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Abstract

This paper classifies all finite connected 4- and 5-arc-transitive cubic graphs that contain circuits
of length less than or equal to 11, or of length 13, and some of those graphs with circuits of
length 12.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 05 C 25;
secondary 20 F 05.

1. Introduction

Let F be a finite undirected graph, with no loops or multiple edges. An s-arc
in F is a sequence (v0, v{, ... , vs) of vertices of F such that {vi_i, vt} is
an edge of F for 1 < / < s, and vi_l ^ vi+1 for 1 < i < s. The graph F is
said to be .s-arc-transitive if its automorphism group G acts transitively on
the set of all s-arcs of F.

A group G of automorphisms is said to act symmetrically on F if it acts
transitively on the vertices of F, and the stabilizer in G of each vertex v
acts transitively on the vertices adjacent to v . In this case G acts transitively
on the ordered edges of F, and F is called a symmetric graph. In particular,
a 1-arc-transitive graph is precisely a symmetric graph.

By a result of Tutte [9, 10], a finite symmetric graph of valency 3 can
be at most 5-arc-transitive. For cubic graphs, if F is s-arc transitive and
not (s + l)-arc transitive then G acts regularly on the s-arcs. Djokovic and
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[2] Cubic graphs 139

Miller [7] showed there are seven types of symmetric graph of valency 3.
These were later described in a unified way by Conder and Lorimer [6] in
terms of generators and relations for their automorphism groups.

In the case where G is regular on the 4-arcs of T, the group G has to be
a homomorphic image of one of the two groups, G\ and G4 , where

(i) G\ is generated by three elements h, a, p, which satisfy h3 = a2 =
p2 = 1; the other relations to be satisfied are a~lpa = p, h~lph =
q, a~lqa = r, r~lhr = h~x, h~lqh = pq, pq = qp , pr = rp,
rq =pqr;

(ii) G\ is generated by three elements h, a, p, which satisfy h3 = p2 =
1 and a2 = p; the other relations are the same as for G\ except that
a~lpa = p is removed since it becomes redundant.

In the case where G is regular on the 5-arcs of T, the group G has to
be a homomorphic image of the group G5, where G5 is generated by the
elements h,a,p, which satisfy A3 = a2 = p2 = 1. The other relations to be
satisfied are h~lph =p, a~ipa = q , h~iqh = r, a~lra = s, s~lhs = h~l,
h~lrh= pqr, pq = qp, pr = rp , qr = rq, ps = sp, qs = sq, sr = pqrs.

The object of this paper is to classify 4- and 5-arc-transitive cubic graphs
of small girth, using the information given above. This then results in the
following theorem.

THEOREM. All finite 4- and 5-arc-transitive cubic graphs with girth less than
or equal to 13 {except for the graphs corresponding to the relator {ha)12) are
isomorphic to either Heawood's graph, Tutte 's i-cage or a triple cover ofTutte 's
%-cage, the sextet graph 5(17) or a double cover of 5(17), Wong's graph or
a double cover of Wong's graph, the sextet graph 5(5) or the sextet graph
5(79).

2. Examples of 4-arc-transitive cubic graphs

Some general families of 4-arc-transitive cubic graphs are as follows.
(1) The family of sextet graphs [1]. For each odd prime p there is a

sextet graph S{p), constructive using linear fractional transformations of
the projective line over GF{q), where q = p or p2 . The order n of S{p)
depends on the congruence class of p modulo 16, as follows:

n = jgp{p - 1) when p = 1 or 15 mod 16;
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n = jiPiP — 1) when p = 7 or 9 mod 16;
2 4

7i = Jj/j (p - l) when p = 3, 5, 11 or 13 mod 16.

The full automorphism group of S(p) is

PSL(2,p), PGL(2,p), PTL{2,p2)
in the respective cases.

(2) A family of 4-arc-transitive graphs each with girth 12 [4]. If p is any
prime, and 0 is that automorphism of the group 5L(3, p) which takes each
matrix to the transpose of its inverse, then there exists a connected trivalent
graph T{p) on -fep3(p3-l)(p2-l) vertices with the split extension 5L(3,/?)-
(0) as a group of automorphisms acting regularly on its 4-arcs. If p ^ 3 then
this group is the full automorphism group of T(p), while the graph F(3) is
5-arc-transitive with full automorphism group 5L(3, 3) • (0) x C2. The girth
of T(p) is 12, except in the case p = 2 where the girth is 6.

(3) A family of 5-arc-transitive cubic graphs shown to exist by Conder
in [5]. For all but finitely many positive integers n, there is a finite con-
nected 5-arc-transitive cubic graph with the alternating group An as its full
automorphism group, and another with the symmetric group Sn as its full
automorphism group.

Amongst those of small girth are the following:
(i) Heawood's graph (also known as the sextet graph 5(7)). This graph

has 14 vertices, and its full automorphism group is PGL(2, 7), obtainable
as a homomorphic image of the group G\ via the linear fractional transfor-
mations

. z-\ 5
h: z -* , p : z —>-,

z z
z+2 2-z

of the projective line over GF{1).
(ii) Tutte's 8-cage (also known as the sextet graph 5(3)) [9, 10]. This

graph has 30 vertices and is the smallest 5-arc-transitive cubic graph. Its full
automorphism group is the group PTL(2, 9), of order 1440. Subgroups of
order 720 are obtainable as homomorphic images of the groups G\ and G\
respectively as follows:

(a) via the linear fractional transformations of the projective line over
GF{9)
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- 1 t2 t>
* : * - — . r:z-+J' ai-z^->

where Ms a root of the polynomial t2 + t - 1 over Z3 .
(b) via the linear fractional transformations h,p, q,r as in (a), but

with a{ replaced by

(iii) A triple cover of Tutte's 8-cage, on 90 vertices. The corresponding
full automorphism group has order 4320, and is a non-split extension of C3

by PYL(1, 9). Subgroups of order 2160 are obtainable as homomorphic
images of the groups G\ and G\ respectively using permutations of degree
36 as follows:

(a)

* = ( 2 , 3 , 8 ) ( 4 , 5 , 6 ) ( 7 , 2 0 , 19)(9, 30, 10)(ll, 31, 12)(13, 35, 14)

(15, 32, 16)(17, 21 , 18)(22, 34, 23)(24, 33, 25)(26, 29, 27),

p = {l, 6)(2, 7)(3, 20)(4, 5)(12, 32)(13, 35)(14, 36)(15, 31)

(23,26)(24,25)(27,34)(28,33),

<7 = ( l ,4)(3,20)(5,6)(8,19)( l l ,16)(12,32)(13,36)(14,35)

(22,29)(23,26)(24,33)(25,28),

r = (2, 3)(4, 5)(7, 20)(9, 18)(10, 17)(12, 31)(13, 35)(15, 32)

(21,30)(23,34)(24,25)(26,27),

a, = (1, 2)(3, 4)(5, 20)(6, 7)(8, 9)(10, 11)(12, 13)(14, 15)(16, 17)

(18, 19)(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 36)

(32,35)(33,34).

(b) h,p, q, r as in (a), but with ax replaced by

a2 = (1 , 2, 6, 7)(4, 3, 5, 20)(8, 10)(19, 17)(9, l l)(30, 22)(21, 29)

(18, 16)(31,33, 15,28)(12,24,32,25)(34, 14,27,36)

(23 ,35 ,26 , 13).

(iv) The sextet graph 5(17) on 102 vertices. Its full automorphism group
is PSL(2, 17), obtainable as a homomorphic image of the group G\ via the
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linear fractional
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transformations
, z + 4
h-Z 4 - z '

#: z —> - , r: z —>

Morton

p: z-

4
z '

- 1
z

a: ;

[5]

2
z

of the projective line over GF(17).
(v) A double cover of S( 17), on 204 vertices. Its full automorphism group

is the direct product PSL(2, 17) x C2, obtainable as a homomorphic image

of G\ using the following permutations of degree 36:

h = (1 , 3 , 18)(2, 20, 19)(4, 5, 32)(6, 7, 10)(8, 9, 30)(l l , 15, 12)

(13, 14, 35)(16, 25, 17)(21, 36, 22)(23, 34, 24)(26, 31 , 27)

(28 ,33 ,29) ,

p = (3, 20)(4, 9)(5, 27)(6, 14)(7, 34)(8, 26)(10, 28)(11, 17)

(12, 25)(13, 24)(18, 19)(21, 31)(22, 32)(23, 33)(29, 35)(30, 36),

q = (1 , 2)(4, 21)(5, 30)(6, 33)(7, 35)(8, 22)(9, 31)(10, 24)

(11, 17)(13, 28)(14, 23)(15, 16)(18, 19)(26, 32)(27, 36)(29, 34),

r= (1 , 2)(3, 19)(5, 32)(6, 29)(7, 33)(8, 30)(10, 28)(11, 25)

(12, 17)(14, 35)(15, 16)(18, 20)(21, 31)(22, 27)(23, 34)(26, 36),

a = (1 , 2)(3, 4)(5, 6)(7, 26)(8, 34)(9, 20)(10, 11)(12, 13)(14, 27)

(15, 16)(17, 28)(18, 31)(19, 21)(22, 23)(24, 25)(29, 30)

(32,33)(35,36).
(vi) Wong's graph on 234 vertices [11]. Its full automorphism group is

Aut-PSX(3, 3), obtainable as a homomorphic image of the group G\ using
permutations of degree 13 as follows:

A = (2 ,3 ,5 ) (4 , 12,11)(6 ,7 , 10)(8, 9, 13),

, 12),

= (2,3)(4,12)(6,7)(9,13) ,

(vii) A double cover of Wong's graph, having 468 vertices. Its full auto-
morphism group has order 11232, and is the group SX(3, 3) extended by
an automorphism of order 2. A subgroup of order 5616 is obtainable as a
homomorphic image of G\ by taking

(0
= 0

l l

1
0
0

°\1 '
0 /

/ 0
p=\ 1

l - l

1
0

- 1

0
0

- 1
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and a = cd, where
/ 0 - 1 0

c= - 1 0 1
V 0 1 - 1

and 6 is the 'inverse-transpose' automorphism of 5(3, 3), taking every ma-
trix to the transpose of its inverse.

(viii) The sextet graph 5(5) on 650 vertices. Its full automorphism group
is the group PTL(2, 25) of order 31200, and subgroups of order 15600 are
obtainable as a homomorphic image of the groups G\ and G4 respectively
via the linear fractional transformations of the projective line over GF(25)
as follows:

(a)

2zH
z-

: z -

VI
1 '

1
- + —

— z

+ z '

p. z ->

a l

- 1
z '

: z —>
t2

] j

— z

- r 2 z
where Ms a root of the polynomial t2 - t + 2 = 0 over Z5;

(b) via the linear fractional transformations h, p, q, r as in (a), but with
a. replaced by

«V +1
z5 + r4

(ix) The sextet graph 5(79) on 10270 vertices. Its full automorphism
group is PSL(2, 79), obtainable as a homomorphic image of the group G\
via the linear fractional transformations

, -23z - 1

z + 24 z
24 - 23z 14-35z 32z + 9

q: Z~* 23 + 24z' r : z ~ + 3 5 + 1 4 z ' a : Z ^ 9 z - 3 2
of the projective line over GF(19).

It will be shown that every 4- or 5-arc-transitive cubic graph of girth less
than 12 is one of the nine examples given above.

3. Method

Following the construction described by Lorimer in [8], for each finite
homomorphic image G of G\ or G\ having order greater than 2, we may
define a graph F as follows: the vertices of T are the left cosets of H in G,
where H is the image of (h, p, q, r) in G, with cosets xH and yH being
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adjacent if and only if x~ly e HaH. Denned in this way F is a connected
finite cubic graph on which the group G acts faithfully and symmetrically as
a group of automorphisms under the action g : xH —• gxH for each g &G
and each vertex xH of T. The vertex H is adjacent to the vertices aH,
haH, h2aH, and its stabilizer is the subgroup H itself.

Let S = {a, ha, h2a}. Call any word of the form wlw2 •wn where
each wte S, 1 < / < n, n a positive integer, a base word. Then each coset
of H in G contains a base word, and the coset containing the base word w
is adjacent to those containing wa, wha, and wh2a, all of which are base
words.

Since the graph F is connected, any two cosets xH and yH are con-
nected by a path, corresponding to a base word t such that xtH = yH.
Consequently there is a circuit (closed path) from the coset xH back to
itself whenever there is a base word t such that xtH = xH, that is, t eH.

We define the girth of a graph to be the length of its shortest circuit.
Examining G\. Since a cubic graph obtained from G\ in the above

manner is 4-arc-transitive, it may be assumed that a path of length n > 4
begins at the vertex corresponding to H and the next four vertices along the
path are aH, ahaH, a{ha)2H and a(ha)3H respectively. The graph will
have a circuit of length n, where 6 < n < 13, if there is a base word of the
form a{hafhflahfl • • • ahfma, ft = ± 1 , 2 < m < 9, in H. For a circuit of
length n there are 2"~4 possible base words of this form, and consequently
(2"~4)(24) possible relations of the type wu~l = 1 .where w is a base word
of the above form, and u is one of the 24 elements in H.

Now if any of these new relations is adjoined to the standard relations for
G\ , this replaces G\ by a new group G which is a homomorphic image of
G\ . After each such replacement, the index of H in G can be determined,
and if this is greater than 2 then it will be the number of vertices of some
4-arc-transitive cubic graph. Instances of [G : H] equalling 1 or 2 may be
ignored since the corresponding graphs are trivial.

This procedure was performed for all possible additional relators, except
that for circuits of length 12 (that is, m = 8) the case fx = • • • = / 8 = 1
was omitted, Conder [4] having shown that in this case there is an infinite
family of 4-arc-transitive cubic graphs each with girth 12. Remarkably, all
cases other than this gave rise to finite groups.

Finally all the graphs (produced by the above procedure) with the same
number of vertices were examined to determine if they were isomorphic. An
example showing how this was done is given after the results.

Examining G\ . The same method was used as in G\ with the appropriate
relations being modified to allow for the fact that a2 — p instead of a2 = 1.
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Examining G5. Since every graph which is 5-arc-transitive is also 4-arc-
transitive, no new information will be gained by repeating the above process
for G5.

A similar approach to the above was adopted by Biggs [2], but he only
considered the addition of extra relators of the form {ha)m , for 5 < m < 16.

4. Results

These were obtained using coset enumeration in the CAYLEY group sys-
tem [3]. First the relators which led to nontrivial graphs from G\ are listed.

Circuit
length

6
8
8
8
9
10
10
10
11
10
10
10
10
10
10
10
12
12
12
12
12
12
12
12
12

Relator
(ha?
(ha)*

a(ha)4h2a(ha)2h2q
a{ha)\h2afhapr

(ha)9

(ha)10

a(ha?h2a(ha?p
a{ha)5h2a(ha)2h2ahr

a(ha)\h2afha(h2a)2rq
a(ha)\h2a)2(ha)2rq

a(ha)Ah2a(hafh2

a(hafh2a(ha)2h2ahahpq
a{ha)\h2aha)2h2ahqr

a{ha)\h2ahafh2a
a(ha)\h2a)2ha(h2a)2h2

a(ha)\h2af(ha)2

a(ha?h2ahah2ah2

a(ha)7h2aha(h2a)2h
a(ha)7(h2a)2(ha)2h2

a{hafh2a{hafh2apr
a(hafh2a{ha)2h2ahah2

a{hafh2a{ha)2{h2afq
a(hafh2aha(h2afhah
a(hafh2aha{h2afh2pq

a(ha)6(h2a)2(ha)3Da

Index of
(h,p,q,r)

14
14
30
14

102
90
30
14

102
14
14
14
14
14
14
14
14
14
14
30
14
14
14
14
14
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146 Margaret J. Morton [9]

Circuit Index of
length Rela tor (h,p, q, r)

12 a{ha)6(h2a)2)(ha)2h2ah 14
12 a{haf{h2a)4hahr 14
12 a{ha)\h2afh2 14
12 a{ha)\h2a)5h2p 30
12 a(ha)5h2a(ha)5 14
12 a(hafh2a{hafh2ahah2ah 14
12 a{ha)\h2aha)2(h2a)2h2pq 204
12 a{ha)\h2ahaf{h2a)2 14
12 a{ha)\h2aha)2{h2a)2qr 14
12 a{hafh2aha(h2af{hafh 14
12 a(ha)5h2aha(h2a)4h2rq 14
12 a(ha)\h2a)2(hafh2ahrq 90
12 a{ha)\h2a)2{hafh2ahah 14
12 a{ha)\h2a)2ha{h2a)2ha 14
12 a{ha)\h2a)\hafh2ah2q 14
12 a{ha)\h2a)\hafh2a 14
12 a{ha)\h2af{hafhpq 14
12 a{ha)\h2afh 14
12 a{ha)\h2afhq 30
12 a{hafh2a{ha)Ah2aharq 14
12 a(ha)*h2a(hafh2ahah2ah2q 14
12 a{hafh2a{ha)2(h2aha)2h 14
12 a{hafh2a(ha)2{h2a)2hah2ah2pq 650
12 a{hafh2a{ha)2{h2afha 14
12 a(ha)4(h2aha)2(h2afh2rq 204
12 a(ha)4h2aha(h2a)2(hafh 14
12 a{ha)4h2aha{h2a)2ha{h2a)2r 14
12 a(ha)4h2aha(h2afhah2ah2 14
12 a[hd)4h2aha{h2afh2pr 14
12 a{ha)4(h2a)2{hafh2ahah2pr 90
12 a{ha)4{h2af{ha)\h2a)2 14
12 a{ha)4{h2af{ha)2h2a{ha)2h 14
12 a(ha)4(h2a)2{hah2afhahqr 204
12 a{ha)4{h2a)2ha{h2afhah2apr 30
12 a(ha)4(h2a)\ha)2(h2a)2h2r 14

L
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Circuil
length

12
12
12
12
12
12
12
13
13
13

le relators
Circuit
length

8
10
10
12
12
12
12
12
12
12
12
12
12
13

Cubic graphs

t
Relator

a{ha)\h2a)\hah2afq
a{ha)\h2afha{h2afhrq
a(ha)\h2a)4(hafh2rq

a(ha)\h2a)*hah2ahah2

a{ha)\h2afhah
a{ha)\h2afhah2p
a{ha)\h2afhah2r

(ha)13

a(ha)5(h2afha(h2a)2hapq
a(ha)Ah2aha{h2a)2(ha)4rq

Index of
(h,P,q,r)

90
14
14
14
14
14

30
10270

102
102

; which led to nontrivial graphs from G\ are lisi

Relator
{haf

a(hafh2a{ha)2{h2a)2hqr

a(ha)\h2a)\ha)2p
(haf

a(ha)5h2a{ha)\h2a)3rq
a{ha)\h2aha)2{h2a)2h2pq
a{ha)\h2a)2(hafh2ahrq
a(ha)\h2af{ha)2h2ar

a(ha)4h2a(ha)2(h2a)2hah2ah2pq
a{ha)\h2aha)2(h2afh2rq

a(ha)4h2aha(h2a)2ha(h2a)2

a{ha)\h2a)2(hafh2ahah2pr
a{ha)\h2a)2ha(h2aha)2hqr

(ha)13

Index of
(h,P,q,r)

30
90
30

650
90
30
90
30

468
30
30
90
30

234

147

The preceding listing contains only half of the relators that led to nontrivial
graphs. This is because if there is a circuit corresponding to a relator which
begins a(ha)4 , then there is a matching relator which beings a(ha)3h2a and
gives the same group and therefore the same graph. Note that the denning
relations for G\ and G\ are equally valid if a is replaced by ap. Also
note that in a 4-arc-transitive cubic graph the vertex xH is joined to the
three vertices xaH, xhaH and xh2aH, and then since p € H we have
x(ap)H = xH, xh(ap)H = xhaH and xh2(ap)H = x2haH; consequently
using ap instead of a gives the same graph. Thus if a relator begins with
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a(/ja)3A2a then replacement of a by ap gives (ap)(hap)3h2(ap), and then
conjugation of this by r gives a(hafqr. An example of a pair of relators of
this type is a(hdfh2a(ha)2h2q and a(/?a)3A2a(Aa)2/22a/i2r, corresponding
to circuits of length 8.

The following example illustrates how graphs with the same number of
vertices, constructed as described in the preceding section on method, were
shown to be isomorphic. The relation (ha)9 = 1 when adjoined to the
usual relations in G\ gave a graph with 102 vertices. CAYLEY was used to
construct the automorphism group for this graph. It had the generators

, 16, 13)(12, 17, 14),

p = (3, 8)(4, 9)(5, 17)(6, 7)(10, 12)(11, 13)(14, 18)(15, 16),

<7 = ( l ,2 ) (4 ,10)(5 , 15)(6,7)(9, 12)(11, 14)(13, 18)(16, 17),

r = ( l , 2 ) ( 3 , 7)(5, 11)(6, 8)(10, 12)(13, 17)(14, 16)(15, 18),

a = (l, 2)(3, 4)(6, 12)(7, 10)(8, 9)(11, 15)(13, 16)(14, 18).

The three other relators which had given a graph with 102 vertices were

a{ha)\h2afha{h2afrq, a(ha)\h2a)3ha(h2a)2hapq

and

a(ha)4h2aha{h2a)2(ha)4rq.

In each instance, substitution into these relators by h, p, q, r and a (or
ap) gave the result that the relator was equal to the identity element. Conse-
quently all the graphs with 102 vertices were isomorphic to the sextet graph
5(17).

In a similar way graphs with 14-vertices were all shown to be isomorphic
to Heawood's graph; those with 30 vertices to Tutte's 8-cage; those with 90
vertices to the same triple cover of Tutte's 8-cage; those with 204 vertices to
the same double cover of 5(17); those with 234 vertices to Wong's graph;
those with 468 vertices to the same double cover of Wong's graph; those with
650 vertices to 5(5) ; and the graph with 10270 vertices to 5(79).
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