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Abstract

In this paper, we present an iterative procedure to calculate explicitly the Laplace
transform of the distribution of the maximum for a Lévy process with positive jumps of
phase type. We derive error estimates showing that this iteration converges geometrically
fast. Subsequently, we determine the Laplace transform of the law of the upcrossing
ladder process and give an explicit pathwise construction of this process.
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1. Introduction

A Lévy process is a stochastic process with homogeneous, independent increments and
right-continuous paths with left limits. In mathematical finance several authors, among them
Barndorff-Nielssen [7], Eberlein and Keller [11] and Carr et al. [10], have proposed particular
Lévy processes as models for the evolution of log-asset prices. In this setting, the need to
price exotic financial instruments that depend on the pathwise maximum or minimum, such
as barrier options or equity default swaps (see, e.g. [6] and [13]), leads to the search for
an analytically tractable characterization of the distribution of the running maximum of the
underlying Lévy process. One approach to such a characterization starts from the famed
Wiener–Hopf factorization that relates the double Laplace transforms of the distributions of the
running maximum and the running infimum of a Lévy process with its characteristic exponent.
In general, this factorization is given by an expression in terms of double integrals involving the
one-dimensional distributions of the Lévy process (see, e.g. [8, Theorem VI.5, p. 160]). Only
for Lévy processes with a special form of the Lévy measure is the Wiener–Hopf factorization
known analytically in terms of the characteristics of the Lévy process, for example if the Lévy
measure has support on a half-axis (see, e.g. the comprehensive review by Bingham [9] or
Bertoin [8, Chapter VII, pp. 187–192] for this case) or if the density of the Lévy measure on the
positive half-axis is an exponential [13], a mixture of exponentials [15], or of phase type [5].

In view of the facts that, for a general Lévy process X, the Wiener–Hopf factorization is
not available analytically and that X can be approximated in law arbitrarily closely by a Lévy
process whose jumps follow a phase-type distribution (see, e.g. [5, Proposition 1, p. 82]), a
way to proceed is to approximate the first passage time distribution of X by computing it for
an approximating phase-type Lévy process Z. This strategy was pursued in [6] to price equity
default swaps driven by the Carr–Geman–Madan–Yor Lévy process. In Section 2, we provide
a mathematical proof showing that the approximation of X indeed carries over to that of the
distribution of the first passage time of X over some level.
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Maxima and ladder processes 209

In this paper, we shall focus on a Lévy process Z whose positive jumps follow a phase-
type distribution. In [16] it was shown that the distribution of the running maximum of
Z at an exponential time follows a certain phase-type distribution. We derive an explicit
characterization of the parameters of this phase-type distribution by showing that they are
given in terms of the solution to a certain fixed-point equation η = ψa(η). We subsequently
show that this fixed-point equation has a unique subprobability vector as a solution, which can
be found by iteration: the sequence η(n) = ψa(η

(n−1)), resulting from iteratingψa , is shown to
converge geometrically fast to the solution to the fixed-point equation. In the matrix-geometric
setting, fixed-point equations are often solved by employing monotonicity properties (see [17]
and [18]). Asmussen [2] constructed a probabilistic coupling argument to analyse a fixed-point
equation similar to ours in a random walk setting. Our error estimates are mainly based on a
contraction argument.

Classically, the upcrossing ladder process is used to describe the dynamics of the running
maximum of a Lévy process. The ladder process is closely related to the times at which
a new maximum is attained and the value of this maximum (for a precise description, see
[8, Chapter VI, pp. 155–159]). A second contribution of this paper is a characterization of the
upcrossing ladder process ofZ. We derive an explicit expression for the joint moment generating
function of the ladder height and ladder time processes and subsequently describe an explicit
construction of these processes in terms of the aforementioned vector η and the characteristics
of Z. This description could in principle be used to simulate paths of the running maximum; a
numerical investigation of this idea is left for future research. The proofs of the described results
rely on the extension of the classical Wiener–Hopf factorization results of London et al. [14]
to a class of spectrally negative Markov additive processes, and on an embedding of the Lévy
processZ into a spectrally negative Markov additive process. The technique of embedding was
first proposed by Asmussen [3] in the setting of regime-switching Brownian motion.

The rest of the paper is organized as follows. In Section 2, the notation is set and preliminaries
are given. In Section 3, the main results of the paper are stated. Sections 4 and 5 are devoted to
the proof of the Wiener–Hopf factorization and the study of the fixed-point equation η = ψa(η),
respectively.

2. Preliminaries

We start by recalling the definition and some properties of a phase-type distribution, and
refer the reader to [17] and [1] for background on phase-type distributions.

A distribution F on (0,∞) is called phase type if it is the distribution of the absorption time
ζ in a finite-state continuous-time Markov process J = {Jt }t≥0 with one state, �, absorbing
and the remaining ones, denoted 1, . . . , m, transient. That is, F(t) = P(ζ ≤ t), where
ζ = inf{s > 0 : Js = �}. The parameters are m, the restriction, T , of the full intensity matrix
to the m transient states, and the initial probability (row) vector α = (α1, . . . , αm), where
αi = P(J0 = i). For any i = 1, . . . , m, let ti be the intensity of a transition i → � and write
t = (t1, . . . , tm)

� for the (column) vector of such intensities. Note that t = −T 1, where 1
denotes a column vector of 1s. It follows that the cumulative distribution F is given by

1 − F(x) = αeT x1, (1)

the density is f (x) = αeT x t , and the Laplace transform is given by

F̂ [s] =
∫ ∞

0
e−sxF (dx) = α(sI − T )−1t,
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where I is the m × m identity matrix. Note that F̂ [s] can be extended to the complex plane
except at a finite number of poles (the eigenvalues of T ). Throughout, we shall assume that
representation (1) of the distribution function F is minimal, that is, that there exists no number
k, k < m, k-vector b, and k × k matrix G such that 1 − F(x) = beGx1.

On some probability triplet (�,F ,P), let X be a Lévy process of the form

Xt = X
(+)
t +X

(−)
t , (2)

where X(−) = {X(−)t , t ≥ 0} is a Lévy process without positive jumps and X(+) = {X(+)t ,

t ≥ 0} is an independent compound Poisson process with intensity λ(+) and jumps of phase
type with parameter triple (m(+),T (+),α(+)). In the sequel, we exclude the case in whichX(−)
has monotone paths. We define by κ(s) ≡ κX(s) = log E[esX1 ] the Lévy exponent ofX, which
is well defined at least for those s with Re(s) = 0 and which is in this case given by

κ(s) = κX(−) (s)+ λ(+)(F̂ (+)[−s] − 1),

where κX(−) denotes the Lévy exponent of X(−) and F̂ (+)[s] = α(+)(sI − T (+))−1t is the
Laplace transform of F (+). Note that κ can be analytically extended to the positive half-plane
except at a finite number of poles (the eigenvalues of −T (+)) and that we also denote this
extension by κ .

Write T +(k) ≡ T +(k)(X) for the first passage time of X over the level k, i.e.

T +(k) = inf{t ≥ 0 : Xt > k},
and denote by O+(k) ≡ O+(k)(X) = XT +(k) − k the corresponding overshoot of X. Our
first result shows that convergence in law of the Lévy processesXn carries over to the stopping
times T +(k)(Xn) and the overshoots O+(k)(Xn).

Proposition 1. Let (Xn)n and X be Lévy processes such that Xn → X in law. Then, as
n → ∞,

(T +(k)(Xn),O+(k)(Xn)) d−→ (T +(k)(X),O+(k)(X)),
where ‘

d−→’ denotes convergence in distribution.

Before giving the proof, we first review some facts about the Wiener–Hopf factorization of
Lévy processes. For more background, we refer the reader to [9] or [8], and references therein.
Denote by � (+) = {i : Re(ρi(a)) > 0} the set of indices corresponding to the roots, ρi(a), of
the Cramèr–Lundberg equation

κ(ρ) = κX(ρ) = a

with positive real parts. Let x ∧ 0 = min{x, 0} and x ∨ 0 = max{x, 0}, and write Mt =
sups≤t (Xt ∨0) and It = infs≤t (Xt ∧0) for the running supremum and infimum ofX up to time
t , respectively. Similarly, writeM(−)

t and I (−)t for the corresponding quantities ofX(−). Denote
by e(a) an independent exponential random variable with mean a−1. For s with Re(s) ≥ 0, set

ϕ−
a (s) = E[exp(sIe(a))], ϕ+

a (−s) = E[exp(−sMe(a))].
If X is a Lévy process of the form (2), the phase-type representation is minimal, and a > 0,
then, for Re(s) ≤ 0, ϕ+

a is explicitly given by

ϕ+
a (s) = det(−sI − T (+))

det(−T (+))
∏
i∈� (+) (−ρi(a))∏
i∈� (+) (s − ρi(a))
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(as shown in [5]), where the first factor is to be taken to equal 1 ifX has no positive jumps. The
following Wiener–Hopf identity (see, e.g. [9, Theorem 1e, p. 708]) links the joint distribution
of the first time of crossing the level k and the corresponding overshoot (T +(k),O+(k)) to the
Wiener–Hopf factor ϕ+

a :

E[exp(−aT +(e(λ))− µO+
e(λ))] = λ

λ− µ

[
1 − ϕ+

a (−λ)
ϕ+
a (−µ)

]
. (3)

We have now made all preparations necessary for the proof of Proposition 1.

Proof of Proposition 1. Let D[0,∞) denote the space of càdlàg functions (i.e. those that
are right continuous with left limits) on [0,∞) equipped with the Skorokhod topology. From
Proposition VI.2.4 of [12, p. 303] it follows that the map Mt : D[0,∞) → R given by
f �→ Mt(f ) := sup0≤s≤t (f (s) ∨ 0) is continuous for every t for which �f (t) := f (t) −
f (t−) = 0. Since with probability 1 a Lévy process is continuous at a fixed time t (see,
e.g. [8, Proposition I.7, p. 21]), it follows that Mt(X

n) → Mt(X) in law for a fixed t ≥ 0 (cf.
[12, Result VI.3.8, p. 312]). This implies that the moment generating function of Me(q)(X

n)

converges to the moment generating function of Me(q)(X). By the Wiener–Hopf identity
(3) and the extended continuity theorem, it then follows that the joint Laplace transform of
(T +(k)(Xn),O+(k)(Xn)) converges to that of (T +(k)(X),O+(k)(X)).

Closely related to the supremum process M are the ascending ladder time and the ladder
height processes, which are Lévy processes. The ladder time is the right-inverse, L−1

t =
inf{s ≥ 0 : Ls > t}, of the local time L, which we shall choose to be equal to L = Mc, the
continuous part of the supremum processM . The ladder height process is given byH = ML−1 ,
the supremum at the ladder time. We write κ+ for the joint characteristic exponent of the ladder
process (L−1, H):

exp(−κ+(a, s)) = E[exp(−aL−1(1)− sH(1))], a, s > 0.

3. Maxima and ladder processes

Before stating our main results, we introduce some further notation. Let S be the set of
subprobability vectors in R

m+1 with m = m(+), and consider the fixed-point equation η =
ψa(η), where ψa : S → R

m+1 is defined by

ψa : η �→ λ(+)

a + λ(+)
(0,α(+))ϕ(−)

a,X(−) (−M(+) −m(+)η). (4)

Here ϕ(−)
a,X(−) (−Q) = ∫ ∞

0 eQx P(−I (−)e(a) ∈ dx) and

M(+) =
(−
(a + λ(+)) 0

t (+) T (+)
)
, m(+) = −M(+)1 =

(

(a + λ(+))

0

)
, (5)

where 
(q) denotes the largest root of κX(−) (s) = q.

Lemma 1. Let a ≥ 0. The function ψa maps S into S and the fixed-point equation η = ψa(η)

has a unique solution ηa .

Let 1�
0 denote the row vector with a 1 in the first position and 0s elsewhere, and write fa for

the function that maps η ∈ S to

fa(η) = a−11�
0 exp((M(+) +m(+)η)k)1, k ≥ 0.
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The Laplace transform of P(Mt > k) = P(T +(k) < t) can be expressed in terms of the vector
ηa as follows [16]: ∫ ∞

0
e−at P(Mt > k) dt = fa(ηa). (6)

The next result shows how fa(ηa) can be computed explicitly.

Theorem 1. Let η(n+1) = ψa(η
(n)) for n ≥ 0.

(i) If η(0) = 0 then fa(η(n)) ↑ fa(ηa) as n → ∞.

(ii) If F̂ (+)[−
(0)] < 1 + a/λ(+), a > 0, and η(0) ∈ S, then

‖fa(ηa)− fa(η
(n))‖ ≤ Cεn−1‖ηa − η(0)‖,

where ‖η‖ = ∑
i{|ηi |}, C = k
(a)/a, and ε < 1 is explicitly given by

ε = λ(+)F̂ (+)[−
(0)]a − (
(a)−
(0))κ ′
X(−) (
(0)

+)
a(λ(+) + a)

.

The next result gives an explicit formula for the cumulant of the upcrossing ladder process
and describes a pathwise construction of the ladder process.

Theorem 2. (i) The cumulant, κ+, of (L−1, H) is given by

κ+(a, s) =
∏
i∈� (+) (s + ρi(a))

det(sI − T (+))
for s with Re(s) = 0 and a ≥ 0, where the denominator is taken to equal 1 if λ(+) = 0.

(ii) The components of the bivariate subordinator (L−1, H) are equal to

L−1
t = Zt + J 1

t , Ht = t + J 2
t ,

whereZ is a subordinator with cumulant
 and J = (J 1, J 2) is a bivariate compound Poisson
process, independent of Z, with arrival rate 
(λ(+)) and jump distribution G with∫∫

[0,∞)2
e−ax−syG(dx, dy) = 
(λ(+))−1[κ+(a, s)− s −
(a)+
(λ(+))].

In particular, the marginal law of the jumps, Ũn, of J 2 is given by

P(Ũn ∈ dy) = η0(δ0(dy), exp(T (+)y)t (+) dy), (7)

where δ0 is the delta measure at 0.

Example 1. If there are no positive jumps (λ(+) = 0) and −X(−) is not a subordinator, we find
that (see, e.g. [8])

κ+(a, s) = s +
(a),

where 
(a) is the unique positive real root of κX(−) (s) = a.

4. Matrix Wiener–Hopf factorizations

This section is devoted to the proof of Theorem 2. In preparation, we shall first extend the
matrix Wiener–Hopf factorization results of London et al. [14] to a class of spectrally negative
Markov additive processes. As a by-product we shall also obtain a short proof of (6).
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4.1. Matrix factorization of Markov additive processes

Let Y be an irreducible Markov process with finite state space E ∪ {�}, where E =
{0, 1, . . . , m} and � is an absorbing graveyard state. Denote the generator of Y restricted
to E by Q = (qij )

m
i,j=0. Letting X(−) be the spectrally negative Lévy process of (2) and

denoting by v and σ functions that map � to ∂ (an isolated point acting as a graveyard state)
and, respectively,E to R and [0,∞), we now consider the additive functionalA = {At, t ≥ 0}
with

At = A0 +
∫ t

0
σ(Ys) dX(−)s +

∫ t

0
v(Ys) ds. (8)

Note that this model reduces to a spectrally one-sided Lévy process if v ≡ 0, σ is constant, and
Y is recurrent. Next, we define Ỹ+ to be the upcrossing ladder process of Y , that is,

Ỹ+
t = Y (γt ), where γt = inf{s ≥ 0 : As > t}. (9)

It is easily verified that the time-changed process Ỹ+ is again a Markov process; we denote its
generator by Q+. This subsection is devoted to a characterization of its form. Let K(σ,−G)
be the matrix whose ith row is given by 1�

i κX(−) (−σ(i)G). Here 1�
i is the row vector whose

ith component is 1 and whose other components are 0, and κX(−) is given by

κX(−) (−G) = s2

2
G2 − cG+

∫ 0

−∞
(e−Gx − I + xG1{|x|<1})ν(dx) (10)

(using the Lévy–Khinchin formula), where c is some constant, ν is the Lévy measure, s is the
Gaussian coefficient of X(−), and 1{|x|<1} is the indicator of the set {|x| < 1}.

We restrict ourselves to the case in which the function v is positive with v(i) > 0 for each
i ∈ E for which σ(i) = 0, to ensure that A can increase in each state in E (recalling that we
exclude the case in which X(−) has monotone paths). Denote by Q(n) the set of irreducible
generator matrices and let V be the |E| × |E| diagonal matrix with elements v(i).

Proposition 2. (i) The generator matrix, Q+, of the process Ỹ+, defined in (9), solves the
equation

K(σ,−G)+Q = VG. (11)

(ii) IfQ is transient or ifQ is recurrent and supt At = ∞ almost surely, thenQ+ is the unique
G ∈ Q(|E|) that solves (11).

Proof. (i) Define the function f : E × R → R by f (j, x) = Ej,x[h(Ỹ+
k )1{γk<∞}], where

h is any function on E and Ej,x denotes the expectation under the measure P, conditioned on
{Y0 = j, A0 = x}. Since Ỹ+ is a Markov process with generator Q+, the function f can be
expressed as

f (i, x) = 1�
i exp(Q+(k − x))h, i ∈ E, x ≤ k. (12)

However, it is straightforward to check that f (Yt∧γk , At∧γk ) is a martingale and, from Itô’s
lemma, we find that f = (f (i, u), i ∈ E) satisfies

�(σ(i)f (i, u))+ v(i)f ′(i, u)+
∑
j∈E

qij (f (j, u)− f (i, u)) = 0 (13)

for i ∈ E and u < k, where � denotes the infinitesimal generator of the process X(−):

�f (x) = s2

2
f ′′(x)+ cf ′(x)+

∫ 0

−∞
(f (x + y)− f (x)− yf ′(x)1{|y|<1})ν(dy).
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Here a prime denotes differentiation. By substituting (12) into (13) and using the fact that h is
arbitrary, we conclude that Q+ solves (11).

(ii) Now we turn to the proof of the uniqueness of the solution to (11). To this end, let
G ∈ Q(|E|) be another solution to (11) and define the function f̃ by replacing Q+ by G in
(12); by an application of Itô’s lemma it then follows that f̃ (Yt , At ) is a local martingale that
is bounded on [0, γk], and invoking the optional stopping theorem yields

f̃ (j, x) = Ej,x[f̃ (Yt∧γk , At∧γk )]
= Ej,x[f̃ (Ỹ+

k , Aγk )1{γk<∞}] + lim
t→∞ Ej,x[f̃ (Yt , At )1{γk=∞}]. (14)

By definition of f̃ and the absence of positive jumps of A, the first expectation in (14) is equal
to f (j, x). Note that second term in (14) vanishes if Q is transient or Q is recurrent and
supt At = ∞. Indeed, in the latter case γk is almost surely finite, whereas in the former case
P(Yt ∈ E) converges to 0. Thus, f = f̃ and statement (ii) follows.

4.2. Matrix factorization of X

To study properties of the Lévy processX, we follow some ideas of Asmussen [4] and embed
X into a Markov process (A, Y ). Informally, we obtainA fromX by ‘levelling out’ the positive
jumps into piecewise-linear parts of gradient 1; the process Y is set equal to 0 if X moves like
X(−), and equal to the underlying phase process of an upward jump otherwise. More precisely,
consider the special case of the above additive functional, (8), in which Y starts from state
0 with probability 1, i.e. P(Y0 = 0) = 1, and the restriction of the intensity matrix of Y to
{0, 1, . . . , m} is given by Q0, where, in block notation for a ≥ 0,

Qa =
(−λ(+) − a λ(+)α(+)

t (+) T (+)
)
. (15)

Moreover, for i ∈ E set v(i) = 1 − σ(i) and σ(i) = δ0i , the Kronecker delta at 0, and let
T0(t) = ∫ t

0 1{Ys=0} ds denote the local time spent by Y at 0, that is, the amount of time before
time t that Y has spent in state 0. Then we recover the original process, X, by time-changing
A with the inverse local time

T −1
0 (u) = inf{t ≥ 0 : T0(t) > u}.

Indeed, the independence of the increments of X implies that X is equal in law to A ◦ T −1
0 .

Exponential killing of the original Lévy process X at rate a can be incorporated by replacing
Q0 by Qa , since all states of Y other than 0 originate from positive jumps of X, meaning
that the local time, T0, spent by A at 0 corresponds to the time-scale of X. We can derive the
following result for the form of the generator of Ỹ+.

Proposition 3. The generator matrix, Q+
a , of the Markov chain Ỹ+ in (9) that corresponds to

the embedding of X killed at rate a is given by

Q+
a = M(+) +m(+)ηa, (16)

where M(+) is given in (5) and ηa ∈ S solves η = ψa(η).

Note that the distribution, (6), ofMe(a) now follows as a direct consequence of Proposition 3:

P(Me(a) > k) = P(Ỹ+(k) /∈ �) = 1�
0 exp(Q+

a k)1.
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In the proof of Theorem 2 we shall also give a probabilistic interpretation of ηa as the distribution
of Y at the end of an excursion of A from its supremum.

Proof of Proposition 3. The proof consists of identifying the form of the generator from
the version of (11) corresponding to the process, (A, Y ), that is the imbedding of X. From
the description given above, we are thus led to consider (11) with � the diagonal matrix with
elements δ0i , i ∈ E; V = I − �; and Q given by Qa from (15). The form of the matrices �
and V in conjunction with (11) then implies that all rows of Q+

a except the first are given (in
block notation) by (t (+),T (+)). By rewriting (11), for the first row we obtain

[
1

a + λ(+)
(κX(−) (−Q+

a )− (a + λ(+))I )
]

1
= − λ(+)

a + λ(+)
(0,α), (17)

where M1 denotes the first row of a generic matrix M . Since the supremum, M(−)
e(q), of X(−)

at an independent exponential time e(q) has an exponential distribution with mean 
(q)−1, it
follows that, for q > 0 and Re(s) ≥ 0,

q−1(κX(−) (s)− q)ϕ−
q,X(−) (s) = 
(q)−1(
(q)− s),

where ϕ−
q,X(−) is the moment generating function of the running infimum, I (−)e(q), ofX(−) at e(q).

By the Cayley–Hamilton theorem, this relation remains valid with s replaced by a nonnegative-
definite matrix (and thus, in particular, with s replaced by −Q+

a ). Multiplying both sides of
(17) from the right with the matrix

ϕ−
q,X(−) (−Q+

a ) =
∫

eQax P(−I (−)e(q) ∈ dx) (with q = a + λ(+))

yields


(a + λ(+))−1[
(a + λ(+))I +Q+
a ]1 = λ(+)

a + λ(+)
(0,α)ϕ−

a+λ(+),X(−) (−Q+
a ).

Thus, we find that the first row of Q+
a is

[Q+
a ]1 = −
(a + λ(+))1�

0 +
(a + λ(+)) λ(+)

a + λ(+)
(0,α)ϕ−

a+λ(+),X(−) (−Q+
a ),

and (16) follows.

We now turn to the proof of Theorem 2.

Proof of Theorem 2(ii). We first determine the form of the process H . Since X(−) has no
positive jumps, �Mt > 0 implies that �X(+)t > 0 and, similarly, dMc

t > 0 implies that
dM(−)

t > 0, where (recall) M(−)
t denotes the running supremum of X(−) up to time t . Write

σ1, σ2, . . . for the jump times of X(+) and, for i = 1, 2, . . . , recursively define the stopping
times Gi = inf{s ≥ Di−1 : Ms = Xs} and Di = inf{σj : σj > Gi}, where G0 = 0 and
D0 = σ1. Note that, for t ∈ [Gi,Di), Mt is continuous and M may jump at Gi . As X(+)
is a compound Poisson process with rate λ(+), the differences Di − Gi are exponentially
distributed with parameter λ(+) and, asX(−) has independent, identically distributed increments
and M(−)(e(λ(−))) has an exponential distribution with mean 
(λ(+))−1, MDi − MGi are
independent exponential random variables with parameter 
(λ(+)). Since we have taken the
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local time, L, to be equal to Mc, the interarrival time of two jumps of H is Exp(
(λ(+)))-
distributed and, thus, the process H is given by

H(t) = Mc(L−1(t))+
∑
s≤t

�M(L−1(s))1{�M(L−1(s))>0} = t +
Nt∑
n=1

Ũn, (18)

where the Ũn are independent, identically distributed nonnegative random variables (sinceX is
a Lévy process) and Nt is an independent Poisson process with rate 
(λ(+)). The jump sizes
Ũn have the same distribution as the overshoot,XT +(0), ofX over the level 0 ifX0 is distributed
according to −A+ B, where A has the distribution

ξ0(dx) = P((M(−) −X(−))e(λ(+)) ∈ dx)

of the distance of X(−) to its supremum at an exponential time e(λ(+)) and B, independent of
A, is distributed according to the jump sizes ofX(+). Since the upward jumps ofX are of phase
type, it follows that the distribution of the overshootXT (0) has an atom at 0 and on (0,∞) is of
(defective) phase type (see, e.g. [5, Proposition 2, p. 90] for a proof). A generator matrix of this
phase-type distribution is seen to be given by T (+), with ‘initial distribution over the phases’
η̂0 given by the distribution of the underlying Markov process at the moment of crossing. In
the equivalent setting of the embedding (A, Y ) = (AX, YX) of X, η̂0 thus satisfies

η̂0(j) = P(Ỹ+
0 = j | A0

d= ξ, Y0
d= (0,α(+)))

=
∫ ∞

0
(0,α(+))eQ

+
0 xξ0(dx), (19)

where j = 0, . . . , m(+) and ‘
d=’ denotes equality in distribution. Thus, the vector η̂0 satisfies

η = ψ0(η) with ψ0 as given in (4). In view of Lemma 1 it then follows that η̂0 = η0, and (7)
has been proved. The rest of the statements of part (ii) directly follow from the independence
of X(+) and X(−) and the general form of the cumulant for bivariate subordinators.

Proof of Theorem 2(i). Note that, on the one hand, since in (18) we showed that H is a
compound Poisson process with unit drift, we have

lim
s→∞ s

−1κ+(a, s) = 1.

On the other hand, the form of the Wiener–Hopf factor ϕ+
a and the fact that |� (+)| = m(+) + 1

(see, e.g. [5, Lemma 1, p. 86]) imply that

lim
s→−∞ sϕ

+
a (−s) =

∏
i∈� (+)

ρi(a)

det(−T (+)) .

Combining this with the fact that ϕa(−s) = κ+(a, 0)/κ+(a, s) (see, e.g. [8, Chapter VII.2,
p. 166]) we can first identify κ+(a, 0) and then κ+(a, s).

5. The fixed-point equation η = ψa(η)

In this section, we derive properties of the equation η = ψa(η), proving the statements of
Lemma 1 and Theorem 1.
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5.1. Proof of Lemma 1

Recall from Proposition 3 that there exists a solution to η = ψa(η) in S.
Since it can be directly verified from the form ofM(+) that the matrixM(+) +m(+)v, v ∈ S,

is a generator matrix, it follows, by the probabilistic interpretation of ψa(v) derived in the
proof of Theorem 2(ii) (see (19)), that ψa(v) is a subprobability vector. Thus, ψ maps S to S.
Furthermore, if in addition v satisfies v = ψa(v), it solves (10) and the uniqueness of the solution
to the fixed-point equation follows from Proposition 2 if κ ′(0+) := lims↓0 s

−1[κ(s)−κ(0)] ≥ 0
or a > 0. Indeed, in the latter case the generator matrix Qa is transient, whereas in the former
case the embedding A of X satisfies supt At = ∞.

If κ ′(0+) < 0, Proposition 2 does not apply and we need to provide a different argument to
establish uniqueness. Following [2], we shall show that this case can be reduced to the case
of positive drift using exponential tilting. If κ ′(0+) < 0, there exists a positive root, γ , of
the equation κ(s) = 0. Define the tilted measure Pc, for any positive constant c ≥ γ with
E[ecX1 ] < ∞, by the Radon–Nikodým derivative

dPc

dP

∣∣∣∣
Ft

= exp(cXt − κ(c)t), t ≥ 0,

and denote by κc, ϕ−,c
a ,
c, and ηc the respective quantities κ , ϕ−

a ,
, and η under the measure
Pc. It is straightforward to check that, for any γ ≤ c with E[ecX1 ] < ∞,

κc(s) = κ(s + c)− κ(c), ϕ−,c(s) = ϕ−(s + c), 
c(q) = 
(q + κX(−) (c))− c

for q ≥ 0 and (κc)′(0+) = κ ′(c) > 0. Hence, under Pc the process X has a positive drift and
uniqueness will follow once we have shown that the equation η = ψa(η) can be formulated in
terms of quantities of the process X under the tilted measure Pc. The first step in this direction
is the next result (from [1]), which shows that, under the tilted measure Pc, the jumps of X(+)
remain of phase type.

Lemma 2. Under Pc, the jumps of X(+) are of phase type with representation given by

(λ(+,c),α(+,c),T (+,c)) = (λ(+)F̂ (+)[−c],α(+)�/F̂ (+)[−c],�−1T (+)�+ cI ),

where � is the diagonal matrix with the components, kj , of k = (cI − T (+))−1t (+) on the
diagonal. Furthermore, t (+,c) = �−1t (+).

By choosing the killing rate

ac = a + λ(+)(1 − F̂ (+)[−c]),
noting that a + λ(+) = ac + λ(+,c), and recalling the form of M(+) from (5), we deduce that,
under Pc, the generator matrix of the upcrossing ladder process Ỹ+ is given by

Q+,c = M(+),c +m(+),cηca,

where

M(+),c =
(−
(a + λ(+) + κX(−) (c))+ c 0

�−1t (+) �−1T (+)�+ cI

)
,

m(+),c = (
(a + λ(+) + κX(−) (c))− c, 0)�,
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and ηca satisfies η = ψca(η) with ψca as defined in (4) but with a replaced by ac and all other
quantities replaced by ones ‘tilted’ under the measure Pc. Next, we provide the link between
ψa and ψca . Writing �1 = diag(1, k1, . . . , km(+) ) and using Lemma 2, it follows that

ψa(η) = λ(+)

a + λ(+)
(0,α(+))ϕ−

X(−) (−M(+) −m(+)η)

= λ(+)F̂ (+)[−c]
a + λ(+)

(0,α(+),c)�−1
1 ϕ

−,c
X(−) (−M(+) −m(+)η − cI )

= λ(+),c

a + λ(+)
(0,α(+),c)ϕ−,c

X(−) (−�−1
1 (M(+) + cI )�1 −�−1

1 m(+)η�1)�
−1
1

= λ(+),c

ac + λ(+),c
(0,α(+),c)ϕ−,c

X(−) (−M(+),c −m(+),cη̃)�−1
1

where η̃ = η�1. Since (κc)′(0+) > 0 for c ≥ γ , Proposition 2 implies that, for these values of
c. η̃ = ψca(η̃) has a unique solution, η̃, in S. Sinceψca(η̃) is equal toψa(η)�1 and the elements
of �1 are positive and not greater than one, any solution η ∈ S to ψa(η) = η gives rise to
a solution η̃ = η�1 ∈ S to η̃ = ψca(η̃). Thus, if κ ′(0+) < 0, it follows that ηa is the unique
subprobability vector that solves η = ψa(η).

5.2. Proof of Theorem 1(i)

Write η ≤ η′ if η′ − η is nonnegative (coordinatewise). We claim that ψa satisfies the
following monotonicity property: ifη ≤ η′ thenψa(η) ≤ ψa(η

′). LetP andP ′ be the transition
matrices of the Markov chains with respective generators given byG(η) = M(+) +m(+)η and
G(η′). Then the matrix D = P ′ − P satisfies the matrix differential equation

Ḋ = DG(η)+ P ′m(+)(η′ − η), D(0) = O,

where Ḋ = dD(t)/ dt and O denotes the zero matrix. The solution to this equation is

D(t) =
∫ t

0
P ′(s)m(+)(η′ − η)e(t−s)G(η) ds.

Hence, coordinatewise, D is nonnegative and, since it holds that

ψa(η) = λ(+)

a + λ(+)
(0,α(+))

∫ ∞

0
exG(η) P(−I (−)e(a) ∈ dx),

the claim follows. In particular, it follows that fa(η) ≤ fa(η
′).

Starting with η(0) = 0 and setting η(n+1) = ψa(η
(n)) generates a sequence (η(n))n in S

which is coordinatewise nondecreasing. Thus, the sequence has a limit in S, say v, and by
the continuity of ψa it follows that v = ψa(v). The uniqueness due to Lemma 1 implies that
v = ηa .

5.3. Proof of Theorem 1(ii)

The proof of Theorem 1(ii) follows from the next result.

Proposition 4. Let a > 0. If κ ′
X(−) (0

+) ≥ 0 then the mapψa is a contraction. If κ ′
X(−) (0

+) < 0

and F̂ (+)[−
(0)]<1 + a/λ(+) then the map ψ
(0)a is a contraction.
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Proof. Write 1i for the column vector with a 1 in state i and 0s elsewhere, and let

ηt = η + t (η′ − η),

with t ∈ [0, 1], be the convex combination of η, η′ ∈ S. Since

ϕi : t �→ (0,α)ex(M
(+)+m(+)ηt )1i

is differentiable, the mean value theorem implies that, for some s ∈ [0, 1],
|ϕi(1)− ϕi(0)| = |(0,α)ex(M(+)+m(+)ηs )m(+)(η − η′)x1i |

= (0,α)ex(M
(+)+m(+)ηs )10
(a)|(η − η′)i |x

≤ x
(a)|(η − η′)i |, (20)

where we have used the form of m(+) and the fact that in the second line the first factor is the
probability that some Markov chain is in state 0 at time x. By letting λ = λ(+) and α = α(+),
we obtain

‖ψa(η′)− ψa(η)‖ =
∑
i

|ϕi(1)− ϕi(0)|

≤
∑
i

λ

a + λ

∫ ∞

0
x
(a)|(η − η′)i | P(−I (−)e(a) ∈ dx)

= λ

a + λ
E[−I (−)e(a)]
(a)‖η − η′‖. (21)

Since

κ ′
X(−) (0

+)/a = E[X(−)e(a)] = E[X(−)e(a) − I
(−)
e(a)] + E[I (−)e(a)] = 1


(a)
+ E[I (−)e(a)],

it follows that E[−I (−)e(a)]
(a) ≤ 1 if and only if E[X(−)1 ] ≥ 0.
Let us now turn to the case in which κ ′

X(−) (0
+) < 0 when 
(0) > 0. Since E[e
(0)X1 ] is

assumed to be finite and
(0) ≥ γ (since κ(
(0)) = λ(+)(F̂ (+)[−
(0)] − 1) > 0), it follows
both that the exponential tilting with c = 
(0) is well defined and that κ
(0)′

X(−) (0
+) > 0. By

following the above reasoning with ψ
(0)a instead of ψa , we deduce that

|(ψa(η′)− ψa(η))i | = |(ψ
(0)a (η̃′)− ψ
(0)a (η̃))i |(�1)
−1
i

≤ λF̂ (+)[−
(0)]
λ+ a

E
(0)[−I (−)e(a)](
(a)−
(0))|(η̃′ − η̃)i |(�1)
−1
i

≤ λF̂ (+)[−
(0)]
λ+ a

E
(0)[−I (−)e(a)](
(a)−
(0))|(η′ − η)i |, (23)

where E
(0)[−I (−)e(a)](
(a)−
(0)) < 1 since κ
(0)′
X(−) (0

+) > 0 and λF̂ (+)[−
(0)]/(λ+a) < 1
since F̂ (+)[−
(0)] < (λ+ a)/λ.

This completes the proof of Proposition 4.

Note that (20), together with the definition of fa(η), implies that

|fa(ηa)− fa(η
(n))| ≤ a−1k
(a)‖ηa − η(n)‖ = a−1k
(a)‖ψa(ηa)− ψa(η

(n−1))‖.
Combining this with (21), (22), and (23) completes the proof of Theorem 1(ii).
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