
BULL. AUSTRAL. MATH. SOC. 46-02, 46GO5, 58C20

VOL. 41 (1990) [333-335]

New directions in convex analysis:

the differentiability of convex functions on topological linear spaces

BERNICE SHARP

My thesis is that topological linear spaces are a more natural setting for the study
of convex functions than Banach spaces. Two areas of research which are currently
almost distinct are synthesised: the differentiability of functions on topological linear
spaces and the differentiability of convex functions on Banach spaces.

A bornology M, on a. topological linear space X, is a nonempty class of bounded
subsets of X which contains all singletons. A real valued convex function on D is differ-
entiable at x E D whenever the difference quotient converges uniformly over elements
of M. to a continuous linear function. Frechet, Hadamard and Gateaux differentiability
correspond to choices of bounded sets, compact sets and singletons for M.. This follows
Averbukh and Smolyanov [3].

The classification of Banach spaces according to the differentiability properties
of its continuous convex functions began with Asplund [1]. Eight classifications are
defined for topological linear spaces; all of the classifications except Frechet Minkowski
Differentiability Space are used in the literature for Banach spaces.

Mazur's Theorem, that every separable Banach space is Weak Asplund, is gener-
alised: a separable, Baire, topological linear space is a Weak Asplund Space. The space
C(R) of continuous real valued functions of a real variable with the topology of compact
convergence is therefore a Weak Asplund Space; other examples are also given.

It is shown that for locally Lipschitz functions, a fortiori for convex functions,
Gateaux and Frechet differentiability coincide on spaces in which all bounded subsets
are relatively compact; for a normed space this is of little interest, since in this case the
space is finite dimensional, but a large class of locally convex spaces has this property,
for example Montel Frechet spaces, and the space of holomorphic functions on the
complex unit disk. Such spaces are thus Asplund spaces. Changing the topology on
a space changes the differentiability properties of its continuous convex functions to a
surprising extent. Any topological linear space with a weak topology is shown to be
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an Asplund space. A marked contrast is seen: for example, with the norm topology
it is well known that too admits continuous convex functions which are nowhere even
Gateaux differentiable; with the weak or weak* topology loo is a n Asplund Space. At
the opposite end of the topological spectrum, an example is given of an inductive limit
of Asplund Spaces which is not a Gateaux Differentiability Space.

For S a topological space, C(S) denotes the set of continuous real valued func-
tions on S endowed with the topology of compact convergence. An example is given
of a continuous convex function on C(R) which is nowhere Frechet differentiable, so
C(R) is not a Frechet Differentiability Space. In [6] Coban and Kenderov study the
Gateaux differentiability of continuous convex functions on the Banach space C(S)
for 5 compact; these theorems are extended by considering various topological spaces
5 , and results for Frechet differentiability are given. The class of spaces C(S) which
are Frechet Differentiability Spaces is very small; it is shown that in this case, every
compact subset of 5 consists only of isolated points and their cluster points, which
generalises a result of Namioka and Phelps [10]. Some illuminating examples are given
and some open questions are suggested: in particular C(Q), the continuous functions
on the rationals, is not classified. (This has since been answered, in a joint paper with
Dr Roger Eyland.)

The nature of the subdifferential set of a continuous convex function is examined,
and a characterisation of varying strengths of differentiability is given in terms of the
convergence of subdifferentials in the appropriate topology in the dual space. These
results form a basis for proofs of the characterisations of differentiability spaces.

It is shown that for locally convex spaces, six classes of differentiability space suffice:
every continuous convex function is Frechet, or Gateaux, differentiable on a dense set
of its open convex domain if this property holds for every continuous gauge.

For Banach spaces it was proved by Namioka and Phelps [10] that Asplund Spaces
are characterised by an elegant geometric property of the dual space: X is Asplund
if and only if every weak* compact convex subset of X* is the weak* closed convex
hull of its weak* strongly exposed points. Recently a similar theorem was proved for
Gateaux Differentiability Spaces ([11], 6.2). With an appropriate definition of "weak*
strongly exposed point", a generalisation of these theorems is given: a locally convex
space is a Frechet (Gateaux) Differentiability Space if and only if the polar of every
neighbourhood of the origin is the weak* closed convex hull of its weak* strongly
exposed (weak* exposed) points.

There remain many open questions. Some arise as generalisations of well known
results about Banach spaces; others are peculiar to this milieu.
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