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109.12 A natural occurrence of the 3:4:5 triangle in the

truncated regular octahedron

The central angle of any Platonic or Archimedean solid can be defined
as the angle subtended at its centre by an edge. We will show that the central
angle of the truncated octahedron is the most acute angle of the 3:4:5
triangle.
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FIGURE 1

The regular octahedron has eight faces and six vertices. Its faces
are equilateral triangles, four of which meet at each vertex. The octahedron
can be seen as eight congruent triangular pyramids whose apexes come
together at its centre. In Figure 1,  is one such example. As  is a
right angle and given a unit radius, the ratio of the lengths of the sides,

 is .
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AC : BC : AB 1 : 1 : 2
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In Figure 2, the triangle  from Figure 1 appears horizontal. To
truncate an octahedron, each edge must be trisected. The length  is one
third of . The two points such as  and  on each edge become vertices
of the truncated solid. Then the six pyramids such as  at the vertices
of the octahedron are cut off. The angle , subtended by the edge  at
the centre , is an example of the central angle of the truncated octahedron.
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FIGURE 2

Consider triangle  in Figure 1. The perpendicular from  to the
midpoint of  will have a length of
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The triangle  shares its perpendicular with triangle .  has a
length of . We can use Pythagoras' again to find the length of . We
need half of , , and the perpendicular, . Then 
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So the sides of the isosceles triangle  are in the ratio  or

.
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In general, given any isosceles triangle with sides in the ratio , we
may drop a perpendicular from a base vertex to the opposite side and form a
right-angled triangle whose hypotenuse will have length . Let the height of
the perpendicular be  and the length of the other side be . Figure 3 shows
this procedure applied to triangle , with the foot of the perpendicular
denoted by . Note that  is the same as , the central angle of
the truncated octahedron. By applying Pythagoras' Theorem in the two right
angled triangles, we may determine  and  in terms of  and .                    
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FIGURE 3

We have  and  which yields
 and .

h2 + s2 = a2 h2 + (a − s)2 = b2

h = b
2a 4a2 − b2 s = 1

2a (2a2 − b2)
Substituting , , we obtain , , giving

 as the ratio of the lengths of the sides of the right-angle triangle
.

a = 5 b = 10 h = 3 s = 4
3 : 4 : 5
DKC

It follows that the central angle of the truncated octahedron, , is the
smallest angle of the  triangle.

DCE
3 : 4 : 5
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109.13 Apollonius’ theorem for -gonsn
Let  be a triangle and  be the midpoint of  as shown.ABC M BC

A

B CM

FIGURE 1

Apollonius' theorem states that .
Substituting , we can derive an alternative form of Apollonius'
theorem:

|AB|2 + |AC|2 = 2 (|AM|2 + |AM|2)
|BM| = 1

2 |BC|

4 |AM|2 − 2 (|AB|2 + |AC|2) + |BC|2 = 0.
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