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NEGATIVE POWERS OF INTEGRATED
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This paper derives the limit distribution of the rescaled sum of the absolute value of
an integrated process with continuously distributed innovations raised to a negative
power less than —1, and of the analogous statistic that is obtained using the
same function of an integrated process but only considering positive values of the
integrated process. We show that the limit behavior of this statistic is determined by
the values of the integrated process that are closest to 0, and find the limit behavior
of the values of the integrated process that are closest to 0.

1. INTRODUCTION

Pétscher (2013) studied statistics of the form ) ,_, |x;|~7 for ¢ > 1 and an inte-
grated process x; satisfying some regularity conditions, and established the order
of magnitude of such statistics. Among other results, Potscher (2013) showed that
n=423""_ |x|74 = 0,(1) for ¢ > 1. This paper will show that n=4/2Y""_ |x,| 4
converges in distribution for ¢ > 1 under regularity conditions, and provides a
characterization of the limit distribution. Therefore, the rate established in Pétscher
(2013) was indeed the best possible one. Note that in order to prevent a division
by zero issue, a regularity condition ensuring the continuity of the distribution of
x; is needed to analyze such statistics.

As Potscher (2013) noted, the asymptotic behavior of expressions of the form
7y Zf:] f(kyx,), for deterministic sequences r, and k,, has been the subject of
a number of articles in recent years. In Econometrics, Park and Phillips (1999)
started the interest in this topic. The work of Potscher (2004) and de Jong (2004)
contained results that showed that for r, = n=', k, = n=1/2, n=V 2x[m] = AW(@)
for r € [0, 1], W(-) Brownian motion, A? a variance parameter, and f(-) absolutely
integrable on finite intervals, the limit fol fS (AW (r))dr can be found under regularity

o _ . by
conditions. Therefore, because for 0 < g < 1, |x|77 satisfies fa |x|79dx < oo for

any a,b € R, a < b, it follows that n~ 492 3" x,|=7 L [V AW (r)|~7dr. This
result does not follow immediately from the continuous mapping, because the pole
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340 NESLIHAN SAKARYA AND ROBERT M. DE JONG

at 0 renders the mapping noncontinuous. Such results however are not informative

about the case where f(-) has a nonintegrable pole, such as f(x) = |x|~7 for g > 1.
For the case g = 1, Potscher (2013) showed that n~/>(log(n)) ' Y7, |x|™! =

0, (1) under regularity conditions, and Michel and de Jong (2020) showed that

w2 (log(m) Y Il =5 2171 2] M

t=1

under regularity conditions, where Z ~ N (0, 1).

Note that the above results all have one-sided equivalents that are obtained by
only summing over the values of ¢ for which x, is positive or negative. Other
papers considering statistics of the form r, Y _, f (k,x,) are Borodin and Ibragimov
(1995), Jeganathan (2004), de Jong and Wang (2005), Berkes and Horvath (2006),
and Christopeit (2009).

The plan of this paper is as follows. Section 2 outlines the idea of the proof of
the main result. In Section 3, we first set out to find convergence in distribution
results for the occupation times for small intervals. Note that Akonom (1993,
Thm. 2 and Lem. 1) established results for occupation times of the integrated
process, but this author’s results are not sufficiently tailored to the “small” interval
situation to be of use here. We apply these results to show convergence results
for ming.j<;<y x>0y X, and min;<,<, |x;|. In Section 4, we consider multivariate
convergence in distribution results for occupation times and convergence results
for the order statistics of |x;| and the positive values of x,. Section 5 then derives the
limit distribution for the statistics of n=%2 """, |x,|™ and n=9/2 Y"1, x; /I(x, > 0)
for ¢ > 1. We conclude with Section 6, where we give simulation results for
the distributions of ming.j<;<y x0) XMin <<y %], 771 Y0 x721(x; > 0), and
nt Y

2. MAIN IDEA OF THE PROOF

Let x, be an integrated process that is a recurrent random walk with i.i.d. innova-
tions. In this paper, our approach is to write

n n n
nPY =Y =7, ¢)
=1 =1 =1

where Z,, is the rth smallest value of n'/?|x,|, t = 1,...,n. We then show

the joint convergence of (Z,,...,Z,,) for any integer m, and prove that
n=923"" | |x| 74 is asymptotically close to Y i Z,’. We find the limit distri-
bution of n79/2Y""_ |x,| 77 based on those results. For n=9/2Y""_ x, I(x, > 0),
the reasoning is similar, by noting that

n

n My
n4? Zx; U(x, > 0) = Z(nl/zxt)*mx, >0) = Z Y’ 3)

=1 =1 =1
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where M, is the number of positive x, and Y, is the 7th smallest positive value of
nx,t=1,...,n.

We will first focus on the case m =1 and Z,; = n'/“min; <;<, |x;|. Note that of
course, from the functional central limit theorem it follows that

1/2

—12

a2 min x| =5 inf [W(r)| =0, @)
rel0,1]

1<t<n
but beyond that, the functional central limit theorem is not informative about
minlftfn 2.

The behavior of n'/2min; <,<, ||, but also more general order statistics of this
type, can be related to occupation times of integrated processes for small intervals,
where “small” here means that the width of the interval is O(n~'/?). Define S, (y) =
> I(lx| <yn~'?). Then for all y € R,

P(Zy <y) =P(Sx(y) > 1/2). )

If we can now show the convergence in distribution of S, (y) to some limit S(y) for
all y € R, by noting that 1/2 is necessarily a continuity point of the distribution of
S(y) because the distribution of S(y) will only put probability mass on the integers,
we also find

1im P(Zyy < ). ©)
172

A similar argument can be used for Y,,; =n'/“ming.; <;<y, x,~0) X;. Defining R, (y) =
" 10 < x; < yn~'/2) we can also note that for all y € R,

P(Yn =y) =PR,(y) > 1/2). 7

Therefore, the next section will first establish results on the limit behavior of the
occupation times for small intervals.

3. OCCUPATION TIMES FOR SMALL INTERVALS

Let x; be an integrated process. In this section, we will show that R,(y) and
S, (y) converge in distribution under regularity conditions. To show this, we first
establish that all positive integer moments E(R,(y))” and E(S,(y))” converge.
In the lemma below and everywhere in this paper, F;(-) and f;(-) denote the
distribution function and density function of r~!/2x;, respectively (and therefore,
the existence of f;(-) is assumed for all 7). Let ¢ (-) denote the density function of the
standard normal distribution. For the results of this paper, we need the following
assumption:

Assumption 1.. Ax; is i.i.d., sup,g [fn(x) — ¢ (x)| — 0, and sup,.; g [ff (X)]
< 00.

Note that the condition sup,.p |[f,(x) — @ (x)| — O implies that a variance
rescaling to 1 has been imposed.
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Akonom (1993) considers the case where Ax; has characteristic function ¥ (r)
and is ii.d., xo = 0, EAx, = 0, E(Ax,)*> < co. From the arguments in Akonom
(1993, p. 61-62), it follows that Assumption 1 is then implied by E(Ax,)? = 1
and ffooo [Pl (r)|dr < co. Akonom (1993) also shows that if for some 8 > 0,
lim,_.« |7]? |1 ()| = 0, then there exists an integer #* such that SUP;= i« ver Uff ()] <
o0. For this paper, we use Assumption 1, which avoids having to split up a number
of summations in the proofs into the t < ¢* and 7 > ¢* cases, but there does not
seem to be a fundamental difficulty with this generalization. Potscher (2013) used
boundedness of density conditions for ¢ > ¢* for some #*.

Let I'(-) denote the gamma function and let Ak i, denote the kth difference of
1p. We can show the convergence of all positive integer-valued moments of R, (y)
and S, (y) and deduce convergence in distribution from that, giving the following
result:

LEMMA 1. Under Assumption I,

1. for all y € R, there exists a random variable R(y) with moments i, satisfying
w1 =y+/2/m and, for p > 2,

AP, =ply?27 P2 T (p/2 4 1), )
such that
R.() -5 R(y): )

2. for all y € R, there exists a random variable S(y) with moments v, satisfying
V1 =2y+/2 /7 and, forp > 2,

APy, = ply? 2" T (p/2+ 1), (10)
such that
. —5 S). (1)

Note that the distributions of R(y) and S(y) do not depend on the distribution of
AXx;.

One might incorrectly conjecture, based on the standard FCLT plus continuous
mapping theorem reasoning and the occupation times formula, that

n 1
d
R,(y) = § 10 <x, <yn V)=~ nf 10 < W(r) < yn~Hdr
=1 0

o0
d
=n/ 10 < s < yn~YL(1,s5)ds ~ yL(1,0) éy|Z|, 12)

(o]
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d . . o »
where ~ denotes “having a roughly similar distribution as n — 00,” L(t, s) denotes

Brownian local time, and Z ~ N(0, 1). Note that the equivalence L(1,0) < |Z|
follows from Akonom (1993, p. 58). If that were the case, then the second
moment of R(y) would have to be E(yZ)2 = yz. However, by Equation (8),
we find

to =i +y =yy2/m +y, 13)

and therefore this conjecture is false and R(y) is not distributed as y|Z|.
Using the previous lemma, convergence results for Y,,; = n'/? ming;.1<;<p x,~0) %
and Z,; = n'/?> min; <<, |x;| now can be proven:

THEOREM 1. Under Assumption I,

1. limy oo P(Yy1 < y) is well-defined for all y € R, and the limit is Lipschitz
continuous for y € R. Furthermore, Y;ll converges in distribution.

2. lim,—, o P(Z,1 <) is well-defined for all y € R, and the limit is Lipschitz
continuous for 'y € R. Furthermore, Zn_]l converges in distribution.

Since the limit results of Theorem 1 are based on the observation of Equations
(5) and (7), the limits found in Theorem | do not depend on the distribution of
Ax,, because the distributions of R(y) and S(y) do not depend on the distribution
of Ax;.

Theorem 1 does not rule out the possibility that some of the probability mass of
Y1 or Z,; escapes to infinity asymptotically. Therefore, the limit measures of Y,
and Z,| are not necessarily probability measures. This is the reason that Theorem 1
is not formulated as a convergence in distribution result. However, Theorem 1
implies that any continuous and bounded function of Y,; or Z,; converges in
distribution.

Chung (2001, p. 85) uses the term “vague convergence” for the concept of
convergence of a sequence of probability measures to a limit measure that is not
necessarily a probability measure. Therefore, the result of Theorem 1 implies that
Y1 and Z,; converge vaguely in Chung’s sense.

Note that not all probability mass of Y, and Z,; escapes to infinity.
After all, if all probability mass of Y,; escaped to infinity, we would have
lim,,—, oo P(Y,; <y)=0forall y > 0, implying that for all y > 0, by Equation (7) and

Lemma 1,
0= lim P(Y,y <y)=P(R(y) > 1/2) =0, (14)
n—o0

and because R(y) € N, this would imply that R(y) = 0 almost surely, which
contradicts our earlier finding that x; > O for y > 0. The same argument holds
for Z,;.
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4. JOINT CONVERGENCE OF OCCUPATION TIMES FOR SMALL
INTERVALS

In this section, we derive multivariate equivalents to the results from the previous
section. Consider (Y,,1, Y;p), where Y, is as before and Y, is n'/? times the second
smallest positive value for x,. Assume that n is large enough for {x, : x, > 0,7 =
1,...,n} to have at least two elements, so that (Y,,Y,») are well-defined. The
joint distribution of (Y, ¥,;») then satisfies, for all y;,y, € R,

P(Yu =y1, Y =y2) = P(Ry(y1) > 1/2,R,(y2) > 3/2). 15)

Analogously, assuming that # is large enough for {x, : x, > 0, =1, ...,n} to have
at least m elements, defining Y,,; as the ith smallest positive value for n'/2x, for
i=1,...,m,forall y;,ys,...,ym €R

P(Ynl =1 ~-~7Ynm Sym) =P(Rn(yt) >i— 1/2 Vie {1,,1’)1}) (16)

A similar observation can be made for Z,;, which is defined as the ith smallest
value of n'/2|x,|. With these definitions and observations in place, we can now find
the following joint convergence result for the occupation times of Y,; and Z,;:

LEMMA 2. Under Assumption I,

1. for all (y1,y2,...,ym) € R™ there exists a random variable (R(y;),R(y>), ...,

R(y,)) such that

(Rn(yl )an(yZ)’ o 9Rn(ym))/ —d) (R(yl ),R()’2), .. sR(ym))/; (17)
2. for all (y1,y2,...,ym) € R™ there exists a random variable (S(y1),S(y2), ...,

S(m)) such that

Sn(1): S0 (32)s -2 Sum))’ - SO SO, .-, Sm)) . (18)

Inspecting the proof of Lemma 2 again reveals that the distributions of

(Ry1),R(»),...,R(yy)) and (S(»y1),S(72),...,Sm)) do not depend on the
distribution of Ax;.

Our multivariate results for (Y,1, ..., Y, and (Z,1, ..., Z,,) are as follows:
THEOREM 2. Under Assumption 1,

1. lim, o PVt <31, Y2 <¥2, .oy Yo <y is well-defined for all (y, ..., y,) €
R™, and the limit is Lipschitz continuous for (yi,...,y,) € R™. Furthermore,
LYt Yol converges in distribution.

2. limy, 00 P(Zo1 31,200 Y2, + oy Ly < V) is well-defined for all (yy, ...,ym) €
R™, and the limit is Lipschitz continuous for (yy,...,y,) € R™. Furthermore,

1 ~»—1 —1v/ . . . .
(Zy o Zy s Zyy,) converges in distribution.
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Similarly to Theorem 1, the limits found in Theorem 2 do not depend on
the distribution of Ax, because they are induced by the limit distributions

(R, R(2), ... R(ym)) and (S(1),S(72), ... Sym))"-

5. SUMMATIONS OF NEGATIVE POWERS

This section considers statistics

n~4? Zx;qz(x, > 0) (19)
=1

and .

n=4? Z x|~ (20)
t=1

for g > 1. These statistics have also been considered by Potscher (2013); in this
section, we will find their limit distributions using Theorem 2 of the previous
section. The idea here is that the statistic n=%/2 > x; YI(x; > 0) can be written as

fi”l Y,.?, where M,, is the number of positive x;, and that the last statistic is asymp-
totically close to Y -, Y, for large m. By the joint convergence in distribution
result of Theorem 2, and letting (Y - Y'Y denote a random variable that has

*tm
the limit distribution of (¥, ..., Y1)/, we find that Y™, ¥ —5 Y™ ¥, and
since m was arbitrary, we find the limit distribution as Zfil Y, 9. A similar result
holds for n=9/2Y""_, |x,|7¢, defining ... ,Z-1) analogously. This argument
then leads to the following result:

THEOREM 3. For q > 1, under Assumption I,

n o0

n_‘f/Zth_qI(x, > 0) LN ZY:" 21
=1 =1

and
n o0

w5 Y7 (22)
=1 =1

and the limit distributions do not depend on the distribution of the innovations Ax;.

6. SIMULATION RESULTS

We conducted a small simulation experiment to illustrate the main theorems.
We simulated ming.</<p x>0y X;, MiNj</<p |X], n’lz:lzlxl’zl(xt > 0) and n~!
Z?: 1 X 2 for various values on n and i.i.d. N(0, 1) distributed Ax,, and reported
the percentage points in Tables A1-A4. For all four statistics, the convergence of
the distribution was rapid. Note that the “NA” for n = 100 in Table A1 for the 95th
percentage point corresponds to the occurrence in more than 5% of cases of an
integrated process that was always negative.
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APPENDICES

A. Simulation results

2

TaBLE Al. Simulation results for n!/ Ming. | <¢<p, x>0} Xz

n No. of 5% 10% 25% 50% 75% 90% 95%
replications

100 107 0.070 0.146 0419 1.142 2990 8.296 NA

1,000 106 0.067 0.139 0401 1.103 2924 7.896 16.065

10,000 10° 0.067 0.138 0.396 1.095 2884 7.766 15.664

100,000 10° 0.066 0.137 0396 1.094 2920 7.828 15.835

2

TaBLE A2. Simulation results for n!/ ming <<y |x|

n No. of 5% 10% 25% 50% 75% 90% 95%
replications

100 107 0.035 0.073 0209 0.571 1489 3.888 17.122

1,000 10° 0.033 0.070 0201 0.553 1460 3.943 70919

10,000 10° 0.034 0.070 0.199 0.550 1460 3917 17.854

100,000 10° 0.033 0.069 0.199 0550 1462 3962 7.922

TABLE A3. Simulation results for n=! Y7, X 2I(x; > 0)

n No. of 5% 10%  25%  50%  75% 90% 95%
replications

100 107 0.000 0.045 0256 1399 7958 54230 219.790

1,000 10° 0.012 0.041 0267 1517 8767 59.559 242223

10,000 10° 0.010 0.041 0271 1553 9.019 61.381 243.012

100,000 10° 0.010 0.040 0.265 1.559 9.001 61915 254.565

TABLE Ad4. Simulation results for n=! Y| x;

n No. of 5% 10%  25%  50% 75% 90% 95%
replications

100 107 0.072 0.184 1.029 5.632 31.939 217.331 877.243

1,000 106 0.044 0.162 1.066 6.073 34.930 239.072 968.151

10,000 10° 0.042 0.160 1.071 6.155 35.852 237.745 939.627

100,000 10° 0.039 0.155 1.068 6.218 35.930 244.387 995.949
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B. Mathematical proofs

In this appendix, for brevity we will set /;1 =1(0 < x; < yn_1/2) and Ipp =I(Jx¢| < yn_l/z).
We will also define I , | =1(0 <x; < ynil/z) and/; y 2 =1(|x| < ynil/z) whenever three
instead of two arguments are used for /.

Proof of Lemma 1

The proof of Lemma 1 relies on Lemmas 3—10 below.
LEMMA 3. A random sequence Xy, € R converges in distribution to a random variable
X with moments & if (1) EX{; converges to a limit §p for all p € N; and (2) Z;il {7]/(217)

2p
= oQ.

Proof of Lemma 3. This result follows from Fréchet and Shohat (1931) as quoted on
page 2 of Lin (2017), together with Lin’s Theorem 1 and condition (h7). |

LEMMA 4. As n — oo, forp > 2,

n n
_ ~12 _ _
nPEY Sy <) Ity < 1) Py =)™ y—t, )2
h=l 1=l

— Ll st_]/z(s —s) Y2 sy =5p0) V(s —s, )" V2ds. .. ds
b Jo ) 1 2 —8] v (Sp—1—8p—2 p —Sp—1 1---dsp.

Proof of Lemma 4. Note that, by letting [.] denote the floor function and setting t; = j;
andt;—t;_1 =jijfori=2,...,p,and thenj; =nx;+1fori=1,...,p,

n n
nPREY I <) (- < tp)tfl/z(lg—tl)_l/z...(tp—tp_l)_1/2

n=1 =1
u z 1/2.-1/2 12
=n P23 LS I <ji b < m I < <y P Y
=1 jp=1
n+l1 n+1
=n_p/2/ / IA <[]+l <n...
=1 Jj=1
) I < Gl 4 Up) <l 20172 )2y
1 1
=np/2/ / I(1 < [nx) 4+ 1]+ [ + 1] <n)...
x1=0 Xp=0
I(1 < [nxy + 10+ + [nxp + 1] <)
x [nxy + 1712 [y + 11720 gy + 117124y L di. (23)

Pointwise for (xg,...,xp) € (0,117,

w211 < [nx) + N+ [nxy + 11 < n). I < [nxg + 4+ [nxp + 11 < n)

1/2 12 1/2

X [nxy + 11"/ “[nxy + 1] g +177
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—>I(xp+x <D Jx 4+ 4xp < l)xl_l/2x2_1/2...x;l/2

and therefore, by the dominated convergence theorem, it suffices to find an integrable
dominating function. To find the dominating function, note that because [x+ 1] > x

np/21(1 <[mxp+ 11+ +11<n).. . 01 < [nx; + 114+ +[nxp+11 < n)

X [nx1 + 1]_1/2[nxz—|—1]_1/2.”[rl)q,;—|—1]_1/2

—1/2 -1/2 _—1/2
1 X cexp T

=x )

which is integrable. Therefore, the limit of the statistic of Equation (23) is

1/2

1 1
/ / 1(x1—|—x2§1)...I(x1+~~-+xp§l)xl_l/zxz_ xgl/zdxl...dxp
0 0

o o0
=/ f I0<x1 =1)...J0<xp < DIx1 +xp < 1)... I(x1 +---+xp = 1)
- —00

—12 —1/2 _—1)2
1 X2 ...Xp

X X dxy...dxp

Now set x| = 51, x| +X2 = $2, X] +x +x3 = 53, etc. Then the last expression can be
rewritten as

1 1
/ / 10<s1 <DI(s1 <sp < 1)...I(sp_1 <sp =1
0 0

—-1/2 — _
Xs /(sz—sl) 1/2...(sp—sp_1) l/zdsl...dsp

L rsp 52
—-1/2 — — _
:/0 /(; /() 5 /(sz—sl) 1/2...(sp_1—sp_2) 1/2(sp—sp_1) 1/stl...dsp,

which is the result as stated in the lemma. |

LEMMA 5. For p > 1, setting sy =0,

sp=1 S1=52 B
R A i N
Sp Sp 1—0 K

1=
x dsy...dsp

=(C(1/2))P/T(p/2+1).
Proof of Lemma 5. Equations (2.2) and (2.3) on p. 44 and 45 of Miller and Ross (1993)
state the following two properties of the Riemann-Liouville fractional integral:

(R1) Fora > 0, D;*f(t) = (C(a)) ™! [(t—1)* ' f(v)dx.
(R2) Fora >0and 8 > —1,D;%? =T (B+ DB/ T(a+ B+ 1).
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Forp =1, we use (R1) and (R2) using & = 1, B = —1/2, and f(z) = /2, find that
! —-1/2 —1,-1/2
/O sy “dsy =)D V2,2 =T (1/2)/T(3/2) = 2.

For p =2, we have

1 pso 1
/O/O (sz—sl)*l/zsl‘“zdsldsz:/() r(1/2)p;,"%s;  Pas,

— —1/2 —
—r /20, 'p; P2y,

by applying (R1) twice (witha = 1/2,1=s7, 7 =s,f(t) =t /2 and witha =1, 7 = 57,

f(o)= Df_l/ztfl/z). Setting =3/2 and § = —1/2, we apply (R2) to the above expression
and find that it equals

L(1/2T(1/2)t/ T Q)= = (T(1/2)*/T(2) = 7.

For p = 3, note that
1 ps3 52
— - —1/2
/0 fo (s3—52) 1/2/0 (s2—s1) 1/251 2 ds, dsydss

1 ps3
- / f (s3—s2) 21 (1/2)D5, P55 P dsadss.
0 JO

Applying (R1) twice (with @ = 1/2, t = 53, T = 50, f(t) = Dy />t=1/2 and with & = 1,

T =13, f(7) :D;]‘L'*]/z) gives
Lrss —12 —1/2 —12
/(; /(; (s3—92) I'(1/2)Ds, *"s, " “dsads3

1
—1 —1/2 2

- /0 (T (172205155 dss = (0 (1/2)2D7 212y
By setting « = 2 and 8 = —1/2, (R2) implies that the expression is equal to
(C1/2)* 01/ /T (5/2) =1 = ((1/2))*/ T(5/2) = 4 /3.
Reasoning accordingly, we now find that the p-fold integral is

1
/ (/2 DA 2 s, = b a2 o A

0

by (R1). By setting @ = p/2+1/2 and § = —1/2, (R2) implies that the above expression
is equal to

(CA/2P =T /222 T (p/2+ D=1 = (T(1/2)P/ T (p/2+1),
thereby completing the proof. |

LEMMA 6. Assume Assumption 1 holds. Then we have

n
nl_l)n;oE t_leﬂ =y/2/7
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and
n
lim E X}IQ =29/2/7
=
and forp > 2,

lim > Edy gy, DI # 0 (1 £ 13). . Ity 1)

n—odo
n=1 =1

=pyW2 P2 T(p/2+1)

and

lim .Y By .. Iy, )1t # 0) (6 #13).. I (ty—1 # 1p)

n— 00
n=1 =1

=pIyP2P2 /T (p/2+1).

Proof of Lemma 6. We will first show the first assertion of the lemma. By the Taylor
expansion, for some intermediate value &,y € [0, yt_l/ 21 2],

n n
— 1 _ 1 -1/2,-1/2y _
pi = lim E letl = lim_ Zl(Ft@’ n~ %) —F(0))
1= 1=

n
= lim yn= /23 "2y

n— 00
t=1

=2y¢(0) =yy/2/m

because n~1/2 ha /2 2 and because Super |/ (¥)| < oo and SUPs>1 xeR Ut (*) —
¢ (x)| — 0 by assumption. The result for lim;,— o0 E (Z’:zl 1) follows analogously.

To show the second assertion of the lemma, note that since there are p! possible orderings
of {tl,tz, .. ,,tp},

Y. E(yy 1Dy, DI # )1 (1 #13).. Lty #1p)

t1=1 ty=1
n n
=p!Y Y Ey .y DI < ) (1 < 13).. I(tp—y < 1p).
H=l1 tp=1

Letting g;(-) denote the density of x;, we have
E([tl, 1 "'pr,l) =ElI0< Xy 5}’”71/2)1(0 fxtp < yn71/2))

=EUO = xp, —xp,_ + -+ —x +y <y 1% 10< Xy = yn~1/2))

2/--'/1(0521+22+'~-+ZPSynfl/z)...1(0§zl <yn~1/2)

X 811 (21)8n—1 (22) - - 8ty—1,_1 (Zp)dz1 ... dzp.
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Since gr(2) = 1~/ 1/22), sup|<,,-172 18:(2) — 171 /2¢(0)| = 0(17 /) because

a= s lg@-1"20)= sup V0 2 -2 0))
lzl<yn=1/2 Izl <yn=1/2
<12 Sup]/z(lf,(r]/%)—ﬁ(on+lﬁ(o>—¢(0>|)=o(f‘/2>
|zl <yn™

because by assumption sup,cp |f;(x) — @ (x)| — 0 and sup;>1 recr If{ (x)| < oo. Therefore,
approximating gy, (z) by ~V 2(1)(0) gives

n n
Y Y I <) (o < VEUy 1.1y 1)

n=1 =1
n n

- Z Z[(tl <) Aty <1p)
n=1 =1

x/.../1(0511+22+-~~+zpSyn_l/z)...I(szl Eyn_l/z)

—1/2
x 1y 2P Ogry—, @) 81y—1,_1 (@p)ez1 ... dip

< ZC’I Z Zl(rl <1))... L(ty_1 <1tp)

=1 nh=1 t,,=1
x/.../1(0§z1+zz+---+zpfyn*‘/2)...1(05z1 <y 12

X 8n—1(22). .. 81y—1,_ (2p)dzy ... dzp

n n n
=Y ey DY M <) At <t —1)" V2 —1,_/?

=1 n=1 =1
x/.../1(0§z1+Z2+-~-+zpSyn_l/z)...I(Ofm <yn~ 172

X fty—1;(z2).. .f,p_;pfl (zp)dzy ... dzp

n n n
<> ey Z(tz—zl)*l/z... Z(zp—tp,l)*l/zl(n <n)..d(ty_y <tp)on~ /2P

=1 n=1 tp=1

p—1
X( sup ft(X)>
>1,xeR

n
-0 n*‘/zzc, =o(1).
t=1
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Similarly, we can also approximate g,—, (z) by (t2 — 11)™1/2¢(0), gr—1, (2) by (13 —
1)~ 12¢(0), etc. and therefore

n

n
DY I <) Aty < p)EUy 1. 0y, 1)

n=1 =1
n n
= Z Zl(tl <B)...
n=1 =1

x 1(ty— <tp)/.../1(05zl+zz+»~+z,,gyn—l/z)...l(oszl <y V2%
—1/2 _ _
<7 PO (1 =)V ty— 1y )Tz dzp 4 o(1).
Because
/.-./1(0§Z1+12+~-~+zp Syn_l/Q)...I(OSQ §yn_l/2)d11...dzp =y”n_[’/2,
(24)

it now follows that

n n
DY It <) Aoy < 4)EUy 1. Ty, 1)

n=1 =1

=o(M)+on gy 3 S 1y < ) dtpey < iyt Pt — 1) T2
n=1 =1

—1/2
X (tp —ty_1) /2,

and by Lemma 4, the last expression equals

1 Sp—1
o0+ 607 [ p=sp-07 2 [ 5yt =y

5
X/() s?l/z(sz—s1)7]/2d31 ... dsp

and by Lemma 5, it now follows that

lim Y By 1. D, DI #0) (6 #13). I (t—1 # 1)

n— 00
n=1 =1

=p! Y0 (T (1/2))P/T(p/2+1)
=pyW2 P12 T (p/2+1).

The result for I, follows analogously, except that in the result of Equation (24), yPn*P/ 2
needs to be replaced by 2Py?nP/2. -
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LEMMA 7. Assume Assumption I holds. Forb=1,2,p>2andj=1,2,...,p—1, define

homgj =D > oo Y Ey bl - Ty, )1t # 1)1ty # 13).. 1 (8 # tig1)

n=ln=1 =1

and forb=1,2andp > 1, define hppo = E(Z;l:l Iip)P. Then Hppj = limp— o0 hpppj is well-
defined forb=1,2, p>1and j=0,1,2,...,p— 1, and as a consequence, Up = Hlpo =
limp— 00 A1ppo and vp = Hapo = limp— 00 hoypo are well-defined for p > 1. Also, for b =
1,2, p>2andj=0,....p—2,

Hppj=Hp p—_1,j+Hp p,j+1- (25)

Proof of Lemma 7. Forb=1,2,p>3andj=1,2,...,p—2, we can write

n n n
Monpj = ) Do D By bl b Iy Ity # 1) 14 # 141)

n=ln=1 1,=I

=Y Y EU bl Ly )t # 1) I # 1)

t1=1n=1 l,,=1

X ([(tj41 = tj42) +1(tj41 # 1j42))

=Y > ...y E(ly bl b-- 1y, ) # 12).. 1 # 141)

t=1n=1 lp,1=1

N D EUy bl b D)y #E 1) I # G )ty # 142)

t=1n=1 tp=1
= hp,n,p—1,j + b, p,j+1> (26)

where the third equality follows from the fact that Itj " h],/. b= I,_], Lpwhenti g =10,
and we relabel the summation indices. This shows the result of Equation (26) for b = 1,2,
p>3andj=1,....,p—2.Forp>2andj=0,itis easy to see that we also have Ap,p0 =
hb, n,p—1,0 + hbnpl because

14 p—1

n n n n n
E(Y 1| =E[Y 1n YYD EUy bl b Iy, )11 # 1)
=1 =1

n=ln=1 1,=1

Therefore, we conclude that the result of Equation (26) holds for b = 1,2, p > 2, and j =
0,...,p—2.

It follows from Lemma 6 that for b = 1,2, Hp, j, p—1 = limp— 00 p, 5, p, p—1 €Xists for
p > 1. To show that Hpp; = limp— o0 hpyp; exists for b=1,2,p>2and j=0,...,p -2,
note that by setting j = p — 2 in Equation (26), we now have forb=1,2,p > 2

b, n,p,p—2 = b, n,p—1,p—2+ ho np,p—1-

By taking limits, it now follows that Hy, j, ,—» exists because Hp, j, , 2 = Hp p—1 p—2 +
Hp, p, p—1- Repeating this argument for j = p — 3, then p — 4 etc. until j = 0 then shows that
limy,— 00 h;,npj = Hb,,j exists forb=1,2,p>2andj=0,...,p—2. Therefore, the existence
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of H;,pj is now shown for b=1,2,p > 1, and j =0,...,p — 1. The result of Equation (25)
now follows by taking the limit as n — oo in Equation (26). |

LEMMA 8. Assume Assumption I holds. Then forp >2and0 <j<p—1, Hjp; = Aj,up
and Hp,; = Ajvp.

Proof of Lemma 8. Equation (25) states that Hy,; = Hp, ;,_1,j+ Hp p, j+1 for b= 1,2,
p>2andj=0,....,p—2. Setting j+ 1 =i, we find Hpp; = Hp p i1 —Hpp—1,i-1 =
AHh,p, i—1forb=1,2,p>2andi=1,...,p— 1. Repeating this equation gives, if p > 2 and
I<i—1<p-1, pri = Asz,p, i—2. Therefore, repeating the equation k times, for k > 0
and l <i—k+1=<p—1, we find Hpp; = AkHb,p,i_k. Setting k = i gives Hpp; = AiH;,po
for p > 2. Therefore, because p = Hypg and vp = Hapg, Hip; = A'pp and Hop; = A'vp.
This completes the proof. n

LEMMA 9. Assume Assumption 1 holds. Then for all p > 2,
AP, = plyP 2P T (p/24 1)
and

AP=Ly, = p1yP2P2 I T (p/241).

Proof of Lemma 9. The result of Lemma 8 implies that Hy p, ,—1 = AP~ 1 ip. Therefore,
by Lemma 6, it now follows that

AP, = pyP2 P2 T (p2 4 ).

The result for v, is proven analogously. This completes the proof. |

LEMMA 10. Assume Assumption | holds. Then for the wup sequence as defined in
Lemma 7, for p > 2, up < 2p)’ max(1,y”) and vy < 22 pP max (1, yP).

Proof of Lemma 10. By Lemma 7, we have forp >2andj=0,...,p—2
Hipj=Hip—1j+Hipjr1 =2 max Hipitiyjtiy
1=0,
and applying this reasoning k times,

Hypi <4 max max Hy , 24 +iy, j+ii+is
i1=0,1i=0,1

k

<.+ <2 max ... max Hy p_jtijdetip. idirtootip-

= e R v L, p—k+iy+-ig, jAip i
Note that Lemma 7 states that Hy ki) 4. tiy, j+i) +--4ip 15 Well-defined for 0 <j <
p —k — 1. This is because prj is well-defined for b =1,2, p>1,and j=0,...,p— 1
by Lemma7,andp—k+ij+---+ip =>p—k>1land0<j+ij+---+ir <j+k<p—1.

Therefore, settingj=0andk=p—1,

=Hipo <27 max ... max Hj |4iisotin o irtoti
Hp=H1p0 = i=0.1"ipoy=0,1 It it
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:2[7—1 max H1’1+i!i=2p_l max Hl,i,i—l~
O<i<p-1 1<i<p

Because Hy p, ,—1 = p!27P/2y?/T(p/2+1) by Lemma 6, p! < p, ['(p/2+1) > 1 and
27P/2 < 1forp>2,

27! max iy <207 max(1y”)p! < 2p) max(1,y?).
<i<p

For v, the proof is analogous, except that the upper bound for vy, of Lemma 6 is a factor 27
larger. This completes the proof. |

With the above results in place, we can now complete the proof of Lemma 1:

Proof of Lemma 1. We first apply Lemma 3 to X, = ', I;; for part 1 of Lemma 1,
and then to X, = Z’t’: 1 Ip for part 2 of Lemma 1. Condition (1) of Lemma 3 holds because
EXﬁ,’ = E(Z?:1 I;1)P converges to up by Lemma 7. Condition (2) of Lemma 3 follows

because ,311 /L2_p]/(2p)

The value for | was calculated in Lemma 6, and the recursive relationship of Equation (8)
was shown in Lemma 9. Therefore, the proof of the result for part 1 is now complete. The
proof of part 2 of Lemma 1 is analogous. |

= 00 because for p > 2, uy, < (4p)% max(1,y?P) by Lemma 10.

Proof of Theorem 1

Proof of Theorem 1. We will show part 1 of Theorem 1, and note that the proof for
part 2 is analogous. Under Assumption 1, R,(y) =Y j_ /(0 < x; < yn~1/2) converges in
distribution to R(y) by Lemma 1. Therefore, noting that

n
P(Yy1 <) =P<nl/2 min  x; Sy) =1-P ZI(O <x <y <12
{r:1<t<n,x;>0} t=1

and because 1/2 is a continuity point of R(y) for all y € R,
T 12 .
L(y)= lim P(n min xr <
o) n—>00 ( {r:1<t<n,x;>0} l_y>

exists for all y € R. We will verify that L(y) is Lipschitz continuous on R. This follows
because, fory,y e R,y </,

ILG) — L)

= lim ‘P <n1/2 min x < y) -P (nl/z min X < y/>

n—oo {t:1<t<n,x;>0} {t:1<t<n,x,>0}

= lim P (y <nl/? min Xt < y/>

n— 0o {t:1<t<n,x;>0}

<limsupP@te(l,...,n}:y <n'?x, <)
n— 0o

n
= limsup P Zl(yn_l/2 <xu<yn %=1
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n
< 211msupZP(yn71/2 <x < y/nfl/z)

n— oo =1

= 2limsup Y _(Fy(/n~ V2712 — Fyn 1212

n
n—oQ P

=1

n
<2limsup »_[y—y'|n~ %~/ 2 sup sup fi (x)
n—00 17 t>1xeR

n
< 2supsupfi(x)ly—y|supn~ /2y 12, @7
t>1xeR n>1 =1

where the first equality follows from the definition of L(-), the second inequality is the
Markov inequality, and the third inequality follows from the mean value theorem.
To show that Yn_l1 converges in distribution, note that for all z; > 0,

P <2) =P 20 ) =1-PW <)
converges as n — 00, and the limit is continuous at any z; > 0. Furthermore,

lim lim P(Y,;' <z =1
7] —> 00 n—> 00

because using the reasoning of Equation (27),
. . —1 . . —1
legnmlzris&plP(Ynl <z)-1|= mh—rPooli,rEfo‘ép [P(Yp1 > 2] ) —P(Yp1 > 0)]

< lim limsupP(0 <Y, < zfl) <C lim 2171 =0,
1> p—soo 71> 00
while for z; < 0, P(Yn_l1 < z1) = 0. This implies that P(Yn_ll < z1) converges to a well-

defined limit distribution, and Y;ll converges in distribution. The second part of the theorem
is proven analogously. |

Proof of Lemma 2

Lemmas 11 to 17 are used for the proof of Lemma 2.

LEMMA 11. A random sequence X, € R™ converges in distribution to a random
variable X if (1) for all . # 0, EQ\'X,)P converges to a limit &p forall p e N; and (2)

;‘;1;;%(2”) = 00 forall A # 0.

Proof of Lemma 11. Since )'X,, satisfies the conditions of Lemma 3 for all A € R™,
A #0, it follows that \'X), —d> Y;, for some random variable Yy all A € R™, A # 0. Therefore,

Eexp(iX'Xy,) converges pointwise in A to a limit 1 (1), and we only need to show that Y}, 4
)/X for some random variable X. It follows from Theorem 2.13 of Van der Vaart (2000, p.
14) that v (1) is the characteristic function of a random variable X if 1/ (A) is continuous
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at 0. To show this, note that because | exp(ix) —exp(iy)| < [x—y| forx,y € R,
VD =02 = lim_ |Eexp(ir| Xy) — Eexp(iyXn)]
< [k —=Ao| lim E|Xa| = A1 =22 lim (EX,Xn)'/?,
and, defining s; as a vector of zeros except for a 1 at spot i,
m
i E = i 3 E?
i=

is well-defined because by assumption, lim;— co E(s;)(n)2 = {y; 2 is well-defined. There-
fore, the lemma is now proven. |

LEMMA 12. Assume Assumption | holds. Then for p > 2,

n n
lim »" ... ZE(I,l,yl,ll,z,yz,l...1,p,yp,1)1(r1 <t)...(ty_y <tp)

n— o0
n=1 =1

P
=272 yj/T@/2+ 1)
j=1

and

n n
im > Ey g 20,20 Ty, D)1 < 1) A(ty1 <1p)

n—odo
n=1 =1

p
=22 ]y/T@/2+ D).
J=1
Proof of Lemma 12. We write that
E(Itl,yl, lltz,yz, 1--- Itp,yp, )]
=E((0<xy <n Y2y 10 <x, <n”2y,))
=f~~-/1(0 <zi+nttp<n 2y 10<z <n7 Py
X 811 (21)81—1 (22) - - 8ty—1,_1 (Zp)dzp ... dz].

We follow a similar argument as in the proof of Lemma 6 and approximate g (z) by

i7'%¢(0) and gy, () by (1~ 1j—1) /2 (0) forj = 2.3, ... p and write that

n n
lim Y. Y I <)ty < 13).. I(ty—) < tp)E,y,, 1Ty, 1)

n— o0
n=1 =1

n n
:nl_‘?éoz'“ D It <) A(ty_y <1p)

n=l  g,=1
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X‘/.”'-/-[(OSZI—’—”'—’—ZPSn_l/zyp)-n](OSZl Sn—l/zyl)
—1/2 _ _
x ¢ (0)P1, 2ty —17) V2. ty—ty_) "V Pdzp... dzy.
Since
p
/~--/1(0§Z1+-~-+ZpSnfl/z)’p)“J(OfZl §n71/2y1)dzp...dzl =n*P/2l_[yj,
=1
(28)

we have

n n
lim "3 It <)ty < 13).. I(tp—y < ))Epy 1Ty y,01)

n—0o0

n=l =1
p n n

_ P i —p/2

= ¢(0) Hyjnl_l)moon DD I <.
j=1 n=1 =1

—1/2 _ B
xIty—1 <)y =)y =1y T2

Lemmas 4 and 5 now imply, by noting that ¢ (0)? = (27r) /2 and (' (1/2))? = 7P/2, that

n n
lim > Y By iy - Ty, DI < 1) I (G- < 1p)

n— 00
n=1 =1

& T R R A 12 12
=¢(0)P]_[yj/0 fo /O sp T2 —s1) TV (sp —sp) T 2dsydsy.. . dsp
j=1

p
=272 ]yj/T@/2+ D).
J=1
The proof of the second result of the lemma is analogous, except that the equivalent of

Equation (28) now receives an additional 27 factor. |

LEMMA 13. Assume Assumption 1 holds. Then we have
n
lim E lezl,y.,l =y1v2/m
n=

and

n
lim E\ > Iy y.2 | =212/

n—od
=1

and forp > 2,

n n n
lim >N " Ey gy 1y 10Ty, DI # )1t £ 13). A (ty—1 # 1)

n—oo
n=lp=1 =1
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p
=p12 P2 [yi/T@/2+ D)
j=1

and

n n n
im >N EU gy 2lny,2- - Dy )10 # )t # 13).. Ity # 1)

n—odo
n=ln=1 =1

P
=p! 2?2 [yj/T@/2+1D).
j=1

Proof of Lemma 13. The first two assertions of the lemma follows from Lemma 6 when
we set y = y. The third result follows immediately from noting that

n n n
lim >N " Eliy gy iy 1Ty, DI # 021t #13). A (ty—1 # 1)

n—oo
n=ln=1 i,=1

p
=p! 2772 ]y/T(p/2+ D).
j=1

because there are p! orderings of {t1,#,...,%p}, and Lemma 12 ensures that any possible
ordering of {y1,y2, ..., ¥p} gives the same limit result. The fourth result follows analogously.
|

LEMMA 14. Assume Assumption 1 holds. For b=1,2, p>2and j=1,2,...,p—1,
define
hbnpj(ylv)’Zs --~s)’p)

n n n
=2 > D bl o b Ay )0 # )0 £ 13). (G # 141),
n=ln=1 1,=1
and for b=1,2 and p > 1, define
n n n
Ppnpo (1532, -+ 3p) = Z Z ZE(Itl,yl,bltz,yz,b~--It,,,y,,,b)-
t1=1n=1 lp=1

Then Hppi(y1,y2, - -+ ¥p) = liMp—s o0 hpnpj(¥1, Y2, - - -, ¥p) is well-defined for b= 1,2, p > 1
andj=0,1,...,p—1, and as a consequence,

HpO15Y25 -5 ¥p) = Hipo 15 -+ Yp) = nl_l)rgohlnpO()’lvst <2 Yp)
and

are well-defined for p > 1. Also, forb=1,2, p>2,j=0,1,....p—2and 0 <y; <y <

Hppi(v1:y2, -3 ¥p) = Hp p—1,jO015 -, Yj+ 1:Yj43s -5 Yp) HHp p jr 1 01,32, -, ¥p) (29)
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Proof of Lemma 14. Forb=1,2,p >3 andj=1,2,...,p — 2, we can write

honpi 1532, - ¥p)

n n n
=YY Y EUn bl Ty, ) # 12) . I # 1)

n=ln=1 1,=1

n n n
=Y Y Y EUn bk Dy )0 #E 1) I # )

n=ln=1 =1

X (g1 = tj32) H11 # 1j12))

n n n
= Z Z Z E(Itlxylsb"‘Itj‘)f/'»bltj+lvyj+l>b1tj+2ayj+3,b'"pr—lxylnb)
nh=1ln=1 tp,1=1

xI(ty #1)... 1 # tj11)

n n n
F YD D EUy bl b Ty ) #E 12) (G # 1 DI # 152)

n=ln=1 =1
=hp i, p—1, ;0192 - Vit 1 Yjt3s - 3p) F A np jr 1 01, Y2, . Yp)s 30

where the third equality follows from the fact that Itj LY bI,j 2 yjh = I,/. LY
Itj+1,yj+2,b = It-l'*" min(yjs1.yj42).b = Isz,yjH,hWhef} tji+1 = tjy2 and from relabeling the
summation indices. This shows the result of Equation (30) for b = 1,2, p > 3, and j =
1,2,...,p—2. Similar to the argument in the proof of Lemma 7, forb=1,2,p > 2, and j =0,
we also have hpppo (1, -+ ¥p) = hp o, p—1,0001:¥3 -+ - ¥p) + Moup1 V15 - - -, yp). Therefore,
we conclude that the result of Equation (30) holds forb=1,2,p>2,andj=0,...,p—2.
It follows from Lemma 13 that for b = 1,2,

Hp pp—101:y2, -5 3p) = M hp oy p p—1(1,2, -, 3p)

exists for p > 1. To show that Hpp;(y1,¥2, - -, ¥p) = liMp— 00 Apppj(¥1, Y2, - - -, yp) exists for
b=1,2,p>2andj=0,...,p—2, note that by setting j = p — 2 in Equation (30), we now
have forb=1,2andp > 2

hy,n,p,p—201:Y25 -5 Yp) =y p—1,p—201: Y25 - Yp—1) b p p—1 V1, Y25 -+, Yp)-

By taking limits, it now follows that Hp, p, ,—2(y1,¥2; ---,Yp—1) €Xists because

Hp p p—201:Y2--:¥p) = Hp p—1,p—201,25 - s ¥p—1) T Hp p p— 11, Y2, - -+, ¥p)-

Repeating this argument for j = p — 3, then p — 4 etc. until j = 0 then shows that
limp— 00 Apnpj (V15 ¥25 - - - Yp) = Hppj (1, .-, yp) exists forb=1,2,p > 2, andj=0,...,p—
2. Therefore, the existence of H;,pj(yl,...,yp) is now shown for b = 1,2, p > 1, and
j=0,...,p— 1. The result of Equation (29) now follows by taking the limit as n — oo
in Equation (30). |

LEMMA 15. Assume Assumption I holds. Then for the pp(y1,y2,...,Yp) Sequence
defined in Lemma 14, we have for p > 2 and y; <y, < --- < yp, up(y1,¥2,....¥p) <
2p)P max(l,y’;). Forthe vp(y1,y2, ...,yp) sequence defined in Lemma 14, we have for p > 2

and yy <y2 <+ < yp, UpOV1.Y2, -, Yp) < 2%PpP max(1,yh).
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Proof of Lemma 15. Note that Hpp;(y1,Y2, .., Yp) is increasing in each argument y; for
Jj=12,...,p. Therefore, since y <y <--- < yp

Hipi1.52, -2 Yp) < HipjOp, ... yp) < (2p)P max(1,yp),

where the last inequality follows from Lemma 10 and setting y = y,. The argument for
vp(¥1,¥2, .., yp) is analogous. -

LEMMA 16. Assume Assumption I holds. Define

!/

n n n
an = th,yl,lv th,YLL"" ths)’m,l
=1 t=1 t=1

and

/

n n n
Xn2 = ZI’»)’IsZ’ le,yz,zi SRR le,ym,Z
=1 t=1 t=1

Then, for all p > 1, pyp = limy—sc0 E(AX,1)P and vy, = limy_s00 E(AVX,0)P are well-
defined.

Proof of Lemma 16. For the first case, by using the definition of 1y (y1,2,...,yp) in
Lemma 14, we write that

lim E(VX,1)P
n—00
m m m n n n
=D D D Mk, MY S Y By, gy D)
ji=lp=1 j,=1 n=ln=1 =1
m m m
= Z Z Z}‘jl)“jz"'}”jpup(yjl’yjz’""yjp)' 31)

Ji=lp=1jp=1
Since pp (vjy,Yjps - - ,yjp) is well-defined by Lemma 14, lim;— 00 E(A'X;;1)? is also well-
defined. The second case is analogous, but uses the definition of v, (y1,y2,...,yp) instead

of up(1,¥2,...,yp) from Lemma 14. |

LEMMA 17. Assume Assumption [ holds, and let p,, and v,, be as defined in
Lemma 16. Then for p > 2,

lisp! < 2mp)? max |A;|" max(1,y5)
1<i<m
and

[vipl < 2% (mp)? max |3’ max(1,y}).
1<i<m
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Proof of Lemma 17. Since iy (y1,...,yp) < (2p)P max(l,yf,) by Lemma 15, it follows
from Equation (31) that

luapl < Z Z Z| il L I, i 5 ¥ -5 37,)

h=lp=1j,=1

< Z Z Z maf |27 (2p)P max(1, yp)

h=lp=l j=1"
= 2mp)P ]111_ax [A; 1P max(l,y’;,).
<i<m

The second part is shown analogously, except that the upper bound for v, (y1, ..., yp) from
Lemma 15 is now used. |
We now provide the proof of Lemma 2.

Proof of Lemma 2. We first apply Lemma 11 to

/

n n n
ZILYI,I’ ZIL}’Z,I’ e, ZILYm,l
t=1 t=1 =1

for part 1 of Lemma 2, and then to

/

n n n
X2 = | D Ty 20 D dyn 2o D Ty
t=1 =1 t=1

for part 2 of Lemma 2. Condition (1) of Lemma 11 holds because E().'X,1)” converges

to p), by Lemma 16. Condition (2) of Lemma 11 follows because Z 1 M;Za @) _

0o because for p > 2, uy 2y < (4mp) pmaxlsigm(lvli )max(l,y[, ) by Lemma 17.
Therefore, the proof of the result for part 1 is now complete. The proof of part 2 of Lemma 2
is analogous. u

Proof of Theorem 2

Theorem 2 relies on Lemma 18.

LEMMA 18. For all (y1,...,ym) € R™ and (y’l,...,y;n)/ e R™,
|[P(Ypi <yifori=1,...,m)—P(Yy; §y§f0ri: L....m)|

= Z|P( ni < Vi) — P(Yy; <yl)|

Proof of Lemma 18. The result follows because

|P(Yp <yjfori=1,...,m)—P(Yp <y;fori=1,...,m)]
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= E] Ui <30) = 1ni <3

i=1

m
< E[ Ui < 30— 1Y <)

i=1

m
SEY Yy <y) = 1Yy <))

i=1

m
=Y EI(min(y;.y)) < Yy < max(y;.y})
i=1

=D (P(Yy; < max(y;,¥)) — P(Yy; < min(y;,¥)))
i=1

[P(Ypi < yi) — P(Yyi < y)I.

Il
NE

—

We can now complete the proof of Theorem 2. u

Proof of Theorem 2. We first show the first part of Theorem 2. Under Assumption 1,
P10 <xp <y V2, 3 10 < xp < yon V2, 310 < xp < yn ™ V)Y
converges in distribution to (R(y1),R(y2), ...,R(ym))’ by Lemma 2. We have

n
P(Yyi <yifori=1..m)=P[Y 10<x <yn /%) zi—1/2fori=1,....m
=1

and the last expression converges to some function L(yy,...,yn) since (1/2,3/2,...,m —
1/2) is a continuity point of the distribution of (R(y1), ...,R(y;z))’. By Lemma 18, we have

L1 Ym) =LY, oY)

= lim |P(Yy; <yjfori=1,....m)—P(Yy <yifori=1,...,m)|
m

=7 lim [P(Yai <) = P(Yyi <))
z;l

< anin;OP(E!t ef{l,...,n}: min(y,-,yg) < nl/zxt < rnax(yi,yg))
i=1

m
<CY iVl 32)
i=1

where the last inequality follows from the reasoning of Equation (27). To show that

(Yn_ll, .., Y1y converges in distribution, note that if z; > 0 for all

Py

A <gifori=1,...m)=P(Yy =z fori=1,....,m)
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converges as n — oo and is continuous at (zp, ..., zz)’. Also, using the reasoning of Equation
(32),

limsup|P(Y,;! <z fori=1,....m)—1|

n—oo

= limsup |P(Yy,; zzlf] fori=1,...,m)—P(Y,;>0fori=1,...,m)|
n—oo

m m
<limsupd PO=<Y,<z )=CY 7,
e o i=1

which converges to 0 if z; — oo for all i. Therefore, lim;,— oo P(Y,;l <zfori=1,...,m)
converges to 1 if z; — oo for all i. Together with the observation that P(Yn_l.1 <z fori=

1,...,m) =0 if z; < 0, this implies that P(Yn_ll < Zly--es Yn_,,% < z;m) converges to a well-

defined limit distribution. Therefore, ( Yn_ll’ e Ynj,: )’ converges in distribution. The second
part of the theorem is proven analogously. |

Proof of Theorem 3

Lemma 19 is key to the proof of Theorem 3. The proof of Lemma 19 is taken from P6tscher
(2013, Thm. 1) and is stated here for completeness.

LEMMA 19. Assume Assumption | holds. Then for g > 1,

n
n Y " Gy > 0) = 0p(1)
=1

and

n
w2 |71 = 0, ().

=1

Proof of Lemma 19. First note that, for all § > 0,

n
n—4/2 th_ql(xt > 0)
=1

n n
= n—4/22x,’ql(o <xy<én V412 Zx;ql(xt > sn~ 12y,
t=1 t=1

Now

n n
En~923 x> o0~ V%) =02y PR )T 2 > o0 212
t=1 t=1

o0

n
—le Z 1~9/2 / X~ (x)dx
=1 !

—1/2p-1/2§
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n o)
< sup ft(x)nfq/Zqup/ x 9dx
t=1

t>1,xeR =1/2p=1/28

n
= t>?ufeRﬁ(x)"_Q/ Y AP/ =TT
zl, =1

n
= sup fin 2N 4P/ (g - D) a2y at ]

>1,xeR =1

= sup fi0) Y (1/(g— Dy 22570

t>1,xeR =1

In addition, for all § > O,

n
Pln 42 Zx;qI(O <x <sn VHso0
=1

n
=P@Ere(l,...n}:0<x; <6n" /%) <> PO <x <8n /%)
=1
n sn—1/24-172

>/ S

=1
n
< sup f;(x)ZzSn_l/zt_l/z.
>1,xeR =1
Therefore,

n
limsup P nfq/ZZx,_qI(xt >0)>K

n— o0 =1

n
< limsup P n_q/Zth_qI(O <x <én >0

n—oo
=1

n
+limsup P n_q/zzxt_ql(xt >on 12>k

n— oo
=1

n
< sup fi(x) limsupZSrfl/zt*l/2

t>1,xeR n—>00 |7

n
+K7' sup _ﬁ(x)hmsupZ(l/(q—1))f‘/2n*‘/25*‘1+‘
t>1,xeR =00

<C18+Crk1smat!
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for constants C and C; independent of n, and the second inequality follows from the
Markov inequality. Therefore,

n
limsuplim sup P nfq/Zth_ql(xl >0)>K | <Ci6,

K—oo n—>00 =1

and since 6 was arbitrary, the result now follows. For n=4/2 Y 1x| 74, the same reasoning
can be followed. u

We are now ready to prove the main result of the paper.

Proof of Theorem 3. Define
n
Xp =n"9/? th_ql(xt > 0);
=1

n
Ma(K) = 10 <x; < Kn~'/?);
=1

n M, (K)
XQ =m0 < <kn V%)= 3 ¥, 0 < Yy < K
=1 =1
min(m, M, (K))
2 —
XRu= Y VIO <Yy <K);
=1
3 min(m, M, (c0))
Xr(mg = Z Yr;q§

=1

t
4 m
Xlgn) = ZYI (1;
=1

and consider the Laplace transform FEexp(—rX,) for r > 0. We will first show

that this Laplace transform converges by considering Eexp(—rX,) — E exp(—rXS()),

Eexp(—rX' Q) — Eexp(—rX'3 ), Eexp(—rX'3) ) — Eexp(—rX), and Eexp(—rX\m) —

nKm nKm
E exp(—rX,(,f )). For the first term, note that for all » > 0, because |exp(—x) —exp(—y)| <
|x —y| for x,y > 0,

limsup |Eexp(—rXy) —Eexp(—rXr(L}())| <rlimsupE|Xj —Xfl2|
n—od

n— oo

n
= rlirnsupn_q/2 Zf_q/2E(l_1/2x1)_q1(1_1/2xl > t_l/zn_l/zK)

— 00
" =1

n o0
= rlimsupn—9/? quﬂ/ F0x U > 2012 Kyax
—0oQ

n—oo =1

n
<r sup ft(x)limsupn_q/ZZt_q/z(q—1)_](1_1/2n_1/2K)1_q
t>1,xeR n—oo =1
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n
< CK]*qlimsupn*l/ZZfl/2 =2CK!'4.

—
n—oo =1

To deal with the second term, note that X,(l}() # Xr%()m if m < M,,(K), and therefore,

limsup |Eexp(—rX,(z}()) — Eexp(—rX(Z)

nKm)|
n—o00

. 1 2 1 2
— limsup [Eexp(—rX ) —exp(—rXD NIxY #x2) )
n— oo

< 2limsupP(X\p) # X2 )
n—oo

<2limsup P(M,,(K) > m)

n—o0
n
<2m limsupEY 10 <x; < Kn~ /%)
n—0o0 =1
n
<2m~ limsup Y " (Fi (¢~ 2Kkn /%) — F,(0)) < Cm 'K, (33)
n—oo =1

where the third inequality is the Markov inequality and the last inequality follows from the
mean value theorem and sup;s | _yer/fi(x) < 00. Also, defining a summation over an empty
index set as 0, we have

2 3
X2 Xl
min(m, M, (K)) min(m, My, (c0))
= Y, 100 < Yoy <K) — Z Y7
t=1 =1
min(m, M, (K)) min(m, M, (c0)) min(m, M, (c0))
= qu - Z Yntq = Z Yntq
=1 =1 t=min(m, M, (K))+1
My (00) My (00)
< Y vi= > 1U%=kK
=M, (K)+1 =M (K)+1

n
< n_q/ZZx,_ql(xt >n 2Ky =X, _Xr(zll()|’
t=1

where the first inequality holds because if m < M,,(K), then m < M,,(K) < M (c0) and the
summation equals 0. Therefore, we can follow the earlier argument for the first term to find

limsup | Eexp(—rX'2) ) — Eexp(—rX$))| < 2CK1 4.

nKm
n—oo

Also, note that because the random walk is recurrent, M, (cc) will exceed any m even-

tually, implying that eventually, X,ﬁ?,} = ;"= 1 Y,;q. Therefore, because (Y;ll, ey Ynj,} )
converges in distribution to (Y. f ], R 1 )’ by Theorem 2, it follows that X,(s,z converges in
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distribution to X,(f ). Putting all these results together, we now find

limsup | Eexp(—rXy) — Eexp(—rX)| < 2CK'™ + Cm™ 'K +2CK 14 +0.

n—oQ

Next, note that ¥ (r) = limy— o0 E exp(—rX,(,;¥ )) is well-defined because X,(,A,‘ ) is increasing
in m. Therefore, for all K > 0 and m > 1

limsup |Eexp(—rXy,) — ¥ (r)]
n—0oo
< limsup |Eexp(—rXp) —Eexp(—rX,(,A,‘))l + IEexp(—rX,(,f)) — ()|
n— oo
< Cm 'K +4CK'~ + |Eexp(—rXy) =y (1)].

Now taking the limit first as m — oo and then K — oo, it follows that lim;,— oo Eexp(—rX,) =
¥ (r). By Theorem 2 of Feller (1971) on page 431, X;, now converges in distribution if
lim,.| o ¥ (r) = 1. Note that

limlimsup |Eexp(—rX;) — 1|
r{0 n—oo

< limsuplimlimsup |E(exp(—rX;) — DI (|1 Xn] < K) +1(|Xn| > K))|

K—o00 "0 n—o00

<limsuplimlimsup(|r|E|X, |[{(|Xn| < K) + P(|Xn| > K)),
p 0 0 p

K—o00 "0 n—o00

and therefore it suffices to show

limsuplimsup P(|X,,| > K) =0,

K—oo n—0oo

that is, it suffices to show X, = 0p(1) which follows from Lemma 19.

To show that n~49/2 hByg 7 LR Y2,z q , we can reason analogously by defining

n
Xp=n"923 " || 74

=1

My(K) =Y " I(x| < Kn™1/%);

=1
| n Mn(K)
Xog =0~y Ul <07 PR = Y 2, < K;
=1 =1
, min(m, M, (K))
x2= Y 2 1Zu<K):

=1

min(m, n)

X3 _

—q.
=2 Zu"
t=1

" m
X =371,
=1
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