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The Taylor–Melcher leaky dielectric (LD) model is often used to study the physics of
electrosprays operating in the cone-jet mode. Despite its success, there are electrospraying
conditions in which the ion concentration fields must be retained, which requires
an electrokinetic model. This article reproduces cone-jets with two electrokinetic
formulations: the standard Poisson–Nernst–Planck (PNP) equations, and a modified
electrokinetic (MEK) model that accounts for overscreening and overcrowding of
electrolytes, which is important in fluids with high electrical conductivities such as ionic
liquids (Kilic et al. 2007 Phys. Rev. E vol. 75, no. 2, 021502, 021503; Bazant et al.
2011 Phys. Rev. Lett. vol. 106, no. 4, 46102). In the case of liquids with low electrical
conductivities, it is observed that the LD and PNP models agree under certain limiting
conditions, but they are less restrictive than previously proposed (Baygents & Saville 1990
AIP Conf. Proc. vol. 197, 7–17; Schnitzer & Yariv 2015 Fluid Mech. vol. 773, 1–33);
the effects of dissimilar ion diffusivities are also investigated. In the case of liquids with
high electrical conductivities, in particular ionic liquids, overscreening and overcrowding
effects are important, resulting in significant differences between the solutions of the PNP,
MEK and LD models. In particular, the electrokinetic models yield increased dissipation
and self-heating, leading to higher temperature variations and currents, in agreement with
measurements. Furthermore, the MEK formulation describes the ion concentration fields
with higher fidelity than the PNP equations.

Key words: electrohydrodynamic effects, electrokinetic flows, capillary flows

1. Introduction
Electrospray atomization is based on the use of an electric field to produce a liquid jet,
which ultimately breaks into charged droplets (Cloupeau & Prunet-Foch 1989; Fernández
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de La Mora 2007). There exist several electrospraying modes, among which the so-
called cone-jet has the unique ability to generate droplets with narrow size distributions
and controllable average diameter ranging from hundreds of micrometres down to a
few nanometres (Gañán-Calvo et al. 2018; Rosell-Llompart, Grifoll & Loscertales 2018).
Typically, a liquid is fed through a capillary needle towards its tip while applying a
potential difference with respect to a facing electrode. The liquid meniscus at the tip
adopts a conical shape referred to as a Taylor cone (Taylor 1964), which emits a thin
jet from its apex. The fluid in the jet accelerates forced by the electric field, undergoes
Rayleigh instability and breaks into charged droplets (Rayleigh 1882). The consideration
of different balances in the cone-jet and experimental data has led to scaling laws for
the current emitted in the form of charged droplets and for the radius of the jet. For
example, Gañán-Calvo et al. (1993), postulating that the surface charge must be in a state
of electrostatic quasiequilibrium everywhere in the cone-jet, derive the following scaling
law for the current (Gañán-Calvo 1999, 2004):

I ∼= 2.47(γ K Q)1/2, (1.1)

while Fernández de La Mora & Loscertales (1994) propose that the surface charge must
depart from equilibrium near the tip of the Taylor cone, leading to

I ∼= f (ε)(γ K Q)1/2. (1.2)

Here K , γ , ε and Q are the electrical conductivity, surface tension, dielectric constant
and the volumetric flow rate of the liquid, respectively. The scaling law (1.1) fits well
the experimental data for a large number of liquids (Gañán-Calvo et al. 2018). It is
remarkable that Gañán-Calvo et al. (1993) obtained the accurate factor of 2.47 as early
as 1993. Experimental (Fernández de La Mora & Loscertales 1994; Chen & Pui 1997)
and numerical (Gamero-Castaño & Magnani 2019b) studies have found a dependence of
the current on the dielectric constant, as suggested by (1.2). We note that the dielectric
constant survives in the equations describing the electrohydrodynamics of cone-jets,
specifically in the jump condition for the electric field across the surface, and therefore
it must have an effect on the solution. However, this effect should be small if the surface
charge is not far from equilibrium. The diameter of the jet and droplets follows the scaling
law (Gañán-Calvo et al. 1994; Gañán-Calvo 1999, 2004)

d ≈
(

ρε0 Q3

γ K

)1/6

, (1.3)

where ε0 is the permittivity of vacuum and ρ is the density of the liquid. This result has
been validated by experiments and numerical calculations (Gañán-Calvo et al. 1997, 2018;
Gamero-Castaño & Hruby 2002; Gamero-Castaño & Magnani 2019b).

Taylor and Melcher’s leaky dielectric (LD) model (Melcher & Taylor 1969; Melcher
1981; Saville 1997) has become the default first-principles formulation for the study of
cone-jets. The LD model assumes that the volumetric charge density is zero. Furthermore,
it considers a zero-thickness surface where all free charge is concentrated in the form of
a surface charge variable with an associated conservation equation. These assumptions
simplify the model: charge neutrality in the bulk eliminates the need to track the
concentration of ionic species, and their conservation equations are replaced by a simple
Ohm’s law with a constant electrical conductivity; the electric potential in the bulk only
needs to fulfil the Laplace equation, instead of the Poisson equation; and the surface
charge approximation eliminates the need to resolve the Debye layer that naturally forms
under the surface. Despite these simplifying assumptions, numerical solutions based on
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the LD model have successfully predicted the behaviour of cone-jets. Hartman et al. (1999)
reproduced experimental data, including the scaling law for the electrospray current.
Higuera (2003) used Taylor’s potential (Taylor 1964) as a far field boundary condition
to obtain universal solutions independent of the geometry of the electrodes; the use of
Taylor’s potential as a far-field boundary condition appears for the first time in an analytical
solution by Gañán-Calvo (1997). Herrada et al. (2012) simulated cone-jets including the
geometry of the electrodes, and were able to reproduce measurements of the geometry
of cone-jets and of the emitted current. Gamero-Castaño & Magnani (2019a,b) employed
the far field Taylor potential to find accurate solutions for cone-jets in a wide range of
dimensionless flow rates, electric Reynolds numbers and dielectric constants, and to study
the minimum flow rate. Recently, Magnani & Gamero-Castaño (2024) have extended their
LD formulation to account for ohmic and viscous dissipation and the associated self-
heating, which is key for liquids with high electrical conductivities (Gamero-Castaño 2010,
2019). In addition to the inherently steady cone-jet, the LD model has also been employed
to simulate time-dependent tip streaming problems (Collins et al. 2008, 2013; Gawande,
Mayya & Thaokar 2020; Wagoner et al. 2021).

The volume of fluid (VOF) and phase-field techniques have been used to account for
non-zero volumetric charge density in cone-jets. In the simplest case the concentration
fields of ionic species are ignored while using a volumetric charge density that fulfils a
conservation of charge equation with convection and conduction terms (Herrada et al.
2012), and a constant electrical conductivity (for a detailed discussion see Gañán-Calvo
et al. 2018). The VOF solution by Gañán-Calvo et al. (2016) shows that the assumptions
of the LD model fail in ultrafast ejection and tip streaming from Taylor cones, i.e. in time-
dependent problems. Herrada et al. (2012) have shown that the LD model and the VOF
technique agree well in steady-state calculations of cone-jets. Recently, several authors
have used the VOF technique to time-march their algorithms to obtain the steady-state
cone-jet solution (Dastourani, Jahannama & Eslami-Majd 2018; Huh & Wirz 2022; Mai
et al. 2023; Suo et al. 2023). The VOF and phase field techniques have been used to
study other electrohydrodynamic problems (Tomar et al. 2007; López-Herrera et al. 2011;
Ferrera et al. 2013; Gañán-Calvo et al. 2016; Misra & Gamero-Castaño 2022, 2023).

There are few studies that retain the full electrokinetic details to study steady cone-jet or
unsteady tip-streaming. The extent to which the bulk can be assumed neutral is governed
by the ratio between the Debye length and the characteristic length scale. When this ratio is
not sufficiently small the electrical conductivity in the bulk cannot be regarded as constant
but must be expressed in terms of the concentrations and mobilities of ionic species,
and the LD model should fail. The VOF technique combined with the standard Poisson–
Nernst–Plank (PNP) electrokinetic formulation has been employed to study the breakup of
electrified jets (López-Herrera et al. 2015) and the evolution of electrified droplets (Pillai
et al. 2015, 2016). These studies have shown that electrokinetic details become relevant
when the Debye length is comparable to the characteristic length scale.

The electrokinetic and LD approach were unified by Schnitzer & Yariv (2015) and
Mori & Young (2018). Mori & Young (2018) consider the weak electrolyte limit;
Schnitzer & Yariv (2015) consider the strong electrolyte limit and, following Baygents &
Saville (1990), assume the existence of an imbalance in surface concentrations of anions
and cations, thereby solving an additional surface charge conservation equation despite
fully resolving the Debye layer. Mori & Young (2018) claim that this conservation equation
is an arbitrary requirement without justification. Despite these differences, both analyses
employ rigorous scaling arguments to extend the earlier work by Baygents & Saville (1990)
and Saville (1997), and demonstrate that the LD model can be derived from the more
general electrokinetic formulation under certain limiting conditions (see § 2). However,
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López-Herrera et al. (2023) have recently pointed out that cone-jets are well-described by
the LD model despite not fulfilling one of these conditions. To the best of our knowledge,
the work by López-Herrera et al. (2023) is the first investigation of cone-jets that includes
a detailed electrokinetic formulation for both weak and strong electrolytes. This study
compares LD and PNP solutions of cone-jets finding that, in the case of strong electrolytes,
both electrokinetic effects and the polarity of the cone-jet strongly influence the total
current. However, for these strong electrolytes, experiments agree much better with the LD
solution than with the PNP solution. The authors hypothesize that the poor performance of
the PNP model is due to the lack of a surface adsorption process in the model, as postulated
by Schnitzer & Yariv (2015).

Highly concentrated solutions such as ionic liquids exhibit overscreening and
overcrowding of ions near the interface (Kilic, Bazant & Ajdari 2007a; Kornyshev 2007;
Bazant, Storey & Kornyshev 2011; Storey & Bazant 2012). These effects lead to complex
behaviours like charge density oscillations (Hayes, Warr & Atkin 2010; Perkin 2012;
Li, Endres & Atkin 2013; Smith, Lee & Perkin 2016; Noh & Jung 2019). These phenomena
occur because the charges at the interface are overcompensated by counter-ions, which in
turn are overcompensated by additional ions, creating a non-monotonic charge distribution
close to the interface (Bazant et al. 2011). Several modifications to the PNP model, which
is strictly applicable to dilute solutions, have been proposed (Kornyshev 2007; Kilic et al.
2007a,b; Bazant et al. 2011; Storey & Bazant 2012). These modifications account for the
finite size of the ion and short-range Coulomb forces. These models have been used to
describe the behaviour of ionic liquids (Lee et al. 2013, 2015; Stout & Khair 2014; Wang
et al. 2017), but have not been applied to cone-jets of ionic liquids, which have only been
studied with the LD formulation (Coffman et al. 2016, 2019; Gallud & Lozano 2022;
Magnani & Gamero-Castaño 2023, 2024).

Building on the work by López-Herrera et al. (2023), this article revisits the
electrokinetic modelling of cone-jets of fully dissociated salts. This is partially due to our
own research, which focuses on cone-jets of highly conducting liquids that necessarily
involve strong electrolytes. An important objective is to analyse the conditions under
which the electrokinetic and LD formulations coincide and depart. Section 2 analyses the
ranges of ion diffusivities and Debye lengths realized in experiments. Section 3 introduces
the PNP and modified electrokinetic (MEK) models and the numerical implementation.
The models account for self-heating and non-isothermal behaviour. Section 4 analyses
the solutions of the LD, PNP and MEK models for dilute electrolytes and ionic liquids.
Finally, a summary of the findings is presented in § 5.

2. Applicability of the LD model to cone-jets
The implementation of charge transport is the main difference between LD and
electrokinetic formulations. While the LD model does not consider a volumetric charge
density and employs Ohm’s law in the bulk

∇̃ · (K Ẽ) = 0, (2.1)

the PNP formulation tracks the concentrations of anions and cations, defines a volumetric
charge density ρ̃e with their balance and requires the electric potential in the bulk to fulfil
the Poisson equation,

∂ ñ±

∂ t̃
+ ∇̃ · (ñ±ũ) = ∇̃ ·

(
D±∇̃ñ± ± D±

kB T̃
eñ±∇̃φ̃

)
,

εε0∇̃2φ̃ = −ρ̃e, ρ̃e = e(ñ+ − ñ−), (2.2)
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where e, kB , T̃ are the elementary charge, Boltzmann constant and the temperature; Ẽ, φ̃

and ε stand for the electric field, electric potential and the dielectric constant of the liquid;
and D± and ñ± are the diffusivity and the concentration of the anion (−) and cation (+).
Throughout the article dimensional variables are capped with a tilde, while dimensionless
variables are uncapped. Baygents & Saville (1990) and Schnitzer & Yariv (2015) have
shown that the LD model is a limit of the more general electrokinetic formulation under
the following conditions:

(i) the characteristic length (rc) of the liquid domain is much larger than the Debye
length (λD): ΛD = (rc/λD) � 1;

(ii) the local electric potential at the interface of the liquid domain (φs) is much larger
than the thermal potential (φT h = (kB T̃o)/e): Γ = (φs)/(φT h) � 1;

(iii) the electric field outside the fluid domain (φs/rc) is much smaller than the electric
field in the Debye layer (φT h/λD): ΛD/Γ � 1.

We next analyse whether these conditions, referred to as the Baygent–Saville limit
(Schnitzer & Yariv 2015; Mori & Young 2018; López-Herrera et al. 2023) are fulfilled
in typical cone-jets. For simplicity we assume a dilute electrolyte of a fully dissociated
1 : 1 salt. The Debye length is given by

λD =
(

εε0kB T̃

ñe2

)1/2

=
(

εε0(D+ + D−)

K

)1/2

, (2.3)

where ñ is the salt concentration. The electrical conductivity is proportional to the ion
concentrations and diffusivities,

K = e2

kB T̃
(ñ+D+ + ñ−D−). (2.4)

While the diffusion coefficients for various salts dissolved in water and for some ionic
liquids are known (Lide 2004; Tokuda et al. 2006), extrapolating these values to other
solvents is not generally possible. However, for strong electrolytes frequently employed in
electrosprays, we can estimate the sum of the diffusion coefficients with the reported bulk
electrical conductivity and concentration,

D+ + D− ≈ kB T̃

e2

(
K

ñ

)
. (2.5)

Figure 1 shows the bulk electrical conductivity versus the bulk salt concentration for
several electrolytes, and table 1 lists the average diffusion coefficients obtained from
linear fittings of these data. The diffusivity estimates in table 1 are rough approximations,
based on the assumption of full salt dissociation, an assumption that may not hold in
low dielectric solvents. The diffusion coefficients of the ionic liquids EMI-Im, 1-ethyl-3-
methylimidazolium tetrafluoroborate (EMI-BF4) and ethylammonium nitrate (EAN) in
table 1 are reported by Noda, Hayamizu & Watanabe (2001), Tokuda et al. (2006) and
Filippov et al. (2021), respectively.

The appropriate length and electric potential needed to evaluate ΛD and Γ are the radius
of the jet and the radius times the normal component of the outward electric field on the
surface, both of which vary along the axis. We will next use the scaling laws of cone-
jets to express these quantities (Fernández de La Mora & Loscertales 1994; Gañán-Calvo
et al. 2018). These scaling laws are strictly applicable to isothermal cone-jets, and therefore
the physical properties defining the different dimensionless groups are constant. However,
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Figure 1. Conductivity versus molar concentration for solutions of lithium chloride (LiCl) and 1-ethyl-3-
methylimidazolium bis((trifluoromethyl)sulphonyl)imide (EMI-Im) salts in water (W), ethylene glycol (EG),
propylene carbonate (PC) and tributyl phosphate (TBP). Here NA refers to Avogadro’s number.

Liquid ε (D+ + D−) (m2/s) T̃ (K ) Reference

W + LiCl 80.1 2.72 × 10−9 298 Fernández de La Mora & Loscertales (1994)
PC + EMIIM 64.9 5.62 × 10−10 298 Gamero-Castaño & Magnani (2019a)
EG + LiCl 37.6 6.57 × 10−11 298 Fernández de La Mora & Loscertales (1994)
EG + EMIIM 37.6 9.4 × 10−11 298 Gamero-Castaño (2019)
TBP + EMIIM 8.91 5.72 × 10−11 298 Gamero-Castaño & Magnani (2019a)
EMI-Im 12.2 6.9 × 10−11 293 Tokuda et al. (2006)
EMI-BF4 13.1 7.6 × 10−11 293 Noda et al. (2001)
EAN 27.06 7.34 × 10−11 294 Filippov et al. (2021)

Table 1. Estimates of diffusion coefficients for solutions of lithium chloride and EMI-Im salts in water (W),
PC, EG and TBP along with pure ionic liquids EMI-Im, EMI-BF4 and EAN.

our cone-jet model incorporates self-heating and temperature variations, and considers
temperature-dependent electrical conductivity, viscosity (μ) and ion diffusivities (all other
physical properties are considered constant). Thus, we will use the values of these physical
properties at the inlet temperature T̃o, that is μo, Ko and D±

o , when defining the different
dimensionless groups. The characteristic scales for the length and electric potential are

rc = d0Π
1/2
Q , (2.6)

φs = σ

ε0
rc = I r2

c

2ε0 Q
=
(

ρ2γ Ko Q3

26ε4
0

)1/6

=
(

γ 4

26ε0ρK 2
o

)1/6

Π
1/2
Q , (2.7)

where σ stands for the surface charge density, and d0 = (γ ε2
0/(ρK o

2))1/3 is a
characteristic length that only depends on physical properties. Note that rc and φs are
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6.06 × 10
−3

7.48 × 10
−3

0.341
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3.09
0.57

1.8

0.924

0.268

0.27

0.095

103

TBP
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EMI-Im

EAN

104

103

ΛD/Γ = 1

ΛD

Γ 

Figure 2. Cone-jet states reproduced in experiments (TBP, PC and EG-based solutions with various electrical
conductivities, and ionic liquids EMI-Im and EAN) in ΛD − Γ space. The label next to each data series
indicates the Reynolds number of the solution.

expressed in terms of the dimensionless flow rate ΠQ ,

ΠQ = ρKo Q

ε0γ
. (2.8)

We do this because in the traditional description of cone-jets, i.e. excluding electrokinetic
effects, the state of an isothermal cone-jet is specified by three dimensionless numbers.
The typical choices for this triplet are ΠQ , ε and the so-called electric Reynolds
number Re,

Re =
(

ε0ργ 2

μo
3Ko

)1/3

. (2.9)

Finally, ΛD and Γ can be expressed in terms of these dimensionless numbers as

ΛD =
[

ε0γ
2

ρ2Ko
(
D+

o + D−
o
)3
]1/6 (

ΠQ

ε

)1/2

, (2.10)

Γ = e γ 2/3

2kB T̃o ε
1/6
0 K 1/3

o ρ1/6
Π

1/2
Q . (2.11)

These expressions are excellent approximations for ΛD and Γ at the point where the
conduction current through the bulk of the liquid equals the surface current, i.e. in the
initial region of the jet. The local values of ΛD and Γ decrease downstream as the jet
thins down.

Figure 2 shows states of experimental cone-jets in ΛD − Γ space, for several liquids
including TBP (ε = 8.91), EG (ε = 37.6), PC (ε = 64.9) (Gamero-Castaño & Magnani
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2019a; Gamero-Castaño 2019) and the pure ionic liquids EMI-Im (ε = 13.05) and EAN
(ε = 27) (Caballero-Pérez & Gamero-Castaño 2025). States along a data series correspond
to cone-jets of a solution with fixed conductivity and varying flow rate, with a Reynolds
number indicated by a label. Although all these cone-jets fulfil the first two Baygent–
Saville conditions, ΛD � 1 and Γ � 1, none of them satisfies the third condition
ΛD/Γ � 1. Therefore, and as already pointed out by López-Herrera et al. (2023), the LD
model should not be suitable for these cone-jets. However, numerical solutions of the LD
model accurately reproduce observable features such as the current and the jet diameter
(Hartman et al. 1999; Higuera 2003; Herrada et al. 2012; Gamero-Castaño 2019; Gamero-
Castaño & Magnani 2019a). Section 4 will show that the criterion εΛ2

D/Γ > 1 instead of
ΛD/Γ � 1 is the correct condition for the validity of the LD model in cone-jets.

2.1. Highly concentrated electrolytes
The PNP equations (2.2) are only valid for dilute solutions and do not account for short-
range Coulomb interactions and the finite size of ions. Highly concentrated electrolytes
such as ionic liquids exhibit overcrowding and overscreening effects leading to oscillations
in the volumetric charge density (Bazant et al. 2011; Gebbie et al. 2015; Smith et al. 2016).
Due to these effects, the Debye layer in concentrated electrolytes is substantially larger
than predicted by (2.3). For example, (2.3) yields λD ≈ 0.1 nm for EMI-Im, which is
much smaller than the average ion diameter, approximately 0.75 nm (Sun et al. 2022),
and therefore unphysical. On the contrary, the Debye length of EMI-Im evaluated in
experiments is approximately 7 nm (Smith et al. 2016).

The PNP equations and (2.3) are only applicable when the separation between the ions
is much greater than the Bjerrum length lB (Lee et al. 2017),

δlB = l3
Bñ << 1, (2.12)

where lB = e2/(4πεε0kB T̃ ) is the distance at which the ion–ion interaction energy equals
the thermal energy. Ionic liquids such as EMI-Im and EAN, with δlB ∼O(102), do not
fulfil (2.12).

Kilic et al. (2007a,b) and Bazant et al. (2011) have proposed modifications to the PNP
equations to account for crowding and screening effects. These equations capture the
spatial oscillations of the volumetric charge density observed near charged interfaces in
ionic liquids (Lee, Im & Kang 2013; Wang et al. 2017). The MEK read

∂ ñ±

∂ t̃
+ ∇̃ · (ñ±ũ) = ∇̃ ·

[
D±∇̃ñ± ± D±

kB T
eñ±∇̃φ̃ + a3 D±n±∇̃(ñ+ + ñ−)

1 − a3(ñ+ + ñ−)

]
,

εε0
(
1 − l2

c ∇̃2)∇̃2φ̃ = −ρ̃e, ρ̃e = e(ñ+ − ñ−). (2.13)

The last term in the ion conservation equation accounts for the finite ion radius a, and its
role on the overcrowding near the charged interface. The Poisson equation for the electric
potential is replaced by a fourth-order differential equation where ion–ion correlation
effects are accounted for by the electrostatic correlation length lc. Here lc is bounded by
the ion radius and the Bjerrum length, a � lc � lB (Bazant et al. 2011), and we will use
lc = lB in our calculations, unless stated otherwise.

3. Governing equations and numerical implementation
Figure 3 illustrates the axisymmetric computational domain. The radius of the cone-jet,
R(z), is taken from the numerical solution of the LD model for a given {ε, ΠQ, Re}
state (Magnani & Gamero-Castaño 2024), and is kept fixed. The surface separates the
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Γ1
i

Γ2
i

Γ1
o

Q

R(z)n±, φi

u, p, T r

z

φo
Ωo

Ωi –

Figure 3. Schematic of the computational domain. The cone-jet profile R(z) is fixed and computed with the
LD model (Magnani & Gamero-Castaño 2024).

liquid phase Ω i from the surrounding vacuum Ωo. The electrostatic Taylor potential φT is
used as the far-field boundary condition on the surface Γ o

1 ∪ Γ i
2 , which allows modelling

the physics without accounting for the geometry of the electrodes (Gañán-Calvo 1997;
Higuera 2003; Gamero-Castaño & Magnani 2019b). The velocity vector u, the pressure
p, the temperature T , the electric potentials in the liquid φi and gas φo phases, and the
concentrations of anions and cations n± are the dependent variables of the MEK model.
The governing equations are made dimensionless with characteristic scales for length rc,
velocity uc, pressure pc, temperature Tc, current Ic and concentration nc, with derived
scales for the electric field Ec, the electric potential φc and power Pc,

rc =
(

ρε0 Q3

γ Ko

)1/6

, uc = Q

πr2
c
, pc = γ

rc
, Tc = 1

πc

(
γ Ko

ε0ρ

)2/3

, Ic = (γ Ko Q)1/2,

nc = kB T̃o

e2
Ko

D+
o + D−

o
, Ec = Ic

πr2
c Ko

, φc = rc Ec, Pc = φc Ic, (3.1)

where c stands for the specific heat capacity of the liquid. It should be noted that the
electric potential scale φc differs from φs introduced in § 2. Specifically, φc is based on the
tangential electric field, while φs is based on the outward normal electric field, as defined
in (2.7). In the non-dimensionalization of the model equations, the scale φc helps to make
the dimensionless variables of order one. The dimensionless numbers parametrizing the
model are listed in table 2. The model solves the continuity equation, the equations of
conservation of momentum and energy, the modified Poisson’s equation for the electric
potential in the liquid, the Laplace’s equation for the potential in the surrounding vacuum
and the modified ion conservation equations,

∇ · u = 0, (3.2)

u · ∇u = −π2∇ p√
ΠQ

+ πμ∇ · (∇u + ∇uT )

μo Re
√

ΠQ
− πεΛ2

D

2Γ
√

ΠQ
(n+ − n−)∇φi , (3.3)

u · ∇T = ∇2T

PeT h
+ μ(∇u + ∇uT ) : ∇u

μo Re
√

ΠQ
+ K∇φi · ∇φi

Ko
√

ΠQ
, (3.4)

(1 − δ2
c∇2)∇2φi = −πΛ2

D

2Γ

√
ΠQ(n+ − n−), ∇2φo = 0, (3.5)

u · ∇n± = 1
Pe±

D

∇ · D±

D±
o

(
∇n± ± 2Γ

π
√

ΠQ
n±∇φi + νan±∇(n+ + n−)

2 − νa(n+ + n−)

)
. (3.6)
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Dielectric constant ε

Dimensionless flow rate (2.8) ΠQ = ρKo Q

γ ε0

Electric Reynolds number (2.9) Re =
(

ρε0γ
2

μ3
o Ko

) 1/3

Inverse of dimensionless Debye length (2.10) ΛD = rc

λD
=
[

ε0γ
2

ρ2 Ko(D+
o + D−

o )3

] 1/6(
ΠQ

ε

) 1/2

Potential ratio (2.11) Γ = φs

φT h
= e γ 2/3

2kB T̃o K 1/3
o ε

1/6
0 ρ1/6

Π
1/2
Q

Thermal Peclet number PeT h = ρc ucrc

κ
= c

πκ

(
εoργ 2

Ko

) 1/3

Π
1/2
Q

Diffusion Peclet number Pe±
D = ucrc

D±
o

= 1
π D±

o

(
εoγ

2

ρ2 Ko

) 1/3

Π
1/2
Q

Dimensionless electrostatic Correlation length δc = lB

rc
= e2ρ1/3 K 2/3

o

4πkB T̃oε
5/3
o γ 1/3

1

εΠ
1/2
Q

Ion volume fraction νa = 2nca3 = 2kB T̃o Koa3

e2(D+
o + D−

o )

Table 2. Dimensionless numbers governing non-isothermal cone-jets. The dimensionless numbers are
represented in terms of the state variables ΠQ and ε, which are typically used to characterize the state of
cone-jets. Dimensionless groups are defined with the viscosity, electrical conductivity and ion diffusivities at
the inlet temperature, μo, Ko, D±

o , T̃o. Here κ stands for the thermal conductivity of the liquid.

The last two terms in (3.4) are the viscous and ohmic power dissipation densities,

P̃ ′′′
μ = μ(∇ũ + ∇ũT ) : ∇ ũ,

P̃ ′′′
Ω = K Ẽ

i · Ẽ
i
. (3.7)

In order to study the effect of varying anion/cation diffusivities at constant bulk
electrical conductivity, we define the relative cation diffusivity, D+

r ,

D+
r = D+

D+ + D− , (3.8)

where D+
r = 0.5 corresponds to equal cation and anion diffusivities. The temperature-

dependent ion diffusivity and viscosity are exponential functions of the temperature
given by

D±(T̃ )

D±
o

= YDT̃ e
BD

T̃ −TD ,

μ(T̃ )

μo
= Yμe

Bμ

T̃ −Tμ , (3.9)

where the constants YD , BD , TD , Yμ, Bμ, Tμ are specific to the liquid and are given
in table 3. We compute them using published data of the dependence of the viscosity
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Liquid YD(K −1) BD(K ) TD(K ) Yμ(1) Bμ(K ) Tμ(K )

PC solutions 0.092 −528 138 3.66 × 10−2 529 138
EG solutions 2.25 −1037 139 1.48 × 10−3 1038 139
EMI-Im 0.2479 −554 165 5 × 10−3 738 154
EAN 0.1362 −390 188.56 2.24 × 10−5 3964 −76

Table 3. Coefficients for computing temperature-dependent viscosities and ion diffusivities, (3.9). The
reference temperatures are 298 K for EG and PC, and 294 K for EMI-Im and EAN.

and the electrical conductivity on temperature, (2.4) and fixing D+
r = 0.5. The reason for

using D± ∝ T̃ exp(BD/(T̃ − TD)) is the temperature dependence in (2.4) and the fact that
electrical conductivity is well approximated by an exponential function of temperature
(Magnani & Gamero-Castaño 2024; Tokuda et al. 2006). The coefficients for EG and PC
are obtained from Magnani & Gamero-Castaño (2024), while Appendix A describes the
calculations of the coefficients for the ionic liquids.

At the surface we enforce the surface kinematic condition, the balance of tangential
stresses, the continuity of the electric potential and the vanishing of the ion correlation
term, the customary jump of the electric displacement field across the interface between
two dielectrics and the zero heat and ion fluxes,

u · n = 0, (3.10)

t · (∇u + ∇uT )n = 0, (3.11)

φi = φo, n · δ2
c∇(∇2φi ) = 0, (3.12)

Eo
n − εEi

n = 0, (3.13)
n · ∇T = 0, (3.14)(

∇n± ± 2Γ

π
√

ΠQ
n±∇φi + νan±∇(n+ + n−)

2 − νa(n+ + n−)

)
· n = 0. (3.15)

Note that (3.13) implies zero surface charge, in agreement with Mori & Young (2018)
and in contrast with the formulations by Saville (1997) and Schnitzer & Yariv (2015).
Furthermore, we do not require fulfilment of the balance of normal stresses across the
surface because the position of the surface is fixed, adopted from the LD solution. The
main goal of this article is to determine the regions in ΛD − Γ space in which the
electrokinetic and LD formulations coincide or diverge, and this is best accomplished
by computing and comparing solutions at varying ΛD and Γ while keeping all other
parameters, including the shape of the cone-jet, constant. Future work will focus on
solving self-consistent electrokinetic formulations, i.e. models that also fulfil the balance
of normal stresses on the surface. The Taylor potential is given by

φT = −4.228Π
1/4
Q

(
z2 + r2)1/4

P1/2

(
z√

z2 + r2

)
, (3.16)

where P1/2 is the Legendre function of the first kind of degree 1/2. At the inlet surface Γ i
1

we prescribe a sink flow with net flow rate Q, and values for the ion densities, the electric
potential and temperature,
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Figure 4. Example of adaptive grid used to resolve the Debye layer.

u(Γ i
1 ) = − 1

2 (1 − cos θT )
(
z2 + r2

)3/2 r, n±(Γ i
1 ) = 1, φi (Γ i

1 ) = 0, T (Γ i
1 ) = To,

(3.17)

where r is the position vector. Note that Q does not appear explicitly in the dimensionless
boundary condition due to its presence in the definition of the characteristic velocity. At the
outlet boundary Γ i

2 we impose zero velocity, ion and heat fluxes and the Taylor potential

n · ∇u(Γ i
2 ) = 0, n · ∇n±(Γ i

2 ) = 0, n · ∇T (Γ i
2 ) = 0, φi (Γ i

2 ) = φT . (3.18)

The system of equations is solved with COMSOL Multiphysics. For the mass and
momentum conservation equations, we use the inbuilt steady-state laminar flow module.
The conservation of energy is solved using the steady-state heat transfer module, with
additional source terms accounting for viscous and ohmic dissipation. We use the partial
differential equation interface to define our own modules for solving the Poisson/Laplace
equations for the electric potential and the conservation equations for ionic species.
The electric potential is discretized using cubic-order Lagrange elements due to the
modified fourth-order Poisson equation (3.5) in the formulation. The higher-order nature
of the equation benefits from the increased accuracy using cubic elements, particularly
near sharp potential gradients within the Debye layer. The velocity, temperature and
ionic concentrations are discretized using quadratic-order Lagrange elements. Quadratic
elements are well-suited for resolving the gradients of ionic concentrations, while avoiding
excessive computational cost. The pressure is discretized with linear Lagrange elements.
The resulting system of equations is solved using the MUMPS (multifrontal massively
parallel sparse) solver, which is well-suited for large, sparse matrices. A relative tolerance
of 10−4 was imposed on the residuals of all dependent variables: the electric potential,
ionic concentrations, velocity, temperature and pressure. To accurately resolve the Debye
layer near the liquid–gas interface, an adaptive mesh refinement strategy is employed,
as depicted in figure 4. The refinement is based on a gradient criterion of the form
|∇n±|h < ε, where h is the local mesh size, and ε is a user-defined threshold. This criterion
ensures that regions exhibiting strong gradients in the ion concentration, particularly near
the interface, are locally refined. Convergence was also verified by monitoring the total
current along the axis. The total current, which includes contributions from conduction,
convection and diffusion, was observed to remain constant, indicating that the solution
was well resolved and grid-independent.

We use the model presented above to simulate cone-jets of both ionic liquids and dilute
electrolytes. For the latter, we make the electrostatic correlation length δc and the ion
volume fraction νa equal to zero, thus recovering the standard PNP formulation (2.2).
Although the article presents several LD solutions, the focus is on the electrokinetic
modelling of cone-jets. Thus, we skip a detailed description of the LD model which can
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ρ

(kg m−3)
μo

(Pa s)
γ

(N m−1)
cp

(J(kgK)−1)
κ

(W(mK)−1)
D+

o + D−
o

(m2 s−1)
Ko

(S m−1)

PC 1200.2 0.00258 0.0428 1592.9 0.163 3.21 ×
10−8

(
ReΠQ

Λ2
D

) 1.13 × 10−3

Re3

EG 1109.9 0.0172 0.0455 2405.5 0.251 4.12 ×
10−7

(
ReΠQ

Λ2
D

) 4 × 10−6

Re3

ε PeT h Γ Pe+
D Pe−

D δc νa

PC
solutions

65.9 7.9ReΠ1/2
Q 490.55ReΠ1/2

Q
21
D+

r

Λ2
D

Π
1/2
Q

21
1 − D+

r

Λ2
D

Π
1/2
Q

0 0

EG
solutions

37.6 52.5ReΠ1/2
Q 3388ReΠ1/2

Q
12
D+

r

Λ2
D

Π
1/2
Q

12
1 − D+

r

Λ2
D

Π
1/2
Q

0 0

Table 4. Physical properties and dimensionless parameters as a function of Re, ΠQ and ΛD for EG and PC
solutions (T̃o = 298 K).

be found elsewhere (Gamero-Castaño & Magnani 2019b; Magnani & Gamero-Castaño
2024), and simply point out that although the convergence of the solving scheme depends
on the initial position of the surface, the errors in all equations of the LD model tend to
zero. This supports the expectation that the numerical LD solution, which includes the
position of the surface, corresponds to the unique physical solution.

4. Results

4.1. Liquids with low and medium electrical conductivity, δc 
 1, νa 
 1
We investigate the PNP solution, δc = νa = 0 in (3.5) and (3.6), and compare it with
the LD solution. We study two liquids with different dielectric constants, EG and PC,
at varying Reynolds number, dimensionless flow rate and dimensionless Debye length.
Unless otherwise specified, we assume equal cation and anion diffusivities, D+

r = 0.5.
Table 4 lists the physical properties and dimensionless parameters.

Figure 5(a) compares the axial variation of several features of the numerical solution for
EG at Re = 0.095, ΠQ = 64 and ΛD = 35.0 (Γ = 2575, PeT h = 39.9 and Pe±

D = 3675;
ΛD/Γ = 0.0136), while figure 5(b) shows the comparison for PC, Re = 0.38, ΠQ = 100
and ΛD = 24.5 (Γ = 1864, PeT h = 30 and Pe±

D = 2521; ΛD/Γ = 0.013). The ratios
ΛD/Γ are much smaller than unity. Since this violates condition (iii) of the Baygent–
Saville limit, the PNP and LD solutions are expected to be significantly different. The
conduction and convection currents, Ib and Is , are given by

Ĩb(PNP)= 2π

∫ R̃(z)

0

e2

kB T
(D+ñ+ + D−ñ−)Ẽ i

zr̃ dr̃ , Ĩb(L D) = 2π

∫ R̃(z)

0
K Ẽi

zr̃ dr̃ , (4.1)

Ĩs(P N P) = 2π

∫ R̃(z)

0
e(ñ+ − ñ−)ũzr̃ dr̃ , Ĩs(L D) = 2π R̃(z)σ̃ ũs, (4.2)

where σ̃ and ũs are the surface charge density and the surface velocity in the LD solution.
The diffusion current Id only exists in the PNP formulation and is given by

1016 A14-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
41

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10410


K. Misra, M. Magnani and M. Gamero-Castaño

50

R(z)

R(
z)

(a) (b)

z–zo z–zo

R(
z)Is (PNP)

Id (PNP)

Ib (LD)

Is (LD)

Ib (PNP)

σ (PNP)

Eo
n (LD)

Et (LD)

σ (LD)

Et (PNP)

Eo
n (PNP)

Eo n Eo n

�T̃ (PNP)

P′
Ω (LD)

P′
μ (LD)

�T̃ (LD)

�
T̃ 

(K
)

�
T̃ 

(K
)

P′
μ (PNP)

P′
Ω (PNP)

�T̃ (PNP)

P′
Ω (LD)

P′
μ (LD)

�T̃ (LD)

P′
μ (PNP)

P′
Ω (PNP)

σ (PNP)

Eo
n (LD)

Et (LD)

σ (LD)

Et (PNP)

Eo
n (PNP)

R(z)

Is (PNP)

Id (PNP)

Ib (LD)

Is (LD)

Ib (PNP)

40

30

20

10

0
−50 0 50 100 −50 0 50 100

50

40

30

20

10

0

10

5

0

2.5

2.0

1.5

1.0

0.5

0

3.0

2.5

2.0

1.5

1.0

0.5

0

2.5

2.0

1.5

1.0

0.5

0

2.5

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

1.00

0.75

0.50

0.25

0

−50 0 50 100 −50 0 50 100

−50 0 50 100 −50 0 50 100

15

10

5

0

P′ P′

E t
, 
σ

 
I b

, I
s,

 I d

I b
, I

s,
 I d

E t
, 
σ

 

Figure 5. Comparison between the PNP and LD solutions: (a) EG at Re = 0.095, ΠQ = 64 and ΛD = 35.0;
and (b) PC at Re = 0.38, ΠQ = 100 and ΛD = 24.5. The value of the ion diffusivity for both cases is D+

o +
D−

o = 2 × 10−9 m2 s−1. For plotting purposes the origin of the axial coordinate is placed at the maximum of
R′′(z) (Gamero-Castaño & Magnani 2019b).

Ĩd(P N P) = 2π

∫ R̃(z)

0
e

(
D− ∂ ñ−

∂ z̃
− D+ ∂ ñ+

∂ z̃

)
r̃ dr̃ . (4.3)

Conservation of charge requires the total current I = Ib(z) + Is(z) + Id(z) to be constant
along the axis. The diffusion current is negligible for the conditions studied in figure 5,
and the agreement between the conduction and the convection currents for both models is
excellent. It is important to note that the conduction current is dominant in the Taylor cone,
the convection current is dominant far downstream in the jet, and that the importance of
each term abruptly reverses in a relatively short section at the base of the jet referred to
as the transition region; the axial location where both currents are equal is known as the
current crossover point. The electrokinetic model does not include the net surface charge
postulated by Saville (1997) and Schnitzer & Yariv (2015). In our solutions the surface
charge density in the LD model matches the integral of the PNP volumetric charge density

σ̃ (P N P) = 1

R̃(z)
√

R̃′2 + 1

∫ R̃(z)

0
e(ñ+ − ñ−)r̃ dr̃ . (4.4)

This is illustrated in the second panel, where σ(P N P) is indistinguishable from the
surface charge density in the LD solution. This second panel also shows that both solutions
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Figure 6. Cone-jet, velocity streamlines (cyan), equipotential lines (rainbow) and variation of ionic
concentrations and relative electrical conductivity at three different axial positions (Ib = 0.95I , Ib = Is and
Is = 0.95I ) for: (a) EG, Re = 0.095, ΠQ = 64, ΛD = 35.0; and (b) PC, Re = 0.38, ΠQ = 100, ΛD = 24.5.
The value of ion diffusivity for both cases is D+

o + D−
o = 2 × 10−9 m2 s−1. The electrical conductivity is

normalized with its value at the axis, Kb.

have the same electric field in the outer side of the interface. The agreement in the normal
electric field also highlights that the surface charge density in the LD model is equivalent
to σ(P N P) and thus, for dilute solutions and within the assumptions of this work, there
is no need to introduce an artificial surface charge in the electrokinetic formulation. While
López-Herrera et al. (2023) hypothesized that surface charge accumulation or adsorption
may play a role in certain regimes, none is required to explain the behaviour observed here.
However, this does not rule out the possibility that interfacial charge adsorption may be
important under conditions not captured by the present model. The third panel in figure 5
compares the ohmic P ′

Ω and viscous P ′
μ linear power densities

P ′
Ω = 2π

∫ R(z)

0
P ′′′

Ω r dr,

P ′
μ = 2π

Re

∫ R(z)

0
P ′′′

μ r dr, (4.5)

and the total change in temperature �T relative to the upstream temperature. The linear
power densities and the total change in temperature computed by the LD and PNP models
are again in excellent agreement. The ohmic power density has a broader distribution than
the viscous power density (the latter is confined to a shorter section of the cone-jet where
the radius of the surface rapidly changes). The maximum temperature increase in the jet
is �T̃ = 1.0 K for EG, and �T̃ = 2.5 K for PC. Self-heating for these solutions is not
significant due to their relatively large Re numbers (Magnani & Gamero-Castaño 2024).
In summary, figure 5 shows that the LD model is a valid electrokinetic limit for these
cone-jets, despite the violation of the Baygent–Saville condition ΛD/Γ � 1.

Figure 6 shows the streamlines and equipotential lines for the PNP solutions in
figure 5, together with the radial variation of the ionic concentrations and the electrical
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Figure 7. Flow recirculation pattern for PC, ΠQ = 16 and Re = 1.67. The sink flow boundary condition at the
inlet is compatible with flow recirculation.

conductivity at three axial locations: upstream, Ib = 0.95I ; at the current crossover,
Ib = Is ; and downstream, Is = 0.95I . The choice of radial variable, 1 − r/R(z), highlights
variations near the surface. In the upstream region the majority of the cross-section
remains electrically neutral, and departure from neutrality only occurs within a thin Debye
layer with a thickness of 0.02R(z) for EG and 0.03R(z) for PC. The thickness of the
layer increases to 0.11R(z) at the current crossover, and it becomes 0.25R(z) for EG
and 0.3R(z) for PC at the downstream location. Relative to its value on the axis, the
electrical conductivity shows a maximum variation of roughly 40 % and 10 % for EG
and PC, respectively, but this occurs in the thin Debye layer and therefore its effect on
the conduction current is negligible. Despite these variations, the PNP model exhibits
excellent agreement with the LD model. The concentration and electrical conductivity
profiles reported by López-Herrera et al. (2023) exhibit significantly larger changes in the
Debye layer. For instance, under certain conditions, the authors observe relative electrical
conductivities exceeding 100.

The streamlines shown in figure 6 displaying a sink flow may seem to indicate that
the velocity boundary condition at the inlet (3.17) does not allow for the recirculation
patterns often observed in cone-jets (Herrada et al. 2012). However, the sink flow boundary
conditions can lead to recirculation zones in the cone when the conditions require it. Like
all other aspects of the LD solution, the formation of a recirculation zone is a function of
the three dimensionless numbers parameterizing it, i.e. ΠQ, Re and ε (the dependence of
recirculation on ε is obviously negligible). For example, figure 7 shows a recirculation cell
for PC, ΠQ = 16 and Re = 1.67, a case solved in the present article. On the other hand,
the dimensionless flow rates and Reynolds numbers for the cone-jets in figure 6 are too
high and too low, respectively, to induce recirculation. Note also that even if there were
recirculation in the solutions shown in figure 6, it would not likely be observable because
the plotted region does not extend far enough upstream. The particular form of the inlet
velocity profile for a given flow rate does not affect significantly the cone-jet characteristics
determined locally at the base of the jet and the transition region, as long as the inlet is
placed sufficiently upstream. There is a large, quasihydrostatic region in the Taylor cone
that can accommodate any particular inlet velocity condition.

Figure 8 compares the solution of the PNP model for three cone-jets with equal
dielectric constant, dimensionless flow rate and Reynolds number, and different ΛD ratios:
EG, Re = 0.095, ΠQ = 64 and ΛD = 11.1, 14.5 and 35.0. In all cases Γ = 2575, while
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Figure 8. Anion density, currents, electric field on the surface and surface charge, and concentration and
conductivity profiles for EG, Re = 0.095, ΠQ = 64 and ΛD = 11.1, 14.5 and 35.0 (εΛ2

D/Γ = 1.799, 3.07 and
17.88). The corresponding ion diffusivities D+

o + D−
o are 2 × 10−8 m2 s−1, 1.2 × 10−8 m2 s−1 and

2 × 10−9 m2 s−1.

the εΛ2
D/Γ ratios are 1.80, 3.07 and 17.9. Note that the three cone-jets share the same

LD solution, which coincides with the PNP solution for ΛD = 35.0 (see figure 5a).
These three cone-jets can be recreated in experiments by dissolving different salts in EG,
and adjusting the concentration inversely to the diffusion coefficients so that the bulk
electrical conductivity remains constant. Figure 8(a i) shows contour plots of the anion
concentration. For ΛD = 11.1 the jet is depleted of anions along z � 38. This possibility
was discussed by Fernández de La Mora (2007), who suggested that complete charge
separation could trigger the onset of the minimum flow rate. Figure 8(a ii) compares the
conduction, convection and diffusion currents. Figure 5(a) showed agreement between the
PNP and LD solutions for ΛD = 35.0, which is not the case for the two new and lower
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Figure 9. Total current as a function of the dimensionless flow rate and the electric Reynolds number for PC
cone-jets. Comparison between PNP solution (D+

o + D−
o = 5.62 × 10−10 m2 s−1 for all cases), LD solution

and experimental data (Gamero-Castaño 2019).

values of ΛD . As ΛD decreases the total current decreases, and the diffusion current
becomes more significant in the upstream region. The latter trend was also noted by López-
Herrera et al. (2023). The crossover between the conduction and convection currents
occurs farther upstream for ΛD = 11.1, and immediately precedes complete charge
separation. Figure 8(a iii) shows that, as ΛD decreases, the maximum normal electric
field decreases, while the maximum of the tangential electric field increases. Figure 8(b)
shows ion concentration profiles along with the electrical conductivity. Interestingly, for
ΛD = 11.1 and despite the small difference with respect to the ΛD = 14.5 case, the jet is
depleted of anions downstream of the current crossover point. In both cases, the electrical
conductivity exhibits a much stronger increase near the interface than for ΛD = 35.0.

Figure 9 compares the total currents computed with the PNP and LD models with
experimental values (Gamero-Castaño 2019), for cone-jets of PC as a function of
the dimensionless flow rate and for two different Reynolds numbers, Re = 1.67 and
Re = 0.38. For the PNP model we use the values of diffusivity in table 1. When the
current is normalized with the scale Io =√

ε0γ 2/ρ, the data follow the scaling law
Ĩ/Io � 2.5

√
ΠQ (Fernández de La Mora & Loscertales 1994; Gañán-Calvo et al. 2018).

The PNP solution coincides with the LD solution, and both are in good agreement with
experimental results.

Figure 10 quantifies the conditions needed for the agreement between the LD and PNP
solutions. We use the ratio of the total currents, IP N P/IL D , as figure of merit, which is
computed for several values of ΛD , ΠQ , Re and ε. Figure 10(a) shows that the LD and
PNP solutions coincide for values of ΛD/Γ much smaller than unity, in disagreement with
the third condition of the Baygent–Saville limit. On the other hand, figure 10(b) indicates
that the LD model coincides with the PNP formulation for

ε

π

Λ2
D

Γ
� 1. (4.6a)

Furthermore, regardless of the value, the IP N P/IL D ratios collapse relatively well on a
single-valued function of (ε/π)((Λ2

D)/Γ ). Therefore, (ε/π)((Λ2
D)/Γ )� 1, instead of

(ΛD/Γ ) � 1, is one of the required conditions for the application of the LD model in
cone-jets. A more illuminating form of criterion (4.6a) is obtained by writing ΛD and Γ
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Figure 10. Ratio between the total currents obtained with the PNP and LD models as a function of ΛD/Γ

(a), and εΛ2
D/πΓ (b).

in terms of the dimensionless flow rate and dielectric constant,

2ε
1/2
0 kB T̃

πeρ1/2(D+ + D−)
Π

1/2
Q � 1. (4.6b)

Most dilute electrolytes fulfil this condition, and therefore their cone-jets are accurately
described by the simpler LD model: the dimensionless flow rates of cone-jets are always
of order unity or larger; and for typical electrosprays operated at room temperature, the
fraction preceding Π

1/2
Q is larger than one except for electrolytes with very large ionic

diffusivities. For example, the values of this factor for the TBP, EG and PC solutions in
table 1 are 27.2, 15.5 and 2.5, respectively, while it is relatively small, 0.56, only in the case
of W + LiCl, which has the largest combined diffusivity. It is worth noting that ΛD and Γ

appear in the model (3.3) and (3.5) as Λ2
D/Γ . Only (3.6), where the electric current term

is proportional to Γ , exhibits a different dependency, but this term is divided by a large
diffusion Peclet number. This explains the main Λ2

D/Γ dependency of the IP N P/IL D ratio
observed in figure 10(b). Note also that Λ2

D/Γ is the ratio between the normal derivatives
of the electric field in the Debye layer and in the surrounding vacuum. Thus, in cone-jets
of dilute electrolytes, it is the ratio of the derivatives of the electric field rather than the
electric fields what determines whether the LD model is an accurate alternative to the
electrokinetic formulation.

Gañán–Calvo and collaborators have postulated since the early 1990s (Gañán-Calvo
et al. 1993; Gañán-Calvo 1999, 2004) that the surface charge density in cone-jets is always
in electrostatic quasiequilibrium. They argue that the electrical relaxation time te = εεo/K
is much smaller than the residence time of the flow t f , and as a result any potential
volumetric charge density quasi-instantaneously vanishes, net charge only existing at the
surface. Gañán-Calvo et al. (2018) also conclude that surface charge in quasiequilibrium,
or equivalently te/t f 
 1, is a sufficient condition for the application of the LD model
in cone-jets, due to the explicit assumption of zero volumetric charge density. The
cone-jets modelled in the present study are appropriately reproduced by the LD model
despite not fulfilling te/t f 
 1, suggesting that this sufficient condition may be overly
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Figure 11. Ratio between the surface charge and its equilibrium value for the cone-jets in figure 10 (obtained
from the LD solution).

conservative. In the transition region of cone-jets the ratio te/t f is well approximated by
ε/(πΠ

1/2
Q ) (Gamero-Castaño & Magnani 2019b), resulting on te/t f ≈ 1.50 for the cone-

jet in figure 5(a) and te/t f ≈ 2.10 for the cone-jet in figure 5(b). Although the surface
charge is far from electrostatic equilibrium under these conditions, te/t f = O(1), the LD
and PNP solutions in figure 5 coincide. Figure 11 further demonstrates that the surface
charge can be far from electrostatic equilibrium in the transition region. This figure plots
the local ratio between the surface charge and its equilibrium value, σeq = ε0 Eo

n , for
the six cone-jets analysed in figure 10. All flow rates are well above the minimum flow
rates recorded in experiments (Gamero-Castaño 2019). Although the surface charge is
in quasiequilibrium sufficiently upstream and downstream from the origin, its value is
significantly smaller than σeq in the central transition region, the divergence increasing
with ε/(πΠ

1/2
Q ) (Gamero-Castaño & Magnani 2019b). Despite the significant departure

of the surface charge from equilibrium, figures 5 and 10 show that the LD and PNP
solutions for these cone-jets coincide as long as the necessary condition εΛ2

D/(πΓ )� 1
is fulfilled. Finally, it is important to note that, regardless of whether te/t f 
 1 is fulfilled,
the volumetric charge density in a cone-jet is zero as long as electrical conduction in the
bulk is governed by Ohm’s law with a constant value of the electrical conductivity, which
is a fundamental assumption in the LD model. This is due to the fact that fluid particle
lines in the bulk of the transition region do not traverse upstream regions containing a net
volumetric charge density (Melcher & Taylor 1969).

4.1.1. Ion diffusivity effects
The previous section considered equal cation and anion diffusivities, D+

r = 0.5. It is
possible to design dilute electrolytes by varying the concentration and nature of the salt
dissolved in a given liquid, so that they have identical physical properties (ρ, γ , K , μ and ε)
and different cation and anion diffusivities. Although the traditional scaling laws and
the numerical solution of the LD model for these electrolytes are identical, the different
diffusivities may influence the cone-jets (López-Herrera et al. 2023). Figure 12 plots the
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Figure 12. Total current as a function of the relative cation diffusivity D+
r and for several Re, ΠQ and

(εΛ2
D)/(πΓ ) values, for (a) EG and (b) PC.

total current computed with the PNP model as a function of D+
r , for cone-jets of EG

and PC at several dimensionless flow rates, Reynolds numbers and (εΛ2
D)/(πΓ ) ratios.

Different anion/cation diffusivities influence the total current, but this effect is strong
only when (εΛ2

D)/(πΓ ) < 1. For example, for EG operating at Re = 0.095, ΠQ = 64
and (εΛ2

D)/(πΓ ) = 5.7, the dimensionless current slightly increases from 2.20 to 2.39 as
D+

r increases from 0.1 to 0.9; however, for the same values of the Reynolds number and
the dimensionless flow rate but (εΛ2

D)/(πΓ ) = 0.9, the current varies from 1.61 to 2.77.
Cone-jets of PC exhibit a similar trend.

The ion density and electrical conductivity profiles in figure 13 for EG, Re = 0.95 and
ΠQ = 64, help explaining the influence of disparate diffusivities on the total current. The
profiles correspond to the current crossover point, Ib = Is , and cross-sections upstream and
downstream of this point, Ib = 0.95I and Is = 0.95I . The profiles for (εΛ2

D)/(πΓ ) = 5.7
exhibit a large central region where the liquid is electrically neutral and the local electrical
conductivity is equal to the bulk conductivity. The Debye layers are thin, and the ionic
concentrations inside the layers are affected by the relative diffusivity: for D+

r = 0.1, that
is when the anion is significantly more mobile than the cation, the depletion of the anion
in the Debye layer is larger than for D+

r = 0.9; meanwhile, the cation concentration in
the Debye layer is slightly smaller for D+

r = 0.1 than for D+
r = 0.9. This translates into a

smaller electrical conductivity in the Debye layer and a smaller total current for D+
r = 0.1

than for D+
r = 0.9. But the net effect of the varying conductivity on the total current is

small, because the Debye layer occupies a small fraction of the cross-section. On the other
hand, the profiles for (εΛ2

D)/(πΓ ) = 0.9 are very different: the Debye layers are more
extensive, occupying the whole cross-section at the current crossover point and farther
downstream. The relative diffusivity has the same effect as before, lowering significantly
the electrical conductivity when the anion is much more mobile than the cation, and
increasing significantly the conductivity when the cation is much more mobile than the
anion. The effect of D+

r on the electrical conductivity has now a much larger effect on the
total current, see figure 12, because the Debye layer extends throughout the cross-section
of the jet.

Although the possibility for a strong influence of D+
r on the operation of cone-jets exists,

it seems that this effect is not important in most cases considered in the current study. The

1016 A14-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
41

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10410


K. Misra, M. Magnani and M. Gamero-Castaño

n+ (Dr
+ = 0.1)

n− (Dr
+ = 0.1)

K/Kb
 (Dr

+ = 0.1)

n+ (Dr
+ = 0.9)

n− (Dr
+ = 0.9)

K/Kb
 (Dr

+ = 0.9)

100

10−1

10−2

10−3

10−1 100 10−1 100
10−1 100

100

10−1

10−2

10−3

100

10−1

10−2

10−3

100

10−1

10−2

10−3

10−1 100 10−5 10−2 101 10−3 10−1 101

100

10−1

10−2

10−3

100

10−1

10−2

10−3

Ib = 0.95I Is = 0.95IIb = Is

1
–
r/

R(
z)

(a)

(b)

1
–
r/

R(
z)

Figure 13. Concentration profiles and electrical conductivity for EG, Re = 0.095 and ΠQ = 64. We consider
two extreme values of the cation relative diffusivity D+, and three different axial positions, Ib = 0.95I , Ib = Is
and Is = 0.95I : (a) (εΛ2

D)/(πΓ ) = 5.7; (b) (εΛ2
D)/(πΓ ) = 0.9. The electrical conductivity is normalized

with its value at the axis, Kb.

main reason for this is that most dilute electrolytes operate in the region (εΛ2
D)/(πΓ )� 1.

In addition, relative diffusivities do not seem to exhibit extreme values: an extreme case
such as a HCl-based electrolyte, with the H+ ion having a mobility roughly 4.65 times
higher than Cl−, has a relative diffusivity D+

r ≈ 0.8; in the case of the ionic liquid EMI-Im,
the diffusion coefficient of EMI+ is only 1.2 times larger than that of Im− (Tokuda et al.
2006); and the relative diffusivity in a LiCl-water electrolyte is D+

r ≈ 0.33. On the other
hand, disparate anion/cation diffusivities may have a substantial effect on applications
and processes that intrinsically depend on the ion concentrations in the Debye layer,
such as electrospray mass spectrometry and ion field emission, regardless of the value
of (εΛ2

D)/(πΓ ). The effect would be more accentuated in water-based solutions near the
minimum flow rate (water is a common medium in electrospray mass spectrometry) since,
as discussed in the previous section, (εΛ2

D)/(πΓ )� 1 under such conditions.

4.2. Ionic and highly conducting liquids, δc ∼ O(10−1), νa ∼ O(10−1)

In this section we apply the PNP and MEK models to the ionic liquids EMI-Im and EAN,
and compare these solutions with the LD model. Table 5 lists the physical properties
and the dimensionless numbers appearing in the governing equations. The radius of the
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ρ

(kg m−3)
μo

(Pa s)
γ

(N m−1)
cp

(J (kg K)−1)
κ

(W (mK)−1)
D+

o + D−
o

(m2 s−1)
Ko

(S m−1)

EMI-Im 1522.5 0.0377 0.036 1290.6 0.121 6.9 × 10−11 0.795

EAN 1214.6 0.0391 0.0498 1919.2 0.249 7.34 × 10−11 1.99

ε Re PeTh ΛD Γ Pe±
D δc νa

EMI-Im 13.05 7.48 × 10−3 0.956Π
1/2
Q 14.27Π

1/2
Q 47.9Π

1/2
Q 1694Π

1/2
Q 3.03Π

−1/2
Q 0.95

EAN 27.06 6.06 × 10−3 0.58Π
1/2
Q 9.08Π

1/2
Q 45.1Π

1/2
Q 1422Π

1/2
Q 2.257Π

−1/2
Q 0.96

Table 5. Physical properties and dimensionless numbers for ionic liquid EMI-Im and EAN (T̃o = 294 K).

cone-jet R(z) for a given {ε, ΠQ, Re} state is obtained from the LD solution (Magnani,
Caballero-Pérez & Gamero-Castaño 2025). Given that the diffusivities of the cation and
the anion are similar for each liquid (Noda et al. 2001; Tokuda et al. 2006; Filippov et al.
2021), we simply use D+

r = 0.5.
Figure 14 compares the solutions of the three models for EMI-Im at a flow rate

ΠQ = 200. Figure 14(a) shows the radius of the cone-jet and the variation of the different
contributions to the total current. The MEK model includes the additional ion correlation
current (Kilic et al. 2007b),

Ĩc = 2π

∫ R̃(z)

0

ea3(D−ñ− − D+ñ+)

1 − a3(ñ+ + ñ−)

∂

∂ z̃
(ñ+ + ñ−)r̃ dr̃ , (4.7)

which is negligible in all cases considered in this study. The diffusion current is substantial
only in the MEK solution, negative and approximately 4.5 % of the total current far
upstream in the cone, and negligible along the jet. Despite this, the MEK solution yields
a slightly larger total current (167 nA) than the PNP solution (163 nA), and the latter is
larger than the current of the LD solution (156.5 nA). These values are in good agreement
with the 177 nA recorded in experiments (Caballero-Pérez & Gamero-Castaño 2025).
The higher electric current yielded by the electrokinetic models is due to more intense
ohmic dissipation, see figure 14(b), which increases self-heating, the temperature and
the electrical conductivity, figure 14(c). Despite differences in the total current, all three
solutions yield very similar electric fields on the surface, see figure 14(d). While the
differences in the currents, temperature and ohmic dissipation profiles between the MEK
solution and the other two solutions could have been expected, it is worth noting that the
PNP and LD solutions do not coincide despite the fulfilment of εΛ2

D/(πΓ ) � 1 (the value
of this ratio is 250). This is due to the substantial self-heating taking place in the cone-jets,
and the strong dependence of self-heating on the electrical conductivity, which includes
positive feedback (Magnani & Gamero-Castaño 2024). The more accurate description
and the higher values of the electrical conductivity associated with the electrokinetic
formulations lead to higher self-heating and total currents.

Figure 15 shows the ion concentration profiles at the cross-sections where Ib = 0.95I ,
Ib = Is and Is = 0.95I . The Debye layer resolved by the PNP model has a thickness
of approximately 0.2−0.4 nm, clearly unphysical in view of the diameter of the EMI-
Im molecule, approximately 0.75 nm. The thickness of the layer where the variations of
the ion concentrations are significant is much larger in the MEK solution, approximately
3.5−5 nm. Moreover, the variation of the volumetric charge density, e(n+ − n−), is non-
monotonic, with a region of negative charge density closer to the axis followed by a much
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Ĩ b (LD)
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Figure 14. Comparison between the MEK, PNP and LD solutions for ionic liquid EMI-Im operating at
ΠQ = 200: (a) cone-jet radius and conduction, convection, diffusion and ion correlation currents; (b) ohmic
and viscous linear power densities; (c) electrical conductivity and change in temperature; (d) electric field on
the surface.

more intense positive charge density near the surface. Furthermore, near the surface, the
concentration of the cation is much larger in the MEK solution than in the PNP solution.
Such charge density oscillations are observed in the surface force measurements of ionic
liquids confined between charged surfaces (Hayes et al. 2010; Perkin 2012; Li et al.
2013; Smith et al. 2016). Despite the drastically different concentration profiles, the total
current yielded by the PNP and MEK models nearly coincide. Note also that the electrical
conductivity is nearly constant along the cross-sections in both electrokinetic solutions,
as a result of the constancy of the total ion concentration, n+ + n−, and the equal ion
diffusivities, D+

r = 0.5. The near constancy of n+ + n− along the radial coordinate is
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Figure 15. Ion concentration and electrical conductivity profiles obtained with the MEK and PNP models
for EMI-Im and ΠQ = 200, at three different locations: Ib = 0.95I , Ib = Is and Is = 0.95I . The electrical
conductivity is normalized with its value at the axis, Kb.

due to the very small radial components of the electric field and the velocity inside the
slender jet. Adding (3.6) for the cation and the anion and integrating once yields

D+

Pe+
D D+

o

(
∇(n+ + n−) + 2Γ

π
√

ΠQ
(n+ − n−)∇φi + νa(n+ + n−)∇(n+ + n−)

2 − νa(n+ + n−)

)

− u(n+ + n−) = 0, (4.8)

and, since ur
∼= 0 and Ei

r
∼= 0 (note that Γ is almost one order of magnitude smaller for

EMI-Im than for the EG and PC solutions analysed in figure 6), the radial component of
this equation simplifies to[

1 + νa(n+ + n−)

2 − νa(n+ + n−)

]
∂

∂r
(n+ + n−) = 0 =⇒ n+ + n− = f (z). (4.9)

As discussed in § 2, the analysis so far has assumed that the electrostatic correlation
length and the Bjerrum length are equal, lc = lB . Figure 16 explores the impact of
varying this ratio using EMI-Im at a flow rate of ΠQ = 200 as case study. Figure 16(a)
shows the total emitted current and the temperature increase, the latter evaluated in the
downstream region where Is = 0.95I . When lc/ lB = 0, the MEK model recovers the
classical PNP behaviour with no electrostatic correlations, whereas lc/ lB = 1 represents
an approximated upper bound for the electrostatic correlation length, and is the case
considered in figures 14 and 15. As lc/ lB increases, the temperature intensifies, enhancing
ion mobility and resulting in a higher total current. This leads to a maximum increase
in �T̃ and Ĩ of 13.8 % and 2.9 %, respectively. Figure 16(b) compares the concentration
profiles of cations and anions at three axial positions: Ib = 0.95I , Ib = Is and Is = 0.95I .
As lc/ lB increases, the effective Debye length expands, resulting in more pronounced
volume charge density oscillations near the interface. The effective thickness of the charge
oscillation layer ranges from approximately 1.2–1.75 nm for lc/ lB = 0.25, to 3.5–5 nm for
lc/ lB = 1. Furthermore, higher values of lc/ lB amplify the intensity of both the negative
and positive charge densities, indicating stronger electrostatic correlation.
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Figure 16. Influence of the ratio between the electrostatic correlation and Bjerrum lengths, lc/ lB , on the
MEK solution for EMI-Im at ΠQ = 200: (a) the total emitted current and temperature increase (evaluated at
Is = 0.95I ); (b) concentration profiles at three different axial positions, Ib = 0.95I , Ib = Is and Is = 0.95I .

Figure 17 shows the total change in temperature along the cone-jet, evaluated at the
current crossover and at the point where Is = 0.95I , as a function of the dimensionless
flow rate. The upstream temperature is 294 K in all cases. The position of the current
crossover is important because it is representative of the centre of the transition region,
where variations in physical properties have the strongest effects. The total temperature
increases in typical cone-jets for ionic liquids exceeds several hundred degrees. The
electrokinetic models produce temperature differences significantly larger than the LD
model, and the temperatures in the MEK solution are always higher than in the PNP
solution. The latter is due to the non-monotonic and wider Debye layer of the MEK
model, its effect on the radial component of the electric field and the associated increase in
the ohmic dissipation; different cation/anion diffusivities, D+

r �= 0.5, would have further
increased the difference between the MEK and PNP solutions.

It is worth noting that the temperature increases for these ionic liquids are much more
substantial than in the cone-jets of EG and PC shown in figure 5. This is primarily due
to the much larger electrical conductivity of ionic liquids, and its effect on the radius of
the jet, the axial length of the transition region and directly on ohmic dissipation, which
is proportional to K . The following expression is an approximated scaling law for the
temperature increase (Magnani & Gamero-Castaño 2024):
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Figure 17. Total change in temperature at the current crossover and at Is = 0.95IT for ionic liquids EMI-Im
and EAN. Comparison between the MEK, PNP and LD solutions.

�T̃ est ≈ 7.74
Re0.11ΠQ

0.11
1
πc

(
γ K

ε0ρ

)2/3

≈ 7.74
πc

(
γ K

ε0ρ

)2/3

, (4.10)

which clearly indicates the importance of the electrical conductivity on �T̃ (the electrical
conductivity is the only physical property in (4.10) that can vary by many orders of
magnitude in electrosprayed solutions). The main assumptions in this law are negligible
evaporation and heat flux on the surface of the cone-jet, conditions which are fulfilled
in cone-jets of ionic liquids electrosprayed in vacuum. For example, for a temperature
increase of 10 ◦C in a water cone-jet, the electrical conductivity needs to be approximately
0.27 S m−1, which is a substantial value. For this conductivity, the characteristic radius
of the jet would be rc = 4.2 nm for a dimensionless flow rate of unity, and 42 nm for
ΠQ = 100. Strong thermal effects in electrosprays of water under atmospheric conditions
may not be easily observable not only because of the high electrical conductivity required,
the smallness of the jets and droplets and the speed with which the droplets would
evaporate, but also because of heat transfer with the surrounding gas and the high latent
heat of vaporization and vapour pressure of water, which enhance evaporative cooling.

Finally, figure 18 shows the total current emitted by cone-jets of EMI-Im and EAN as
a function of the dimensionless flow rate. We compare the numerical solutions of the
three models with experimental data. It is worth noting that the current yielded by the
MEK model is always slightly larger than that of the PNP model, and both are larger than
the LD solution. The electrokinetic solution for EMI-Im is in good agreement with the
experimental results, slightly underpredicting the total current. The electrokinetic solution
for EAN is lower than the experimental current. We suspect that this is due to inaccuracies
in the D+(T̃ ) function employed in the calculations, which is derived from measurements
of the electrical conductivity in the temperature range between 256 K and 391 K (Bouzón-
Capelo et al. 2012). The electrokinetic model predicts temperatures in excess of 400 K
for all flow rates simulated, and as high as 827 K at the lowest flow rates, i.e. well
above the experimental temperature range for which we have conductivity values. This
large extrapolation combined with the exponential K (T̃ ) function, the positive feedback
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Ĩ 
(n

A
)

ΠQ
1/2 ΠQ

1/2

Figure 18. Total current versus dimensionless flow rate for ionic liquids EMI-Im and EAN. Comparison
between experimental data and the MEK, PNP and LD solutions. Here MCP and MGC refer to experimental
results by Caballero-Pérez & Gamero-Castaño (2025) and Gamero-Castaño & Cisquella-Serra (2020),
respectively.

between self-heating and the electrical conductivity, and the strong dependence of the
solution on the electrical conductivity, are the likely cause for the disagreement. Additional
factors that may contribute to the discrepancy include the use of a fixed interface provided
by the LD solution, rather than an surface self-consistently obtained with the electrokinetic
models; the assumption of a fully dissociated ionic liquid, whereas in reality partial
dissociation or ion pairing may occur; and evaporation of the ionic liquid, which is not
included in the model and may be significant for EAN.

In summary, because of the strong temperature variations and the positive feedback
between self-heating and the electrical conductivity, the improved description of both the
electrical conductivity and the ohmic dissipation made possible by an electrokinetic model
increases the accuracy of the solution compared with the LD formulation. Furthermore,
the MEK model is superior to the PNP formulation because, as figure 15 illustrates, the
Debye layer resolved by the latter is unphysical, and therefore it does not improve the
fidelity of the physics compared with the LD formulation. The accurate description of
the ion concentration fields by the MEK model is also important to investigate associated
phenomena. For example, ion-field emission (Iribarne & Thomson 1976), which we do
not consider presently but can become important in charged nanodroplets (Loscertales
& Fernández De La Mora 1995; Misra & Gamero-Castaño 2023), cone-jets (Gamero-
Castaño 2002) and Taylor cones (Gallud & Lozano 2022; Magnani & Gamero-Castaño
2023), is a kinetic phenomenon in which both the ion concentration and the temperature
near the surface play crucial roles.

5. Conclusions
We have modelled electrosprays operating in the cone-jet mode using both the PNP
equations and a MEK formulation that accounts for overscreening and overcrowding of
ions (Kilic et al. 2007b; Bazant et al. 2011). While the former is strictly applicable to
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dilute electrolytes (liquids with low and medium electrical conductivities), the latter is
designed for concentrated electrolytes such as ionic liquids and other liquids with high
electrical conductivities. The results from the PNP and MEK models are compared with
the traditional LD model and experimental data.

The LD and PNP solutions coincide for isothermal cone-jets as long as the required
condition εΛ2

D/(πΓ )� 1 is fulfilled. This is less restrictive than the Baygent–Saville
condition ΛD/Γ � 1 (Baygents & Saville 1990; Saville 1997; Schnitzer & Yariv 2015).
In practice, most cone-jets of liquids with low and moderate electrical conductivities fulfil
εΛ2

D/(πΓ )� 1. In agreement with Mori & Young (2018), the electrokinetic formulation
does not require the inclusion of the surface charge postulated by Saville (1997) and
Schnitzer & Yariv (2015), to reproduce either experimental cone-jets or the LD solution.
Disparate ion diffusivities can significantly affect the current of the cone-jet, but only
when εΛ2

D/(πΓ ) < 1.
The MEK model provides the best results for cone-jets of ionic liquids, predicting higher

total currents and temperature increases than the PNP and LD models. This is due to a
better description of the Debye layer, which results in larger ohmic dissipation and self-
heating. The MEK model resolves a non-monotonic charge density within the Debye layer,
similar to experimental observations in ionic liquids confined between charged surfaces
(Smith et al. 2016). In contrast, the PNP model predicts an unphysically thin Debye layer.
Self-heating in cone-jets of ionic liquids is significant, increasing at decreasing flow rate.
Temperature variations of several hundred degrees are common in EMI-Im and EAN
cone-jets. This causes large variations in physical properties such as viscosity, electrical
conductivity and ion diffusivity, which need to be accounted for when modelling these
cone-jets, or analysing experimental data.

As a continuation to this work, we plan to investigate the applicability of the
εΛ2

D/(πΓ )� 1 condition to the modelling of time-dependent electrohydrodynamic
processes like tip streaming. A second interesting problem is the modelling of phenomena
such as ion-field emission that require the accurate description of the Debye layer made
possible by the MEK formulation.
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Appendix A. Regression laws for the electrical conductivity, viscosity and ion
diffusivity
The coefficients YD , BD , TD , Yμ, Bμ and Tμ listed in table 3 for the regression laws
of the ion diffusivity and viscosity are obtained from experimental measurements of
the electrical conductivity and viscosity. For the two ionic liquids we have collected
experimental data from the ionic liquid database managed by the National Institute of
Standards and Technology (Kazakov et al. 2022). This database includes data from
different publications. At the moment of writing this article, the database was last updated
on 4 June 2024. For EMI-Im, the database contains 176 measurements for the electrical
conductivity and 687 for the viscosity. For EAN, the database includes 110 measurements
for the electrical conductivity and 95 for the viscosity. The data were harvested from the
database using the Python library pyILT2.
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Figure 19. Experimental data and regression laws for the electrical conductivity and viscosity of EMI-Im.
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For each property, the experimental data includes a measured value yi , temperature Ti
and an uncertainty ±δi . The fittings are obtained by minimizing

ε =
N∑

i=1

[
1

1 + δi/yi

(
f ( p, Ti )

yi
− 1

)]2

, (A1)

where N is the total number of points and f ( p, Ti ) is the fitting function selected. We use

f ( p, T ) = pa exp
(

pb

T − pc

)
, (A2)

where pa , pb and pc correspond to YK , BK , TK for the electrical conductivity and Yμ,
Bμ, Tμ for the viscosity. Figures 19 and 20 show the electrical conductivity and viscosity
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fittings for EMI-Im and EAN. The fittings for the electrical conductivity are used directly
in the LD model (Magnani & Gamero-Castaño 2024). We also use the fitting for the
electrical conductivity to evaluate the coefficients inside the exponential for the average
ion diffusivity, BD = BK and TD = TK , while the YD coefficient is obtained from the
experimental values shown in table 1. This process ensures that the electrical conductivity
employed in the LD model can be made to coincide with the bulk conductivity in
the electrokinetic formulations, enabling consistent comparison of the solutions. The
coefficients for the PC and EG mixtures are taken from Magnani & Gamero-Castaño
(2024), which employ a similar procedure to compute YK , BK , TK , Yμ, Bμ and Tμ.
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