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Abstract
We express the number of points on the Dwork hypersurface X‘j : x‘l’ + xg +-- 4 xj =dAx;xp -+ - x4 over
a finite field of order g # 1 (mod d) in terms of McCarthy’s p-adic hypergeometric function for any odd
prime d.
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1. Introduction and statement of results

Let p be an odd prime and let F, denote the finite field with g elements, where
qg=p,r>1. Let Z, denote the ring of p-adic integers. Let I',(-) denote Morita’s
p-adic gamma function and let w denote the Teichmiiller character of IF,. We denote
the inverse of w by w. For x € Q, | x] denotes the greatest integer less than or equal
to x and (x) the fractional part of x, that is, x — |x]. Also, Z" and Z5( denote the sets
of positive integers and nonnegative integers, respectively. We now define McCarthy’s
p-adic hypergeometric series ,G,[ - - ].

DermniTion 1.1 [13, Definition 5.1]. Let ¢ = p”, where p is an odd prime and r € Z*,
andletr € F,. Forn € Z* and 1 <i < n, let a;, b; € Q N Z,. Define ,G,[---] by

q-2
ai, a, ..., a, -1 in —j
G[ r] = N ao
"by, by, ..., by, q—lg
n r—1

— ) Kaip)=Gp* 1 g=D) 1= L=bip)+(ip* [ (g=1))]
<[] ]em

i=1 k=0
Tp((a = ZPN T, ((=bi + Z5)p")
T,((@ip*)) T,(~bip))
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Koblitz [11] developed a formula for the number of points on diagonal
hypersurfaces in the Dwork family in terms of Gauss sums. In [6], Goodson specialises
Koblitz’s formula to the family of Dwork K3 surfaces. She gives an expression for the
number of points on this family, Xj : x‘]t + x;‘ + xg + xi = 41x1x2X3X4, in the projective
plane ]P’4(]Fq) over a finite field F; in terms of Greene’s finite field hypergeometric
functions [7] under the condition that g = 1 (mod 4). She then considers the higher
dimensional Dwork hypersurfaces

XU+ x4+ =dAvxg - xg

and gives a formula for the number of points on Xj in terms of Gaussian
hypergeometric series and Gauss sums when ¢ = 1 (mod d). For primes p # 1 (mod d),
she conjectures the following.

Consecture 1.2 [6, Conjecture 8.2]. Let d be an odd prime and p a prime number such
that p # 1 (mod d). The number of points over F, on the Dwork hypersurface is given
by
d-1

d _p -1 1 1/d, 2/d, ..., (d-1)/d

#XA(FI,)——p_1 +p_1+d—lGd—1 0, 0. ... 0

In this article, we prove that the above conjecture is not correct. We correct the

statement of the conjecture and prove it for any finite field of order g = p” # 1 (mod d).
The statement of our main result is as follows.

/1”’].
P

TueorEM 1.3. Let d be an odd prime and q = p”" be a prime power such that q %
1 (mod d) and p # d. Then the number of points on the Dwork hypersurface

XU+ x4+l =davxg o xg
in Pd(IFq) is given by
g ' -1 _ G [l/d, 2/d, ..., (d-1)/d
) I R 0
The case d = 5 is dealt with by McCarthy in [12]. We use a similar technique to
prove the above theorem. We note that the expression in the above conjecture contains
an error term and the sign of the G-function is negative when d is an odd prime.
For any A and ¢ = p” # 1 (mod 3),

#X3(F) = 1 +#{(x.y) €F, : X' +y° +1=3xy}.

#X(F,) =

/ld].
q

Now, from Theorem 1.3 and Theorem 3.3 of [2], we have the following transformation
for the ,G,-function.

CoroLLARY 1.4. Let 1 # 0 and 23 # 1. Let p > 5 be a prime and g = p" % 1 (mod 3).

Then
1/3, 2/3
ZGZ[ 0, 0

where ¢ is the quadratic character on .

i1 12, 12| 1
A ]q - q¢(_3/l) 2G2[1/6, 5/6 E ]qa
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2. Preliminaries

Let Iﬁ;x denote the set of all multiplicative characters y on IF;‘. It is known that Ig‘,;; isa
cyclic group of order ¢ — 1 under the multiplication of characters: (yy)(x) = y ()¢ (x),
X € FZ. The domain of each y € ]ﬁfj is extended to F, by setting x(0) := 0, including
the trivial character . Multiplicative characters satisfy the following orthogonality
relations.

Levmma 2.1 [9, Ch. 8]. With the notation as above,

_Ja-1 ifx=¢
(1 ;qu(w—{o Fyte

_Jg-1 ifx=1,
@ Z)‘(x)‘{o ifx# 1.
x€Fy
Let Z, and Q, denote the ring of p-adic integers and the field of p-adic numbers,

respectively. Let (QTP be the algebraic closure of Q, and C, the completion of QTP.
Let Z, be the ring of integers in the unique unramified extension of Q, with residue

field F,. We know that y € Fj takes values in the group of (¢ — 1)th roots of unity
in C*. Since Z; contains all (g — 1)th roots of unity, we can consider multiplicative
characters on Fj to be maps y : F; — Z7. Let w:F; — Z7 be the Teichmiiller
character. For a € IF;, w(a) is just the (g — 1)th root of unity in Z, such that
w(a) = a (mod p).

We now introduce some properties of Gauss sums. For further details, see [4]. Let
{,, be a fixed primitive pth root of unity in @ The trace map tr : F, — F, is given by
tr() = a + o’ va” +ora

Then the additive character 8 : F;, — Q,({),) is defined by

o) = .

For y € Fy, the Gauss sum is defined by
g00) = ) x(x)0().

x€F,

Let T denote a fixed generator of ]P’% The Gauss sums have two important properties.

LemmMa 2.2 [7, Equation 1.12]. Ifk € Z and T* # &, then

g(THg(T™) = gT*(-1).
Lemma 2.3 [5, Lemma 2.2]. Forall « € IF;,

1 G
bl@) = —— " g(T™"T" ().
q9- 1 m=0
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Finally, we recall the p-adic gamma function. For further details, see [10]. For
n € Z*, the p-adic gamma function I',(n) is defined as

L= || J
O<j<n,ptj

and one extends it to all x € Z,, by setting I',(0) := 1 and
[p(x):= }gr)lc I,(n)

for x # 0, where n runs through any sequence of positive integers p-adically
approaching x. This limit exists, is independent of how n approaches x and determines
a continuous function on Z, with values in Z;. Let 7 € C, be the fixed root of
xP~! + p =0 which satisfies 7 = ¢, — 1 (mod (£, — 1)*). Then the Gross—Koblitz
formula relates Gauss sums and the p-adic gamma function as follows. (Recall that w
denotes the Teichmiiller character of F,.)

TueOREM 2.4 [8, Gross—Koblitz]. Fora € Z and g = p’,

r—1 i
—ay _ __(p-1) Siap' [(g-1)) ap )
s =z )

i=0

3. Proof of Theorem 1.3

We first state two lemmas which we will use to prove the theorem. The first lemma
is a generalisation of [13, Lemma 4.1]. For a proof, see [1].

Lemma 3.1 [1, Lemma 3.1]. Let p be a prime and g = p". For0< j<q—-2andteZ"
with p 1 t,

—_
—_

=1 1—

el HGEN A - 325

-1 r—

el ) -] e - 2

h=1 i=0 h=0

(=)
=

~
- <o

Lemmva 3.2. Let d # p be a prime number such that g = p” £ 1 (modd). Then, for
1<a<g-2and0<i<r-1,

NP RNy LR Rt

qg-—1

Proor. Let |~dap'/(qg — 1)] = dk + s for some k, s € Z satisfying 0 < s < d — 1. Since
l1<a<gq-2and (g—-1,dp’) =1, we observe that —dap’/(g — 1) is not an integer.
This yields _

4P ks,

qg-—1

dk+ s <
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which implies

s —ap' s+1
—+k k 32
y +k< -1 <k+ 7 (3.2)
This is equivalent to
s+ 1 ap' s
- -k —k——. 33
a "Tg-1°7a G-3)

From (3.3), lap’/(q — 1)] = —k — 1, and then the left-hand side of (3.1) becomes s — d.
Again, since d is a prime and d # p, we observe that

S (%) - 2= 5 (5)- )
i d q-11 5l\d -1
Thus, for 1 <h<d-s—1,(3.2) yields
(5)-375
dl  g-11"
so that
d—s—1
K > Jz(d—s—l)k. (3.4)
=1
Also, ford—s<h<d-1, (3 2) yields
h ap'
2y _ - 1
(i
so that
d-1 h ap,'
3 {<3>_ 1J:s(k+1). (3.5)
h=d—s -

Combining (3.4) and (3.5), and using the fact that |ap’/(qg — 1)] = —k — 1, we see
that the right-hand side of (3.1) also becomes s — d. This completes the proof of the
lemma. =

Proor oF THEOREM 1.3. Let Nj;(/l) denote the number of points on the Dwork
hypersurface Xﬁ in Ad(IFq). Then

NA) -1
#X4F,) = L ——. 3.6
/l( q) q- 1 ( )
Letting X = (x1, x2, ..., xg) and f(X) = #11 + x‘zi + 4 xz —dAx;x; -+ - x4 and using the
identity
_ if fx)=0
> b @) = {g IO
4 if £%) # 0,
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we can write

g-Nj) =g+ > > 0f@)

zEF;( x;€F,
=q'+ D0+ D, o). (3.7)
z,xie]F;; ze]F;;

some x;=0

We now rewrite the second summation: let f(X) = x{ + x§ + - -- + x4 and let N} be the
number of solutions to fi(x) = 0 in Ad(Fq). Since x + x“ is an automorphism of }F;

when d is prime and g # 1 (mod d), we have N, = g*!. Also, proceeding as above,

g-Ny=q'+ > 0@+ D, 0efi(D).

z,x,-e]F;( ze]FZ;
some x;=0
Thus,
DL AE) = ) 0AG), (3.8)
ze]F:; z,xie]Fi;
some x;=0
Since
DI = D A, (3.9)
zE]F?; ze]F;<
some x;=0 some x;=0

by using (3.8) and (3.9), we can rewrite (3.7) as

g-NjQO =g+ ) 0f@) - ) 0efiD)

2,%;€Fy 2,x;,€F}
=¢'+A-B, (3.10)

where A = 3. cr 0(zf(X)) and B = ¥ g 0(z1(%)). First we evaluate

B= ) 0:AG) = ) 00 - 0(zx)).

z,x;EFj; z,x;eIF?;

Lemma 2.3 gives

q-2

1 -a —a -a,
B= 0 D s )g(T™) - g(T™)
(q ) al,az,...,ad=0

X Y TU@T () - T(ex)

2,x;€Fy
| <2
=———— > @I g(T) Y T (xy)
(q - 1) a,as,....ag=0 x €Fy
% Z Tdaz(XZ) .. Z Tdad(xd) Z Ta|+a2+-..+a,1(z)‘
x2€Fy xq4€F; 2€Fy
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The inner sums in the above expression are nonzero only if da,,day,...,da; =
0 (modg—-1) and a; +a +---+a; =0 (modg — 1). Since g # 1 (mod d), these
congruences hold simultaneously only if a; =a; = -+ = a; = 0. Finally, using the

fact that g(e) = —1, we obtain B = 1 — g. Next,
A= Z 0(zf(x)) = Z 0(zx‘li)9(zx§) e 9(zxj)9(—d/lzx1x2 e Xg).
2,X; €y 2,x;€Fy
By using Lemma 2.3, we see that

1 <2
UG D T (TT) - g(T (T )T (~d )

a1,a2,...,44,04+1=0

X Z Tdal+ad+1 (xl) Z TdaeradH(xz) . Z Tdad+ad+1 (xd)z Tal+az+-~-+ad+ad+1 (Z)

x1€Fy x2€F; x4€Fy 2€Fy

The inner sums here are nonzero only when all the following congruences hold:

day + agi1,day + age,...,dag+ag1 =0(modg—1)anday +ax +---+ag +ay =
0 (modg — 1), giving a; =a, = -+ =ay = a (say) and ayy; = —da as g # 1 (mod d).
Thus
q-2
A= g T (T T (~d).
a=0

Taking T = w and then using the Gross—Koblitz formula, we obtain
<2 I = ap ~dap'
p=1) XS (dap' [(g=D)H~dap' [(g=1))} 75da d
A= Zﬂ ' = d/l)l_[r(<q—l>)rp(<q—l>)'

a=0
(3.11)
Applying Lemma 3.1 for t = d and j = a gives

=t T, TG = 4P’

(i) a]

A | et WY

On substituting this into (3.11),

g
A= Z 7P~ Eiz (=dlap'[(qg=D)=1=dap'/(g=DI} g5da_ 3y

xﬁrz«:f;»“ff-] i

142 T,y

-2
Pty {=dlap' [(q-D)]--dap'/(q-1)]} — ( )

xE[rp(<q“i’l>)w(<(l—qfl)p')) N

h=1

_

IS}
I
(=}
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q-2
=1+ Z(_ p)Ziot=dlap (q=DI-\=dap'/tg=D)} 5da(_ 3

a=1
i ' 1T, (5 = 24p)p')
e o e R

r—1
X 1—[ l",,(<q
i=0 h=1

From [3, Lemma 3.4], forO <a < g -2,

- )= e

Applying this in the above expression gives

—

r—

Il
(=)

i

A=1+ Z(_l)r(_p)z:;(}{—dLapf/(q—l>J—L—dap"/<q—1>J} @)

y ﬁ (< >)d LT,((5 24P ))‘

i=0 h=1 Fp((%))

Now, Lemma 3.2 yields
=1+ Z( 1) (= p)Ziroti=d=Dlap' /(=D = Ei Lhp'Id)y-ap'[(g=D]} Zda g

y Hrd 1(< ap' >)ﬁ LG - ﬁ)p"».

ot LMy

Adding and subtracting the term under the summation for a = 0,

A=1 _q+qz(_p)z, “0(=(d=Dlap'/(q=DI=Ei Lhp'/d)=ap' (=D} da 3y

1 iy 4] Fp(((- - —)P ))
X 1;[1"" 1(< >)l_[

AR (Y

1/d, 2/d, ..., (d-1)/d
=1—q—q(q—1)d_lGd1[/ [ @ Ad].
’ q
Finally, substituting the values of A and B into (3.10) and then using (3.6), we deduce
the result. This completes the proof of Theorem 1.3. O
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