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Abstract

We consider infinite volume limit Gibbs states of a nonrelativistic quantum Bose gas
consisting of one species of spinless particles with positive interaction potentials. The
finite volume reduced density matrices are dominated by the corresponding matrices
for the noninteracting gas, and as a consequence all infinite volume limit states are
regular, locally normal, and analytic on the appropriate CCR algebra. For
sufficiently short range repulsive two-body interactions, the cyclic vector associated
with the limit state is separating for the a-weak closure of the algebra in the associated
representation.

1. Notation and assumptions

In this paper we study a certain class of non-relativistic quantum Bose gases in
thermal equilibrium. We assume that there is only one species of spinless particle,
and choose units such that its mass is \. The appropriate C-algebra is the CCR-
algebra 91 over [jA L2(A), where A ranges over all open, bounded, subsets in Rv, and
we have

where 9l(A) is the CCK-algebra over the one particle space L2(A) (see, for example,
[4] for details). In the sequel we consider only bounded regions A with piecewise
smooth boundary 5A.

The time evolution TA of a system of noninteracting particles confined to the
region A is a discontinuous one-parameter group of "-automorphisms of
implemented on Fock space by a unitary group

that is, TA is the quasifree evolution on 9I(A) denned by the one-particle evolution
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130 Ola Bratteli and Derek W. Robinson [2]

Here a is either a smooth, non-negative real function on the boundary dA, or
a = + oo. In the former case, T[\\ is the self-adjoint extension of the Laplacian — V2

corresponding to the boundary condition

where d/dn is the inward normal derivative on dA, whilst T(^JA is the extension
corresponding to Dirichlet boundary conditions, that is, T{£>A is the Friedrichs
extension of — V|C'(A).

Next, define

as the second quantization of rff
(1

A, and let

00

V A — t f io,A
n = 0

be the decomposition of Ta A corresponding to the direct sum decomposition of the
symmetric Fock space ^"(A) into n-particle subspaces L2(A)+, where L2(A)+ is the
subspace of L2(Af = ®" L2(A) consisting of functions invariant under permuations
of the n arguments in A. Alternatively, T^\ is the restriction to L(Af+ of the closure
of the operator

ra % ®... ® o
acting on L2(A)n.

The interaction is defined by an operator UA of the form

where each Ujf* is an operator of multiplication,

Here U(n) is a real function, symmetric in the arguments xux2,-,xn. We assume that
each U(n) is positive, that is,

for all xu..., xn e R"v. In order to define the total Hamiltonian by form sum methods
we also assume

where Sn is a closed set of Lebesque measure zero. This means that U(n) is integrable
over all compact subsets Rnv \ Sn. The requirement that Sn has Lebesque measure zero
excludes particles with hard cores. As the inclusion of hard cores entails additional
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[3] Equilibrium states of a Bose gas 131

discussion of the boundary conditions imposed upon the cores, we have made the
restriction on Sn to avoid too many details, but our results can certainly be extended
to this case.

The finite volume H-particle Hamiltonian is defined as the form sum, [4], of To
(n

A

and UA:

I/(n) _ T-(n) I I T(n)
"a,A — V A + UA .

and the total finite Hamiltonian is defined by

where H(°\ = 0.

2. Functional representation

Let po, A(x, y; t) be the kernel of the semigroup t -> exp ( - tTJ1^), that is, pa A is the
unique continuous function on Ax AxR + such that the solution of the initial
value problem

^ = V2p f o r t > 0 , xeA,

•^ix, t) = a(x) p(x, t) for t > 0, xe dA,on

p(x,0) =/(*),

is given by

P(x, t) = JA pa, A(x, y; t)f(y) dy.

The kernel po A has the properties [1, 2, 8].
(1) (Positivity conservation)

Pa,\(x,y;t)^0 forx,yeA, t > 0.

(2) (Semigroup property)

Pa, A(X, y; t) pa< A(y, z;s)dy = pa A(x, z;t + s).

(3) (Contraction property)

JA

for x e A, t > 0, with equality if and only if a = 0.
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(4) (Monotonicity in boundary conditions)
If 0 ^ at(x) ^ a2(x) s% + oo for all xedA, then

Po,A(x,y, t) ^ ptl,A{x,y; t) ̂  pa2,A(x,y; t) ^ px<A{x,y; t)

for all x,ye A, t > 0.
One can construct functional measures corresponding to the transition probabilties
pa A in almost exactly the same manner as Wiener measure is constructed from the
infinite volume diffusion process [1, 4]. The trajectory space can be taken as the set
of all functions from the interval [0, /?] into A, that is,

Q = x A = (A)10-"

where A is the closure of A. Then fiA f is compact in the product topology. The
conditional Wiener measure n°\*lfi can be defined on C(QA p) by specifying it on
functions (j> of the form

where F: (A)m -» C is continuous and 0 ̂  ty < t2 < ... < tm < /?. One defines

^ • " ( 0 ) = - F(xl,...,xJpatA(x,xl;tl)xp{xl,x2;t2-t1)x...
J\ JA

xp(xm_1;xm; tm-tm_1)xp(xm,y; 0-tJdxl...dxm.

The Riesz theorem then assures the existence of a unique regular Borel-measure
Ha

x\y'f on QA„ such that

It follows from the monotonicity of pa A in a that the functional measures are
monotonic in the boundary conditions, that is,

0 ^ Oy < a2 ^ + oo

implies that

for all Borel sets B.
One can also prove that the measures n°x\

At" are supported by the set of Holder
continuous trajectories of order a if 0 < a < \, and the set of Holder continuous
paths of order a has measure zero if ^ =s; a < 1. One can now give a Feynman-Kac
type representation of the kernel of the semigroup
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[5] Equilibrium states of a Bose gas 133

as follows

,y) = f d/x; :?- ' (a) )exp| - j '*

In the case of Dirichlet boundary conditions, a = + oo, this representation simplifies
to

!A)(*,)>)= [
where /ij y is the infinite volume Wiener measure on the trajectory space

Here Rv is the one point compactification of Rv, and

il if a # ) e A for all t e [4/3],
a A ( c o ) = ) 0 otherwise.

3. The reduced density matrices

The positivity assumption on the interaction implies that exp { — /?(//„ A —/*NA)}
is of trace class whenever /? > 0 and the chemical potential fi is negative. Here
NA = dT(x\) is a local number operator, that is, NA is the number operator on the
symmetric Fock space ^ (A) over L2(A). We can therefore introduce the finite
volume Gibbs states

coA(A) = Tr^(A)(e-"<

for A e 9l(A), where ZA = Ti>(A)(e~ Wlf«-A~'<A'A)) and coA, ZA implicitly depend on fi, n,
a and U. The states w* and their infinite volume limits are analysed by means of the
reduced density matrices

~pA(ym; xm) = coA(a*(x1)...a*(xm)a(ym)...a(yi)),

where xm = (xu...xm), ym = (yu...,yj and a*(x), a(y) are the operator valued
distributions defining the creation and annihilation operators in the cyclic
representation determined by coA. Alternatively, pA(x"; ym) can be defined as the
kernel of the operator pA given by

PA = n £ o H, TrB(pAm+n),

where pA „ is the operator

exp {— P(Hl^\ -

and Trn is the partial trace over n particles.
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Following Ginibre [6] one can now use the Feynman-Kac formula and a
combinatorial argument to find an integral representation for pA. The result is,
[4, 6],

pA(xm;y") = l

where of = (co,,..., o)m) is a family of m composite trajectories with time intervals
h PJ2 Pi —iJm Pi a n d t n e fifSt s u m r u n s o v e r aU permutations n of the points yu..., ym.
The correlation functional pA is defined by the formula

pA(com) = Z A
1 J o -

where z = e^" is the activity, of = (&1,..., 6bn) is a family of n composite closed loops
and q and r are the number of elementary trajectories that constitute of and d>"
respectively. Moreover, U(<wm, of) is the integral from 0 to /? of the potential energy of
the (q + r) points on the (m+n) trajectories of, of at time t modulo ft, and the
integrals deb are defined by

dcb= £ 4 f dn:-?-ji>(cb)du.
J=iJ J A

The partition function is given by

ZA = £ — \doix...da)nz
rexp{-U(co")}.

In the case of Dirichlet boundary conditions, a = + 00, it is more convenient to
redefine pA somewhat, conforming with the conventions in [4, 7], that is, one then
has

where
ni=l (> = 1 J

= S A |da,...dffl;z'o

n'x y is the infinite volume Wiener measure, and

( 1 if all the trajectories cou..., wm, wt,..., an

remain inside A,

0 otherwise.
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[7] Equilibrium states of a Bose gas 135

4. Repulsive potentials

We say that the interaction U is repulsive if

U( m + n )(xm,/) ^ U(m)(xm)+U("V)

for all m, n, xm e Rvm, / e Rv". Alternatively, this may be characterized by the fact that
the fc-body potential is non-negative for each k.

THEOREM 1. Consider a Bose gas with a repulsive interaction U, and let p^ A and p°_ A

denote the finite volume reduced density matrices with interaction U, and without

interaction. It follows that

^ P<T,A\X > y ) ^ P<T,AIX > y ) ^ PO,A\X ' y >

for all xm,yme\m, all /? > 0, ft < 0 and a ^ 0.

PRCXJF. It follows from the integral representations in the previous section that it
suffices for the two first inequalities to prove that

0 ^ plAof) < pi A(oA

But the first of these inequalities follows from the representation

Jo^j \doi + ' exp {-U(a>m,cbr)}.

If the interaction is repulsive, one has

exp { - U(<om, aV)} < exp {- U(wm)} exp { - U(d/)}

and therefore

iA(OJ) < z«exp{-U(oV)}ZA' x J ^ J ^ i - ^ « n z r e x p { -

But the same computation for U = 0 gives

Pi
and this completes the proof of the second inequality. Finally, the conditional
Wiener measures n°x\

A|' are monotonically decreasing in the boundary conditions a,
and therefore the largest value of

«.A(X": ym)=x: n {.i
occurs for the smallest value of a, that is, the Neumann conditions a = 0.
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If one considers Dirichlet boundary conditions one may utilize the monotonicity
in A of the non-interaction reduced density matrices to obtain a bound which is
uniform in A and even valid for fi = 0.

THEOREM 2. Consider a Bose gas with a repulsive interaction U, and let pA and pA

denote the finite volume reduced density matrices with interaction U, and without
interaction, in the presence of Dirichlet boundary conditions. It follows that

0 < pftx111; ym) < P V ; ym) < Hm Pl(xm,ym)
A-+ oo

and consequently

0 ̂  pu
A(xm; r X l f l Pix, - My,)),

n i-

where the last sum is over all permutations of(yl,y2,—,ym) and

p(x)

PROOF. The estimate

= (2TC)-V \d

follows from Theorem 1. But

m)= S fl
by the representation in the previous section.

It follows that

is monotonically increasing with limit

m / oo

in z
m / co . \

Z e\'
n i = l \j=l /

where

f
p(x)= S zJ(4njP)-vl2e-x2<4jl> = (2n)~v U"peipxze~»p\\ -

J = I J
ze

5. Thermodynamic limit states for Dirichlet boundary conditions

If 91 is the CCR algebra over>! = UAI2(A), and/e/I we let W(f) denote the
corresponding Weyl operator, that is, W(f) is unitary and one has
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[9] Equilibrium states of a Bose gas 137

Following Segal (see [4] for details) we say that a state co on 31 is regular if

is continuous for a.llfe/1 or, equivalently, if

is a strongly continuous unitary representation for allfeA, where (Jf?w, 7iro, Qm) is the
cyclic representation associated to co. If co is regular, we define the field operator
<bo{f) as the infinitesimal generator of this unitary operator, and define creation and
annihilation operators a*(/), am(f) by

and

The state co is said to be locally normal if the restriction of co to each 5I(A) is normal
with respect to the Fock state. If A is a bounded region and co is a state, define
NA(co) = + oo if co is not regular on 9l(A), or if Qm ̂  D(aw(f)) for some/e 12(A), and

otherwise, where !F ranges over all finite orthonormal sets in 12(A). Then NA is an
affine lower semi-continuous functional on the state space £ a on 91, and co is locally
normal if

NA{co) < + oo

for all bounded regions A, [4, 5].
Finally, a state co on 91 is said to be analytic if

is an analytic function for all/e/? or, equivalently, if Q^ is an analytic vector for
QJLf) for M fe 4.

THEOREM 3. Consider an interacting Bose gas with repulsive interaction, and let
{coA} be the net of finite volume Gibbs states for some P > 0, /i < 0 and Dirichlet
boundary conditions. Further, let {coAJ be a subnet such that the limits

co(A) = lim <oA (A)
a a

exist for all AeW.
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It follows that a has smaller local particle density than the limit Gibbs state (o0for
the non-interacting Bose gas,

NA(a>) sj NA(a>0),

and, in particular, co is locally normal. Furthermore, a> is an entire analytic state and

limajA3(d> (fll)...O (gf,)) = ta(<bjgl)...<bjgj)

for all gl,...,gne4 and all n ^ 1.

PROOF. By Theorem 2, one has the estimates

0 ^ ~pi{xm; y m K p°A(xm; ym)^ p(xm; y m),

where p denotes the reduced density matrices for the infinite volume free Gibbs state
OJ0. Hence one has

dxp(x,x) = NA(«0)

whenever A <= A'. Since NA is lower semicontinuous, it follows that

NA(co) < liminfNA(a)Aa) ^ NA(a>0)
a

and, in particular, a> is locally normal.
The principal ingredient in the proof of the last part of the theorem is the following

real analysis lemma (for a proof see [4]):

LEMMA 1. Let {/a} be a net ofn ^ 1 times continuously differentiable functions from
R into C, and assume that fa converges pointwise to a function f. Assume that the
derivatives offx up to order n are bounded on compacts, uniformly in a, that is,

sup sup |/Lm)(t)| < + <
a te[—K,k]

for m= 1,2, ...,n, and all k > 0. It follows that f is (n— 1) times continuously
differentiable, and

for m = 0,1,...,»— 1, where the convergence is uniform on compacts.

The proof of Theorem 3 follows from the bounds of Theorem 2 and the entire
analyticity of the infinite volume Gibbs state a>0 of the non-interacting Bose gas

= exp { -

= exp {-(/,(I + z e'V2)/I-2 O
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[11] Equilibrium states of a Bose gas 139

First choose geL 2(A). Next, note that the states a>A and a>0 are all gauge invariant
and hence

when n is odd. If, however, n = 2m is even,

In the last expansion, however, coA vanishes on all terms which contain an unequal
number of creation operators a*A(g) and annihilation operators a^^g). Thus, by use
of the commutation relations

one obtains a representation

-fcrjd
where the coefficients are positive polynomials in || g \\2. (We have used p]̂  to denote
the reduced density matrices corresponding to coA.) By Theorem 2, however,

where p are the reduced density matrices associated with the infinite volume non-
interacting equilibrium state coo. Thus, since C™ ^ 0, one has

j dx k dyk P°tf-> y") n I

The last evaluation follows from the gauge-invariance of co° and the definition of
the CJ".

Next introduce the family of functions fx: R -* C

Lit) = co^

These functions converge pointwise to the function / : R -* C defined by

f(t) =
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Furthermore, they satisfy the hypotheses of Lemma 1 for all n. For example,

Hence/e C ^ R ) and/im ) -»/(M) uniformly on compacts. But, if Fo: R -» C is defined
by

F0(t) = <o°(W(t\g\)),

then Fo is entire analytic and

T h u s / i s an entire analytic function. Therefore

is an entire analytic function for all geL 2(RV) with compact support and hence u> is
an entire analytic state.

Next, from convergence of the derivatives, one has

The more general statement of the theorem with n different functions g\,---,gn is
obtained in a similar manner by examining derivatives of a function fji.ti,..;tn) =
coA(W(ti gl +t2g2+ •••tagn)) of several variables. We omit the details.

There is a partial converse of Theorem 3.

COROLLARY 1. Adopt the assumptions of Theorem 3 but further assume that the
reduced density matrices p^ associated with the Gibbs states a>A are pointwise
convergent. It follows that the states are weakly* convergent.

PROOF. It follows from the bounds

and the Lebesgue dominated convergence theorem that ooA(<S>a{g)2m) converges for
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[13] Equilibrium states of a Bose gas 141

all geL2(W) with compact support. Moreover, the estimates

imply that one can define numbers

for each such g. It is then readily verified that these numbers uniquely determine an
entire analytic state co over the CCR algebra and coA -» co.

Theorem 3 states properties of the thermodynamic limit with /? > 0 and p. < 0 fixed.
It is also possible to consider the thermodynamic limit with /? > 0 and the overall
particle density fixed. (This latter form of limit is essential for the discussion of
Bose-Einstein condensation of the ideal Bose gas.) The basic difficulty for the ideal
gas with Dirichlet boundary conditions is that the formalism is only defined for
z = exp [fip] ^ 1 and for z fixed in this range the local particle densities pA(/?, z) are
uniformly bounded, whenever v > 3, by the density of the infinite ideal gas at z = 1,
that is,

pA(P,z) *S PM = (2TT)-V J < W 2 - I)"1-
Now it follows from the bound NA(co) ^ NA(co°) that the density of the interacting
gas is also uniformly bounded by pc(P) if z ^ 1. This seeming paradox is resolved for
the ideal gas by remarking that if pA(P, z) > pc(P) one must have z > 1 for each finite
A and in the thermodynamic limit at fixed density this leads to a range of choices zA

such that zA -> 1. The discussion of the interacting system at fixed density is less
tractable and it is not evident that the corresponding zA would converge to a critical
finite value. Nevertheless, the above method of bounds could be used to discuss
properties of any limit for which zA -> 1.

6. Thermodynamic limit states for general boundary conditions

We will now prove results corresponding to those in Section 5 for more general
boundary conditions than the Dirichlet one. The difficulty which occurs if, for
example, one uses Neumann boundary conditions is that the density matrices for
rectangular regions A (and conceivably general convex regions) dominate the
infinite density matrices, and this leads to the estimates

NA(coA.) > NA(co0),

which are converse to the corresponding estimates for Dirichlet boundary
condition. The situation, to some extent, can be remedied by the following lemma.
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LEMMA 2.LetR>0bea constant. Then there exists a constant M = M(R, /?) such
that

for all xm, yme A™, allm^ 1 and all bounded regions A satisfying one of the following
two requirements:

1. The boundary dA is a C2-surface of mean curvature less then (l/R).
2. A is a rectangular region whose sides are longer than R.

PROOF. One has
m

Tfi (xm' vm) = y1 FT Pn \(x • 7t(y-))

where n runs over all permutations of yl,...,ym, and
00

0,A . j = i

Thus the bound of the lemma will follow once one can establish the bound

when t ^ p. In case 1 these bounds are an immediate consequence of Proposition A3
in [2], and in case 2 they follow from the explicit expression for p0 A in [2, 7].

THEOREM 4. Consider an interacting Bose gas with repulsive interaction, and let
{a>A} be the net of finite volume Gibbs states for some ft > 0,n < 0 and general a-
boundary conditions. Further, let {toAJ be a subnet such that Aa -> Rv and the limits

(o(A) = lim GJA (A)
a a

exist for all A e 31, and each Ax is either a convex region with a C3 boundary dA with
mean curvature bounded by an ^-independent number, or a rectangular region.

It follows that
Nx(co) < + oo

for all bounded regions A and, in particular, co is locally normal. Furthermore, co is an
entire analytic state and

lim aAJ$>aA (#i).. . OmA (gnj) =

for all gi,...,gneh and all n > 1.

PROOF. Theorem 1 and Lemma 2 imply that

zM
"U-z
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[15] Equilibrium states of a Bose gas 143

for all sufficiently large a. In particular,

where | A | is the volume of A. Since NA is lower semicontinuous, it follows that

# A ( a > X y i 7 | A | < + oo

and a> is locally normal.
We compute as in the proof of Theorem 3 that, if g e 12(A) and A S A,,, then

and a combinatorial argument establishes that

|2(m-fc)
1

From the estimate in the beginning of the proof one obtains

aaA(g)k)= f dxk f d / p ^ A ( / ; x*)
" JA* JA» «

Therefore, if A > 0, one has

°o / l l l ^ | | \ 2 m

2 j ,(«-*)!

https://doi.org/10.1017/S0334270000002228 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002228


144 Ola Bratteli and Derek W. Robinson [16]

Since the last bound is independent of a one can now use Lemma 1 as in the proof on
Theorem 3 to establish the last statement of Theorem 4.

One can similarly prove the analogue of Corollary 1 in this setting.

COROLLARY 2. Let U be a repulsive interaction and let At be a net of bounded regions
of the type described in Theorem 7 such that the reduced density matrices p^iAa are
pointwise convergent as a-» co. It follows that the associated Gibbs state wA> are
weakly* convergent as a—* co.

7. Modular structure

We now consider interactions denned by translationally invariant two-body
potentials *P, that is,

and

U = \ I \dxdy*¥(x-y)a*{x)a*(y)a(y)a{x).
• #

THEOREM 5. Consider the finite volume a-boundary conditions Gibbs states coA at
temperature /? > 0 and chemical potential n < Ofor a Bose gas interacting through a
two-body potential *¥ satisfying

1. *P is positive, that is,

forallxeW,

and
2. The estimate

oo

is valid for some e > 0.
Let A^ be a net of bounded regions such that Ax -* Rv and such that Aa satisfies the

requirements in Theorem 4 in the case of non-Dirichlet boundary conditions, and
assume that co = lima coAa exists in the weak* topology.

It follows that co is a modular state, that is, the cylic vector &„ in the representation
, nm, (la) determined by co is separating for na{^l)".

PROOF. We prove the theorem via two lemmas.
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[17] Equilibrium states of a Bose gas 145

LEMMA 3. The estimate

O>A.(MV + I D < K(m)(| A | + l)m < + oo

is valid for all bounded regions A £ Aa and all m ^ 0, where co^iN™) is defined by the
normal extension of confront 9I(A) to 9I(A)"as in [3], and K(m) is independent of a and
A.

PROOF. One has

= dJa,K(aZJxl).
JA»

= f d x * ^ * * ; x*)

^ f dx*pgfijx*;x*)
JA*

The last two estimates follow from Theorem 1 and Lemma 2. The coefficients S" in
the expansion

are positive by the recursion relation

o/n+ 1 &rn i_ /,cm' cm ont i

and hence

is a linear combination of positive operators on D(N™). Therefore

O>ASNA) < £ S"&!(JZT) | A|* < + oo

uniformly is Aa. The estimate in the lemma is an immediate consequence of this
estimate.

LEMMA 4. Letfe C2 be a function with support contained in a bounded open region A;
let *¥ be a two-body interaction such that

< + oo
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for some e > 0, and let

UA = \ I I dxdyV(x-y)a*(x)a*(y)a(y)a(x).z
 JA JA

It follows that

ifi//eD(N%2)and

for all bounded regions A', where K^ is independent of A' and the constant d is
independent of A', and finally

for all \p e D(N%), and b is independent of A.

PROOF. The estimates on the commutators by Ta A and UA follow from the
appendix of [3]. The last estimate is clear from the formula

END OF PROOF OF THEOREM 5. Let S>A be the ""-algebra generated algebraically by
the operators of the form W(f), where/is a C2-function with compact support inside
A. Since all elements in 3)K are finite linear combinations of W(/)'s it follows from
Lemmas 3 and 4 that

for all A e Q)A and all A . 3 A where the constant C(A) is independent of a, and

The theorem now follows from [3], Theorem 1 (see also [9]) and the local normality
of a>.
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