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Introduction. C. Widland [14] has defined Weierstrass points on integral, projective
Gorenstein curves. We show here that the Weierstrass points on a generic integral
rational nodal curve have the minimal possible weights or, equivalently, that such a curve
has the maximum possible number of distinct nonsingular Weierstrass points. Rational
curves with g nodes arise in degeneration arguments involving smooth curves of genus g
and they have also recently arisen in connection with g-soliton solutions to certain
nonlinear partial differential equations [11], [13].

In the first section, we review Widland’s definition and main results. Singularities are
always Weierstrass points and have high Weierstrass weight. In the second section, we
consider the set of smooth Weierstrass points of a family of Gorenstein curves. The
situation is then analogous to the case of smooth curves as considered in our previous
articles [8], [9]. In the final section, we present our results concerning Weierstrass points
on rational nodal curves. Theorems 3 and 4 are similar to the main results in [8] and [9].
A key difference in the proofs is that we no longer have available the variational formula
of Schiffer-Spencer-Rauch which specifies how holomorphic differentials vary as a smooth
curve is deformed to another smooth curve. However, in the case of rational nodal curves
we may explicitly compute how dualizing differentials vary as the curve is deformed to
another rational nodal curve. In Theorem 5, we show that nodes on a generic rational
nodal curve have the minimum possible Weierstrass weight. A key point in the argument
is the fact that the minimum weight of a node is greater than the maximum weight of a
smooth point.

It appears that Weierstrass points on nodal curves share many similarities with
Weierstrass points on smooth curves. While Weierstrass points on a generic rational nodal
curve all have the minimal possible weights, there are variations in the combinations of
Weierstrass weights on special curves. For example, on rational curves with three nodes,
there are at least 13 different combinations of Weierstrass weights possible [10]. This
contrasts sharply with the case of cuspidal curves; indeed, Widland showed that on any
rational curve with g cusps, each cusp has Weierstrass weight (g — 1)(g + 1) and there are
no nonsingular Weierstrass points.

We work over an algebraically closed field k of characteristic 0. By a “curve”, we will
mean a one-dimensional, integral projective k-scheme. A “point” of a scheme will refer
to a closed point. By an abuse of language, the term ‘“minor” of a matrix will refer to a
square submatrix as well as to the determinant of that submatrix. If X is a scheme, then
|X| will denote the underlying point set of X. We usually identify a vector bundle on a
scheme with its locally free sheaf of sections.
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1. Widland’s definition. Let X be a Gorenstein curve of arithmetic genus g >0 and

let w denote the sheaf of dualizing differentials on X. Let o, 0y, ..., 0, be nonzero
rational differentials on X. Widland defines the Wronskian of gy, . . ., g, with respect to
o, denoted W,(0,, ..., 0;), by

W,(01,...,0,)=det[F;] for 1=i,j=g,

where the F; are rational functions defined by
o;=Fjo for j=1,...,8,
and for i > 1, the F; are defined recursively by the formula
dF,_,;=Fjo for j=1,...,8

Now suppose that o;,..., 0, are a basis for HO(X, ). Define a section ae€
H°(X, ®®"), where N=1+... +g, as follows. Suppose that {U;;i € I} is an open cover
of X such that for each i € I, I'(U,, w) is a free rank one I'(U;, Ox)-module with generator
1,. For each i € I, define o, e T(U;, ©®") by

a;=W, (04, ..., )TN

It is not hard to see that the a;’s patch to give a section a € H/(X, 0®").
For P e X, let o generate wp and write ap = fo®", where f € Op.

DerINITION. The Weierstrass weight of P, denoted W(P), is defined by W(P)=
ordp f = dim; Op/(f). The point P is called a Weierstrass point if W(P) > 0.

It is easy to see that W(P) is independent of the choice of o and of the choice of the
basis of H(X, w). A computation of the degree of w®" shows that the total of the
Weierstrass weights of all points on X is g(g — 1)(g + 1).

As evidence that this definition is an appropriate generalization of the notion of
Weierstrass point to the singular case, Widland proves the following key result.

THEOREM 1. Suppose X is an integral, projective Gorenstein curve of arithmetic genus
g >1 and suppose P € X. Then the following statements are equivalent.

1) w(p)>0.

(2) There is a nonzero o € HY(X, w) satisfying ordp 0 =g.

(3) There is a 1-special subscheme with support P and length equal to g.

(4) There is a 1-special subscheme with support P and length at most g.

The concept of an r-special subscheme was introduced by Kleiman [6]. In the case of
a nonsingular curve, a multiple of a Weierstrass point is a special divisor. In the singular
case, it becomes necessary to replace ‘“‘special divisor’” with “1-special subscheme”, since
there will now be non-principal subschemes supported at a singularity. .

At a smooth point, one may define Weierstrass gaps and the semi-group of non-gaps
and prove results completely similar to the classical case. In particular, if the gap
sequence at a smooth point P is 1,v,,..., v, then the Weierstrass weight at P is

pRCED
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However, the notions of Weierstrass gaps and semi-group of non-gaps appear not to
extend to singular points. If P is a singular point, then the objects of interest are not just
the divisors nP, but rather all the subschemes supported at P.

Set &, = length (65/0;), where 6, denotes the integral closure of @p. Then Widland
proves the following.

THEOREM 2. W(P) = 6pg(g — 1). In particular, if g > 1, then every singular point of X
is a Weierstrass point.

We note that this Theorem may be viewed as a generalization of a result of S. Diaz
[1] who showed that every non-separating node on a stable curve is a limit of Weierstrass
points on nearby smooth curves and that the generic non-separating node on a uninodal
stable curve is a limit of exactly g(g — 1) Weierstrass points on nearby smooth curves.

The fact that singular points must be Weierstrass points becomes clear if one looks
more closely at the above Wronskian. Let oy, ..., g, be a basis for H°(X, w). Suppose
that ¢ is a rational function such that the differential dt has order 0 at each point on the
normalization of X lying over P and suppose that 4 is a generator (in 0p) of the conductor
of 0p in 6p. Then o =dt/h generates wp. Write o, =fofori=1,2,..., g. Then it is not
hard to see that

W,(0y, ..., o) =det(h'fiD(t)) for i,j=1,...,8

=8 D2W(f, ..., f), (1.1)
where W(f;, ..., f;) is the usual Wronskian of rational functions. Since the function h
vanishes at P if P is a singular point, it is obvious that singularities are Weierstrass points

of high weight.
We will need one more of Widland’s results.

ProposITION 1. Let P be a node of X with 6:Y — X the partial normalization of X at
P. Put 67'(P)={Q,, Q,}. Then

W(P)=g(g—1)+W(Q))+W(Q,)

EXAMPLES

(1) Gorenstein curves of arithmetic genus 0 or 1 have no Weierstrass points.

(2) Suppose X is a rational nodal curve of arithmetic genus 2. Then by Proposition 1
and (1) above, each node has Weierstrass weight 2. If X is obtained from P, by
identifying 0 with o and 1 with b then X has two nonsingular Weierstrass points of weight
1 at +Vb.

(3) The situation becomes much more complicated with rational nodal curves of
arithmetic genus 3. For example, the curve obtained from P¢ by identifying 0 with «, 1
with —1, and i with —i, has no nonsingular Weierstrass points. Each node has Weierstrass
weight 8.

2. Spaces of smooth Weierstrass points on families of Gorenstein curves. Let S be

an integral, noetherian scheme over k. Let #: % — § be a family of Gorenstein curves of
arithmetic genus g =2. By this we mean that x is a flat, projective morphism whose
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geometric fibers are integral Gorenstein curves of arithmetic genus g. By the theory of
duality of coherent sheaves [3, V.9.7 and VII.4], there is a canonical invertible sheaf wg;s
on & whose restriction to a fiber & is the sheaf of dualizing differentials wy.

By Grauert’s Theorem, the sheaf 7, wg;s is locally free of rank g. Hence the sheaf

—
E=n*n, wus

is locally free of rank g. The stalk of this sheaf at a point of &, is HY(%,, wg,). Let
1:Z° — % denote the open subscheme of & consisting of smooth points and put €° = (*&.
As in [8] (also see [12]), there is a canonical map

uk:%0—> P;’/s

which takes a section of ° to its k-th principal part (or k-jet along the fiber).

. = dt
Now assume that S is smooth. If f(s, t)m , where j=1,..., g and s denotes a
1
system of local coordinates on S, is a basis for H(Z, wgs), then the map u, is given
locally by the matrix

[67*f/o¢7"] for i=0,...,k and j=1,...,g

DEeFINITION. Put W}, = Z"(u,_,), the scheme where the map u,_, has rank at most
min(k, g) — r (cf.[7]). We call W, = W} the scheme of relative smooth Weierstrass points
of order k of Z over §.

We note that we have the following obvious inclusions:

(1) ¢=mEMQ...gm,
& WAL M2 2 Wemumh
kK €Wk

Since the notion of Weierstrass gaps at smooth points is virtually unchanged from the
classical case, we have

PROPOSITION 2.

(1) If k=g, then |W7|={P e &°| in the gap sequence at P € X, (p, there are at least r
nongaps <k}.

(2) If k=g, then |W}|={P € Z°|in the gap sequence at P € &, (p), there are at least r
gaps > k}.

Proof. |9, prop. 3].
The following results are also analogous to the nonsingular case (cf. [8], [9]).

ProrosiTioN 3. Either W) is empty or each component has codimension at most
r(k —g|l+r) in Z°

Proof. [5], [2, ch. 14].

PRrOPOSITION 4. Assume r > 0. Then the points of W}*' are singular points of W+.
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Proof. The proof of [7, prop. 2], with “analytic space” replaced by “scheme”, is
valid.

3. Rational nodal curves. We now define the family of “all” rational nodal curves
of arithmetic genus g and investigate the Weierstrass points of this family. Suppose that g
is at least two. Let % denote the open subscheme of P* whose closed points are 2g-tuples

of distinct points of P'. We will denote a point of U by (a,, by, . . ., a,, b,).
Put & = % x P'. Let & denote the space obtained from % by identifying the points
(@i, by, ..., a4, b,,a) and (ay, by, ..., 4, b, b)) fori=1,2,...,g Then &is a priori

an algebraic space, but it may be seen that & is in fact a projective scheme over U. This
construction is just a relativization over % of the construction of a single rational nodal
curve by identifying pairs of points of P'. The fiber of Z over a point (a;, b,, .. ., a,, b,)
is the irreducible rational nodal curve obtained from P' by identifying the points a; with b;
fori=1,...,8

Let m:&Z — 9 denote the obvious projection. We note that if P, is the point of Z
obtained by identifying A, = (a;, b;, . . ., a,, by, a;) and B;=(a,, b;, . . ., a,, by, b;), then
the local ring at F, is

Op.p,={f € Oy 4,N Oy p,: 9/ (f) = v} ()},

where ¢; (resp. ;) is the section of ¥ — U which takes (a,, b,, ..., a, b,) to
(@1, by, ..., a4, by, a) (resp. (ay, by, ..., a, b, b)) and the upper star denotes
comorphism.

At a singular point, & is analytically a complete intersection. Indeed, locally at a
singular point, Z looks analytically like the intersection of two (2g + 1)-planes along a
2g-plane. Hence & is a Cohen-Macauley scheme. Then & is flat over % ([4, p. 276]) and
since all fibers are Gorenstein curves, we have

ProposITION 5. & is a family of Gorenstein curves over U.

Note that & is not a “‘universal” family in the usual sense since there are many

isomorphic copies of a given curve in the family (e.g. we have not taken the quotient of &
under the obvious actions of the symmetric group or of PGL(1)).

We now wish to prove results analogous to the main theorems in [8] and [9]. We no
longer have available the Schiffer-Spencer-Rauch variational formula which we used in
the smooth case, but in the case of rational nodal curves we can explicitly compute how
relative dualizing differentials vary.

THEOREM 3. For 2=k <g, there exists a nonempty open subscheme S, of U such that
the pullback of W), — W% over S, if nonempty, is smooth of pure dimension g + k.

Proof. Suppose P e W,— Wi Let n(P)=(a;,by,...,a,b,). Without loss of
generality we may assume that no g; or b; is ®. Put X = &, ). Let t be a local coordinate
on X centered at P. Then dt generates wy and wgq at P. A basis for H(X, wy) is

dt

g=———— for j=1,...,8.
Tt -a)(e—-by) I 8
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A basis for HY(Z, wgs,) is i

=)=y
where x; (resp. y;) is a coordinate on % such that x;(a;, by, ..., a,, b,)=a; (resp.
yi(ay, by, ..., a,, by) =b;). For coordinates on Z centered at P, we will take X, ..., X,
Y,,..., Y, t where X;=x;—a;and Y;=y;—b;forj=1,...,8
We will proceed as in [8] to compute the tangent space to %, at P as a subspace of
the tangent space to & at P. Let £ denote a tangent vector to & at P. We view § as a
k-homomorphism of local rings

for j=1,...,8,

§:Op.p — kle]/(¢?).

Put &(t)=ue, &(X)=ce, and §&(Y;)=dg, for j=1,...,g. We think of
¢1,dy, ..., ¢ dg, u as being ‘“‘coordinates” for the tangent space to & at P. (In
differential-geometric terms, one can think of & as being the tangent vector c,
83X, 'oy, T fax, fay, ot

Put _

[=1(@-x)t—y) for j=1,...,8
Then the matrix of u,_, locally at P is
M=[dF/of] i=0,...,k-1; j=1,...,g
As in [8], & will be tangent to %, if and only if all minors of order k of the matrix
EM)=[E(F/or))  i=0,...,k—-1; j=1,...,g

vanish.

By Taylor’s Theorem, we have

’ L . I . . - : g . - . . o~ .
E(8f;/0t') = 8f;/ 8¢ (P) + eud™*'f,/ o' (P) + € 12] @ 'f,/8X,0¢ (P) + di3"*'f,/ 8Y,3r'(P).
Expanding £ in a power series in ¢ yields

7 1 i[ 1 1 ]t’".

(5+b) — X+ ) iolL (X + )™ (G + )™

We then get the following expressions for the partial derivatives of f; evaluated at P:

i!

aifj/ati(P) = (b, — a)(a* - bi*)
i~ Gi\4; j
s .~ it (i +1)a; 1
3 +1fj/c'z)Xjat (P)= b, — a)(@ - bi*) [bg+1 _ a':il + b.— a-]
§ 1A} J J J J J
i ,- —i! (i +1)b; 1
AR = G G v
j AN J J J 4 Y

8*Yf;/3X,0t = 3*'f;/9Y,0r =0 if j#n
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Now, since P € W, — W%, we may assume, without loss of generality, that the leading
minor of M is nonzero. Then, as in [8], & will be tangent to %, if all maximal minors
containing the leading minor of &(M) vanish. Let E, =¢E;, for j=k, k+1,...,g,
denote the maximal minor of £(M) consisting of the first k columns and the jth column.
Our proof will be completed by showing that the equations E;=0 are linearly
independent over a nonempty open subscheme of .

Note that ¢; and d; only occur in equation E; forj=k, k + 1, ..., g. Expanding E; by
its last column and using the partial derivatives above, we see that the coefficient of c; in
the equation E; =0 is

i (=1 1) 2! [ (i + a; N 1 ]
i=l(b,‘ — j)(a;+1 —- b;’_+l) bj-+1 _ a;+1 b]- _ aj ’
where |i| denotes the (k — 1) X (k — 1) minor of M obtained by deleting the ith row from
the first k — 1 columns. To show the linear independence of the E;forj=k, k+1,...,g8
it then suffices to show that (3.1) is nonzero.
Let F; be the rational function on % obtained by replacing a; by x; and b; by y; in
(3.1). We claim that F, is not identically zero. Indeed, if we set x; =0 then F; becomes

Ty =202 yf 2+ — .+ (= 1)*!
E=(—1YP4” 212y 2+ ( 1)k|ﬂ]

(3.1)

yf+3
Since |k| is nonzero, we see that F, is not identically zero.
Thus there exist nonempty open subschemes U, forj=k, k +1, ..., g of U such that
the coefficient of ¢; in E;=0 is nonzero over U. Hence the equations E;=0 for
j=k, k+1,...,g are linearly independent over

g
Se=1U. -
j=k

The dimension of the tangent space to W, — W% at any point lying over S, is then g + k,
so these points are smooth by Proposition 3.
The following result is much weaker than Theorem 2 of [9], but is the best result we

have been able to obtain for rational nodal curves with these methods. We will be able to
use it to show that nonsingular Weierstrass points on a generic rational nodal curve have
weight one.

THEOREM 4. For 1 =1=<g —2, there exists a nonempty open subscheme T, of AU such
that the pullback of W1 — W2, over T, has dimension less than 2g.

4

Proof. Suppose that Pe W, — W§+,. Note that P € W,,, if and only if there is at
least one gap at P greater than g +/ and, since P ¢ W2, the gth gap at P must be
g + 1+ 1. Using Theorem 3, it suffices to prove that the dimension of the tangent space to
W, at P is less than 2g when the first non-gap in the gap sequence at P is g. This gap

sequence is then 1,2,...,g—1, g+ + 1. )
Let & denote a tangent vector to & at P as in the proof of Theorem 3. Let E; = ¢E; for
i=1,...,1+1 denote the g X g minor of §(M) consisting of the first g — 1 rows and the
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(g —1+i)th row. We will show that the equations E,=0 and E,=0 are linearly
independent over a nonempty open subscheme of %.

Let A, and A,, denote the coefficients of ¢, in the equations E, = 0 and E, =0,
respectively and let B,, and B,, denote the analogous coefficients of d,, where
E(X;) = ec, and &(Y;) = ed,. We may compute these coefficients by using the partial
derivatives in the proof of Theorem 3. Form the determinant

Al,g Bl,g
A2,g BZ»g

As in the proof of Theorem 3, replace a, by x, and b, by y, in C, obtaining a rational
function on 2. We must show that this function is not identically zero. Setting x, =0, this
function becomes C(y,) = q(y,)/y***, where q is a polynomial whose constant term may
be seen to be —m?g!(g +1)!, where m is the leading minor of the matrix M. But this
minor is nonzero since the gap sequence at Pis 1,2,...,g—1, g +/+1. Hence, C(y,) is
not identically zero and there exists a nonempty open subscheme 7; of % such that the
equations E, =0 and E, =0 are linearly independent over 7;. Thus the tangent space to

W, at P has dimension at most 2g +1-2=12¢g - 1.

C=

CoroLLaRY. There exists a nonempty open subscheme T, of U such that the pull-back
of Wysr— W21 over Ty, if nonempty, is smooth of pure dimension 2g — 1.

THEOREM 5. There exists a nonempty open subscheme U of U such that if
(@1, by, . .., a5, b,) is a point of U, then every node on the curve X, p,... a5, has
Weierstrass weight g(g — 1).

Proof. We consider the Wronskian « of §1 formed from a basis oy, ..., g, of
H%(%, wgq) (the definition in §1 clearly extends to the case of relative dualizing
differentials) as a section of the bundle w%, where N =g(g + 1)/2. Put

Y={PeZ|W(P)>g(g-1)}={PeZ|ordpa>g(g—1)}.

Then Y c &;,,, since at a smooth point one may show, as in the classical case, that the
Weierstrass weight is at most g(g — 1)/2. In fact, Y is a closed subset of &,;,,. To see this,
note that locally at P the section o may be written (cf. 1.1)
_ ~ . /dt ®N
= h(x, v - 35, e WG T)(F)

and it follows that a node P has weight greater than g(g — 1) if and only if W,(f;, ..., f)
vanishes at a point lying over P on the normalization of &. Then z(Y) is a closed subset
of U and it suffices to show that z(Y) # 4.

But this is clear, since one may recursively construct a rational nodal curve of
arithmetic genus g such that all the nodes have Weierstrass weight g(g — 1) by beginning
with P! and at each step identifying two points which are not Weierstrass points. By
Proposition 1, the resulting nodes will always have the minimum weight.

We note that although it was a trivial matter in the last proof to construct a rational
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nodal curve such that all the nodes have the minimum Weierstrass weight, there is no
guarantee that the nonsingular Weierstrass points on such a curve will all have weight
one. We have not been able to construct for every arithmetic genus a rational nodal curve
such that all Weierstrass points have the minimal weights (i.e. weight 1 for nonsingular
Weierstrass points and weight g(g — 1) for nodes). However, we may use the previous
results to prove:

THEOREM 6. On a generic rational nodal curve all Weierstrass points have the minimal
possible weights.

Proof. Let Z denote the intersection of the open subschemes Sy, 7;, and U of the
three preceding theorems where k=2,...,g—1landi=1,...,g-2. Let 7, &, > Z
denote the pullback of the family & to Z. Then, by Theorem 5, every node on a curve
over Z has Weierstrass weight g(g —1). By Theorems 3 and 4, the constructible sets
(Wi — W3) and 7z(W,.,— W2,,) have codimension at least one in Z, for k=
2,...,g—1and I=1,...,g—2. Also, note that if V is any component of W3, for
k=3,...,g, then there exists k' <k such that V < % . and V ¢ W%.. Hence it follows
from Theorem 3 that every component of W% lying over Z has dimension less than 2g, so
cannot dominate Z. Similarly, if V' is any component of W?2,,, for [=0, ..., g —3, then
there exists I’ >/ such that V' < W, and V' & W7,,.. Hence it follows from Theorem 4
that every component of W?2,, lying over Z has dimension less than 2g, so cannot

dominate Z.
Therefore, there exists a dense open subset Z’' of Z such that all nonsingular
Weierstrass points on curves over Z' have gap sequence 1,2,...,g and hence have

weight one. Hence, all Weierstrass points on any rational nodal curve lying over a point
of the nonempty open subset Z' have the minimal possible weights.
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