (? [gi, r j , and A (pi)H0 lies between A (qi)H0 and 
A (ri)H0. 

Proof. There is a point p such t ha t H0 C Ai(p); for, otherwise, A is a 
Barner arc, by Theorem 8.1.2, and of order 2, by Theorem 9.1.1. 

Case 1. H0 C Ai(p) for some singularity p. 
Let (q, r) be a neighbourhood of p such t ha t A (q)H0 = A (r)H0 = L, say. 

We may assume tha t Ai(p) and L are distinct and do not meet (q, p) or (p, r). 
One of these intervals contains a singularity pi] for, otherwise, they are of order 
2, by Lemma 9.2.1, and p is ordinary, by Theorem 5.2.3. If pi £ (q, p) say, 
choose qi = p, ri = r. 
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Case 2. H0 C A\(p) only for ordinary points p. 
Let (p, q) be a neighbourhood of po such that the lines A (p)H0 and A (q)H0 

are distinct and do not meet (p, q). Let r £ (£, g) be such that H0 C ^4i(/) and 
Ai(r) does not meet (£, r). Take 5 G (V, q) such that -4 (5) C Ai(r) and ^4i(V) 
does not meet (r, 5). Take t G (r, 5) such that H0 C ^4i(0 and Ai(t) does not 
meet (r, /) or (/, s). Take u G (£, r) such that A(u) C ^4i(0 and Ai(t) does 
not meet (w, r). Then u < r < t < s. By Lemma 9.2.1, (w, 5) contains a 
singularity pi. Since i /0 C^4i(/) r\ Ai(t), pi is neither r nor t. If £1 G (u, r) 
choose qi = t, r\ = 5. If pi G (V, 0 or (/, s), similar choices for qi and ri are 
possible. 

THEOREM 9.2.3. Every regular simple arc A in &2 is ordinary. 

Proof. Suppose that A has a singularity p0. Let {H^ be a tower such that 
Hi does not meet some £/0 = U(po). Take pi, gi, ri G C/o, as in Lemma 9.2.2. 
Let Ui = U(pi) be such that Vi C i/o, t/i H [gi, r j = 0 and 4 (/>)#o lies 
between A (qi)H0 and 4̂ (ri)H0, for all p G Z7i. 

Repeating this construction, one obtains pu qu ri} Ut such that pt G Uu 

Ûi C Ui-i, qi G Z7i_i, fi G C/i_i, C/* H [qu rt] = 0, and A (p)H0 lies between 
4 (qi)H0 and ^ (r*)iïo, for all p G *7<. Take p G Pl?=o £/*. Then A (p)H0 meets 
each of the disjoint intervals [qu r J, contradicting Theorem 1.5.1. 

REFERENCES 

1. M. Barner, Ûber die Mindestzahl stationdrer Schmiegebenen bei geschlossenen streng-konvexen 
Raumkurven, Abh. Math. Sem. Univ. Hamburg 20 (1956), 196-215. 

2. M. Barner and F. Flohr, Der Vierscheitelsatz und seine Verallgemeinerungen, Der. Math. 
Unterr. (1958), 43-73. 

3. D. Derry, The duality theorem for curves of order n in n-space, Can. J. Math. 3 (1951), 
159-163. 

4. On closed differentiable curves of order n in n-space, Pacific J. Math. 5 (1955), 675-686. 
5. O. Haupt, Streng-konvexe Bogen und Kurven in der direkten Infinitesimalgeometrie, Arch. 

Math. 9 (1958), 110-116. 
6. Ûber einige Grundeigenschaften der Bogen ohne (n — 2, k)-Sekanten im projektiven 

Pn(n ^ k). Math. Ann. 139 (1959), 151-170. 
7. O. Haupt and H. Kunneth, Geometrische Ordnungen (Springer-Verlag, Berlin-Heidelberg, 

1967). 
8. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill, New York, 1953). 
9. P. Scherk, Ûber differenzierbare Kurven und Bogen I. Zum Begriff der Charakteristik, Casopis 

pest. mat. a fys. 66 (1937), 165-171. 
10. Ûber differenzierbare Kurven und Bogen II. Elementarbogen und Kurve n-ter Ordnung 

im Rn, Casopis pëst. mat. a fys. 66 (1937), 172-191. 
11. Dually differentiable points on plane arcs, Trans. Roy. Soc. Canada 48 (1954), 43-48. 
12. Elementary points on plane arcs, Trans. Roy. Soc. Canada 48 (1954), 49-53. 
13. J. Turgeon, On the rank numbers of an arc, Ph.D. Thesis, University of Toronto, Toronto, 

1968. 

University of Calgary, 
Calgary, Alberta 

https://doi.org/10.4153/CJM-1972-012-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-012-1

