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Abstract

Let us say that a graph G is Ramsey for a tuple (H1, . . . , Hr) of graphs if every r-colouring
of the edges of G contains a monochromatic copy of Hi in colour i, for some i ∈ [[r]].
A famous conjecture of Kohayakawa and Kreuter, extending seminal work of Rödl and
Ruciński, predicts the threshold at which the binomial random graph Gn,p becomes Ramsey
for (H1, . . . , Hr) asymptotically almost surely.

In this paper, we resolve the Kohayakawa–Kreuter conjecture for almost all tuples of
graphs. Moreover, we reduce its validity to the truth of a certain deterministic statement,
which is a clear necessary condition for the conjecture to hold. All of our results actu-
ally hold in greater generality, when one replaces the graphs H1, . . . , Hr by finite families
H1, . . . ,Hr. Additionally, we pose a natural (deterministic) graph-partitioning conjecture,
which we believe to be of independent interest, and whose resolution would imply the
Kohayakawa–Kreuter conjecture.
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1. Introduction
1·1. Symmetric Ramsey properties of random graphs

Given graphs G and H1, . . . , Hr, one says that G is Ramsey for the tuple (H1, . . . , Hr)
if, for every r-colouring of the edges of G, there is a monochromatic copy of Hi in some
colour i ∈ [[r]]. In the symmetric case H1 = · · · = Hr = H, we simply say that G is Ramsey
for H in r colours. Ramsey’s theorem [24] implies that the complete graph Kn is Ramsey for
(H1, . . . , Hr) whenever n is sufficiently large. The fundamental question of graph Ramsey
theory is to determine, for a given tuple (H1, . . . , Hr), which graphs G are Ramsey for it. For
more on this question, as well as the many fascinating sub-questions it contains, we refer the
reader to the survey [3].

In this paper, we are interested in Ramsey properties of random graphs, a topic that was
initiated in the late 1980s by Frankl–Rödl [6] and Łuczak–Ruciński–Voigt [31]. The main
question in this area is, for a given tuple (H1, . . . , Hr), which functions p = p(n) satisfy that
Gn,p is Ramsey for (H1, . . . , Hr) a.a.s.

1
In the case H1 = · · · = Hr, this question was resolved

in the remarkable work of Rödl and Ruciński [25–27]. In order to state their result, we need
the following terminology and notation. For a graph J, we denote by vJ and eJ the number of
vertices and edges, respectively, of J. The maximal 2-density of a non-empty graph H with
vH ≥ 3 is then defined

2
to be

m2(H) := max

{
eJ − 1

vJ − 2
: J ⊆ H, vJ ≥ 3

}
.

With this notation, we can state the random Ramsey theorem of Rödl and Ruciński [27].

THEOREM 1·1 (Rödl–Ruciński [27]). For every graph H which is not a forest3 and every
integer r ≥ 2, there exist constants c, C > 0 such that

lim
n→∞ Pr(Gn,p is Ramsey for H in r colours) =

{
1 if p ≥ Cn−1/m2(H),

0 if p ≤ cn−1/m2(H).

As with many such threshold results for random graph properties, Theorem 1·1 really
consists of two statements: the 1-statement, which says that Gn,p satisfies the desired prop-
erty a.a.s. once p is above some threshold, and the 0-statement, which says that Gn,p a.a.s.
fails to satisfy the desired property if p is below some threshold.

In recent years, there has been a great deal of work on transferring combinatorial the-
orems, such as Ramsey’s theorem or Turán’s theorem [30], to sparse random settings. As
a consequence, several new proofs of the 1-statement of Theorem 1·1 have been found.
Two such proofs were first given by Conlon–Gowers [4] and, independently, by Friedgut–
Rödl–Schacht [8] (see also Schacht [29]) with the use of their transference principles.
More recently, Nenadov and Steger [22] found a very short proof of the 1-statement of
Theorem 1·1 that uses the hypergraph container method of Saxton–Thomason [28] and
Balogh–Morris–Samotij [1].

1 As usual, Gn,p denotes the binomial random graph with edge probability p and we say that an event happens
asymptotically almost surely (a.a.s.) if its probability tends to 1 as n → ∞.
2 We also define m2(K2) := 1/2 and m2(H) := 0 if H has no edges.
3 Rödl and Ruciński also determined the Ramsey threshold when H is a forest, but for simplicity we do not
state this more general result.
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Whereas the 0-statement of the aforementioned sparse random analogue of Turán’s theo-
rem is very easy to establish—one simply deletes an arbitrary edge from every copy of H—
proving the 0-statement of Theorem 1·1 requires a significant amount of work. Indeed, any
proof of the 0-statement of Theorem 1·1 has to argue that, with probability close to one, Gn,p

does not contain a subgraph G that is Ramsey for H in r colours. As is well known (see e.g.
[14, Theorem 3·4]), the probability that Gn,p contains G as a subgraph is bounded away from
zero if and only if p = �(n−1/m(G)), where m(G) is the maximal density of G, defined by

m(G) := max

{
eJ

vJ
: J ⊆ G, vJ ≥ 1

}
.

Therefore, a prerequisite for any proof of the 0-statement is the following result, which
(slightly paraphrasing the terms of Rödl and Ruciński [27]) is called the deterministic
lemma: if a graph G is Ramsey for H in r colours, then m(G) > m2(H). The validity of the
deterministic lemma is by no means trivial; in particular, it turns out to be false if we remove
the assumption that H is not a forest [7, 27], or if we move from graphs to hypergraphs [9].

The deterministic lemma only implies that, under the assumption of the 0-statement, Gn,p

a.a.s. does not contain any bounded sized subgraph that is Ramsey for H. In order to rule
out larger Ramsey graphs, one needs additional arguments. Rödl and Ruciński achieve this
by a sophisticated union bound argument over a carefully chosen family S of graphs such
that each large minimally-Ramsey graph is guaranteed to contain some S ∈S as a subgraph.
This part of the proof is encapsulated in the so-called probabilistic lemma, which states that
Gn,p is not Ramsey for H unless it contains a bounded sized subgraph that is Ramsey for H.

1·2. Asymmetric Ramsey properties of random graphs

Given our good understanding of Ramsey properties of random graphs in the symmetric
case, provided by Theorem 1·1, it is natural to ask what happens if we remove the assumption
that H1 = · · · = Hr. This question was first raised by Kohayakawa and Kreuter [15], who
proposed a natural conjecture for the threshold controlling when Gn,p is Ramsey for an
arbitrary tuple (H1, . . . , Hr). To state their conjecture, we need the notion of the mixed 2-
density: for graphs H1, H2 with m2(H1) ≥ m2(H2), their mixed 2-density is defined as

m2(H1, H2) := max

{
eJ

vJ − 2 + 1/m2(H2)
: J ⊆ H1, vJ ≥ 2

}
.

With this terminology, we may state the conjecture of Kohayakawa and Kreuter [15].

CONJECTURE 1·2 (Kohayakawa–Kreuter [15]). Let H1, . . . , Hr be graphs satisfying
m2(H1) ≥ · · · ≥ m2(Hr) and m2(H2) > 1. There exist constants c, C > 0 such that

lim
n→∞ Pr(Gn,p is Ramsey for (H1, . . . , Hr)) =

{
1 if p ≥ Cn−1/m2(H1,H2),

0 if p ≤ cn−1/m2(H1,H2).

The assumption m2(H2) > 1 is equivalent to requiring that H1 and H2 are not forests; it
was added by Kohayakawa, Schacht, and Spöhel [16] to rule out sporadic counterexamples,
in analogy with the assumption that H is not a forest in Theorem 1·1.

The role of the mixed 2-density m2(H1, H2) in the context of Conjecture 1·2 can seem a
little mysterious at first, but there is a natural (heuristic) explanation. Since one can colour all
edges that do not lie in a copy of H1 with colour 1, the only important edges are those that do
lie in copies of H1. The mixed 2-density is defined in such a way that p = �(n−1/m2(H1,H2)) is
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the threshold at which the number of copies of (the densest subgraph of) each of H2, . . . , Hr

is at least of the same order of magnitude as the number of edges in the union of all copies
of (the densest subgraph of) H1 in Gn,p. Since at least one edge in each copy of H1 must
receive a colour from {2, . . . , r}, this is the point where avoiding monochromatic copies of
H2, . . . , Hr becomes difficult.

Conjecture 1·2 has received a great deal of attention over the years, and has been proved
in a number of special cases. Following a sequence of partial results [9, 11, 15, 16, 19],
the 1-statement of Conjecture 1·2 was proved by Mousset, Nenadov and Samotij [20] with
the use of the container method as well as a randomised “typing” procedure. We henceforth
focus on the 0-statement, where progress has been more limited.

Note that, in order to prove the 0-statement, one can make several simplifying assump-
tions. First, one can assume that r, the number of colours, is equal to 2. Indeed, if one can
a.a.s. 2-colour the edges of Gn,p and avoid monochromatic copies of H1, H2 in colours 1,2,
respectively, then certainly Gn,p is not Ramsey for (H1, . . . , Hr). Furthermore, if H′

2 ⊆ H2 is
a subgraph satisfying m2(H′

2) = m2(H2), then the 0-statement for the pair (H1, H′
2) implies

the 0-statement for (H1, H2), as any colouring with no monochromatic copy of H′
2 in partic-

ular has no monochromatic copy of H2. Thus, we may assume that H2 is strictly 2-balanced,
meaning that m2(H′

2) < m2(H2) for any H′
2 � H2. For exactly the same reason, we may

assume that H1 is strictly m2(·, H2)-balanced, meaning that m2(H′
1, H2) < m2(H1, H2) for

any H′
1 � H1. Let us say that the pair (H1, H2) is strictly balanced if H2 is strictly 2-

balanced and H1 is strictly m2(·, H2)-balanced. Additionally, let us say that (H′
1, H′

2) is a
strictly balanced pair of subgraphs of (H1, H2) if (H′

1, H′
2) is strictly balanced and satisfies

m2(H′
2) = m2(H2) and m2(H′

1, H′
2) = m2(H1, H2). All previous works on the 0-statement of

Conjecture 1·2 have made these simplifying assumptions, working in the case r = 2 and with
a strictly balanced pair (H1, H2).

The original paper of Kohayakawa and Kreuter [15] proved the 0-statement of
Conjecture 1·2 when H1 and H2 are cycles. This was extended to the case when both H1

and H2 are cliques in [19], and to the case when H1 is a clique and H2 is a cycle in
[18]. To date, the most general result is due to Hyde [13], who proved the 0-statement of
Conjecture 1·2 for almost all pairs of regular graphs (H1, H2); in fact, this follows from
Hyde’s main result [13, Theorem 1·9], which establishes a certain deterministic condi-
tion whose validity implies the 0-statement of Conjecture 1·2. Finally, the first two authors
[17] recently proved the 0-statement of Conjecture 1·2 in the case where m2(H1) = m2(H2).
Because of this, we henceforth focus on the case that m2(H1) > m2(H2).

1·3. New results

As in the symmetric setting, a necessary prerequisite for proving the 0-statement of
Conjecture 1·2 is proving the following deterministic lemma: if G is Ramsey for (H1, H2),
then m(G) > m2(H1, H2). The main result in this paper is a corresponding probabilistic
lemma, which states that this obvious necessary condition is also sufficient.

THEOREM 1·3. The 0-statement of Conjecture 1·2 holds if and only if, for every strictly
balanced pair (H1, H2), every graph G that is Ramsey for (H1, H2) satisfies m(G) >

m2(H1, H2).

More precisely, we prove that if (H1, H2) is any pair of graphs and (H′
1, H′

2) is a strictly
balanced pair of subgraphs of (H1, H2), then the 0-statement of Conjecture 1·2 holds for
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(H1, H2) if every graph G which is Ramsey for (H′
1, H′

2) satisfies m(G) > m2(H′
1, H′

2) =
m2(H1, H2).

While we believe that the probabilistic lemma, Theorem 1·3, is our main contribution,
we are able to prove the deterministic lemma in a wide range of cases. This implies that
the 0-statement of Conjecture 1·2 is true for almost all pairs of graphs. The most general
statement we can prove is slightly tricky to state because of the necessity of passing to a
strictly balanced pair of subgraphs; however, here is a representative example of our results,
which avoids this technicality and still implies Conjecture 1·2 for all pairs of sufficiently
dense graphs. We state the more general result in Theorem 1·7 below.

THEOREM 1·4. Conjecture 1·2 holds for all sequences H1, . . . , Hr of graphs satisfying
m2(H1) ≥ · · · ≥ m2(Hr) and m2(H2) > 11/5.

As discussed above, Theorem 1·4 follows easily from Theorem 1·3 and a deterministic
lemma for strictly balanced pairs (H1, H2) satisfying m2(H1) ≥ m2(H2) > 11/5. The deter-
ministic lemma in this setting is actually very straightforward and follows from standard
colouring techniques.

Using a number of other colouring techniques, we can prove the deterministic lemma
(and thus Conjecture 1·2) in several additional cases, which we discuss below. However,
let us first propose a conjecture, which we believe to be of independent interest, and whose
resolution would immediately imply Conjecture 1·2 in all cases.

CONJECTURE 1·5. For any graph G, there exists a forest F ⊆ G such that

m2(G \ F) ≤ m(G).

Here, G \ F denotes the graph obtained from G by deleting the edges of F (but not delet-
ing any vertices). To give some intuition for Conjecture 1·5, we note that m(G) ≤ m2(G) ≤
m(G) + 1 for any graph G, and that m2(F) = 1 for any forest F which is not a matching.
Thus, it is natural to expect that by deleting the edges of a forest, we could decrease m2(G)
by roughly 1. Conjecture 1·5 says that this is roughly the case, in that the deletion of an
appropriately-chosen forest can decrease m2(G) to lie below m(G).

Moreover, we note that Conjecture 1·5 easily implies the deterministic lemma in all cases
4

with m2(H1) > m2(H2), and thus implies Conjecture 1·2. Indeed, it is straightforward to ver-
ify in this case that m2(H1) > m2(H1, H2) (see Lemma 3·4 below). Now, suppose that G is
some graph with m(G) ≤ m2(H1, H2) < m2(H1). If Conjecture 1·5 is true, we may partition
the edges of G into a forest F and a graph K with m2(K) ≤ m(G) < m2(H1). This latter con-
dition implies, in particular, that K contains no copy of H1. Additionally, by the assumption
m2(H2) > 1 in Conjecture 1·2, we know that H2 contains a cycle and thus F contains no
copy of H2. In other words, colouring the edges of K with colour 1 and the edges of F with
colour 2 witnesses that G is not Ramsey for (H1, . . . , Hr).

Because of this, it would be of great interest to prove Conjecture 1·5. Somewhat sur-
prisingly, we know how to prove Conjecture 1·5 under the extra assumption that m(G) is
an integer. This extra condition seems fairly artificial, but we do not know how to remove
it—our technique uses tools from matroid theory that seem to break down once m(G) is no
longer an integer. We present this proof in Appendix B, in the hope that it may serve as a
first step to the full resolution of Conjecture 1·5, and thus Conjecture 1·2.

4 Recall that the case of m2(H1) = m2(H2) was settled in [17], so we may freely make this assumption.
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Although we are not able to resolve Conjecture 1·5, we do have a number of other
techniques for proving the deterministic lemma, and thus Conjecture 1·2, under certain
assumptions. First, we are able to resolve the case when the number of colours is at least
three and m2(H2) = m2(H3).

THEOREM 1·6. Let H1, . . . , Hr be a sequence of graphs with r ≥ 3 and suppose that
m2(H1) ≥ m2(H2) = m2(H3) ≥ · · · ≥ m2(Hr) and m2(H2) > 1. Then Conjecture 1·2 holds for
H1, . . . , Hr.

We can also prove Conjecture 1·2 in a number of additional cases, expressed in terms of
the properties of (a strictly balanced pair of subgraphs of) the pair (H1, H2) of two densest
graphs.

Recall that the degeneracy of H is the maximum over all J ⊆ H of the minimum degree
of J.

THEOREM 1·7. Suppose that (H1, H2) is strictly balanced. Suppose additionally that one of
the following conditions holds:

(a) χ(H2) ≥ 3, or

(b) H2 is not the union of two forests, or

(c) χ(H1) > m2(H1, H2) + 1, or

(d) H1 has degeneracy at least 
2m2(H1, H2)�, or

(e) H1 = Ks,t for some s, t ≥ 2, or

(f) m2(H1) > �m2(H1, H2).

In any of these cases, Conjecture 1·2 holds for (H1, H2).

Remark. The only graphs H2 which do not satisfy (a) or (b) are sparse bipartite graphs,
such as even cycles. On the other hand, (c) applies whenever H1 is a clique

5
or, more

generally, a graph obtained from a clique by deleting few edges. Moreover, (d) applies to
reasonably dense graphs, as well as all d-regular bipartite graphs with d ≥ 2, and (e) handles
all cases when H1 is a biclique

6
. Thus, very roughly speaking, the strictly balanced cases

that remain open in Conjecture 1·2 are those in which H2 is bipartite and very sparse and H1

is not “too dense”.
Case (f ) is somewhat stranger and it is not obvious that there exist graphs to which it

applies. However, one can check that, for example, it applies if H1 = K3,3,3,3 and H2 =
C8, and that none of the other cases of Theorem 1·7 (or any of the earlier results on
Conjecture 1·2) apply in this case. However, the main reason we include (f ) is that it is
implied by our partial progress on Conjecture 1·5; since we believe that this conjecture is
the correct approach to settling Conjecture 1·2 in its entirety, we wanted to highlight (f ).

We remark that, unfortunately, the conditions in Theorem 1·7 do not exhaust all
cases. While it is quite likely that simple additional arguments could resolve further
cases, Conjecture 1·5 remains the only (conjectural) approach we have found to resolve
Conjecture 1·2 in all cases. Moreover, our proof of the probabilistic lemma implies that,

5 Note that m2(H1, H2) ≤ m2(H1), hence (c) holds if χ (H1) > m2(H1) + 1, and cliques satisfy m2(Kk) =
(k + 1)/2.
6 In fact, our proof of (e) applies to a larger class of graphs, which we call (s,t)-graphs; see Section 5 for
details.
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in order to prove Conjecture 1·2 for a pair (H1, H2), it is enough to prove the deterministic
lemma for graphs G of order not exceeding an explicit constant K = K(H1, H2). In particular,
the validity of Conjecture 1·2 for any specific pair of graphs reduces to a finite computation.

1·4. Ramsey properties of graph families

All of the results discussed in the previous subsection hold in greater generality, when
we replace H1, . . . , Hr with r finite families of graphs. In addition to being interesting in its
own right, such a generalisation also has important consequences in the original setting of
Conjecture 1·2; indeed, our proof of the three-colour result, Theorem 1·6, colours, relies on
our ability to work with graph families. Before we state our more general results, we need
the following definitions.

Definition 1·8. LetH1, . . . ,Hr be finite families of graphs. We say that a graph G is Ramsey
for (H1, . . . ,Hr) if every r-colouring of E(G) contains a monochromatic copy of some
Hi ∈Hi in some colour i ∈ [[r]].

We now define the appropriate generalizations of the notions of maximum 2-density and
mixed 2-density to families of graphs. First, given a finite family of graphsH, we let

m2(H) := min
H∈H

m2(H).

Second, given a graph H and a (finite) family L of graphs, we let

m2(H,L) := max

{
eJ

vJ − 2 + 1/m2(L)
: J ⊆ H, vJ ≥ 2

}
.

Third, given two finite families of graphsH and L with m2(H) ≥ m2(L), we define

m2(H,L) := min
H∈H

m2(H,L).

Finally, continuing the terminology above, let us say that the pair (H,L) is strictly balanced
if every graph in L is strictly 2-balanced and every graph inH is strictly m2(·,L)-balanced.

The following conjecture is a natural generalization of Conjecture 1·2 to families of
graphs.

CONJECTURE 1·9 (Kohayakawa–Kreuter conjecture for families). LetH1, . . . ,Hr be finite
families of graphs with m2(H1) ≥ · · · ≥ m2(Hr) and suppose that m2(H2) > 1. There exist
constants c, C > 0 such that

lim
n→∞ Pr(Gn,p is Ramsey for (H1, . . . ,Hr)) =

{
1 if p ≥ Cn−1/m2(H1,H2),

0 if p ≤ cn−1/m2(H1,H2).

Note that, for any H1 ∈H1, . . . , Hr ∈Hr, the property of being Ramsey for (H1, . . . , Hr)
implies the property of being Ramsey for (H1, . . . ,Hr). Therefore, the 1-statement of
Conjecture 1·9 follows from the 1-statement of Conjecture 1·2, which we know to be true
by the result of Mousset, Nenadov, and Samotij [20].

The 0-statement of Conjecture 1·9 remains open; the only progress to date is due to the
first two authors [17], who proved Conjecture 1·9 whenever m2(H1) = m2(H2). We make
further progress on this conjecture: as in the case of single graphs, we prove a probabilistic
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lemma that reduces the 0-statement to a deterministic lemma, which is clearly a necessary
condition.

THEOREM 1·10 (Probabilistic lemma for families). The 0-statement of Conjecture 1·9 holds
if and only if, for every strictly balanced pair (H1,H2) of finite families of graphs, every
graph G that is Ramsey for (H1,H2) satisfies m(G) > m2(H1,H2).

As in Theorems 1·4 and 1·7, we can prove the deterministic lemma for families in a wide
variety of cases, namely when every graph H1 ∈H1 or every graph H2 ∈H2 satisfies one
of the conditions in Theorem 1·7. In particular, we resolve Conjecture 1·9 in many cases.
However, we believe that the right way to resolve Conjecture 1·9 in its entirety is the same
as the right way to resolve the original Kohayakawa–Kreuter conjecture, Conjecture 1·2.
Namely, if Conjecture 1·5 is true, then Conjecture 1·9 is true for all families of graphs.

1·5. Organisation

Most of the rest of this paper is dedicated to proving Theorem 1·10 and thus also
Theorem 1·3. Our technique is inspired by recent work of the first two authors [17], who
proved Conjecture 1·9 in the case m2(H1) = m2(H2). Therefore, we assume henceforth
that m2(H1) > m2(H2). We will now change notation and denote H1 =H and H2 =L.
The names stand for heavy and light, respectively, and are meant to remind the reader
that m2(L) < m2(H). We also assume henceforth that (H,L) is a strictly balanced pair of
families.

The rest of this paper is organised as follows. In Section 2, we present a high-level
overview of our proof of Theorem 1·10. Section 3 contains a number of preliminaries for the
proof, including the definitions and basic properties of cores—a fundamental notion in our
approach—as well as several simple numerical lemmas. The proof of Theorem 1·10 is car-
ried out in detail in Section 4. In Section 5, we prove the deterministic lemma under various
assumptions, which yields Theorems 1·4 and 1·7 as well as their generalisations to families.
We conclude with two appendices: Appendix A proves Theorem 1·6 by explaining what in
our proof needs to be adapted to deal with the three-colour setting; and Appendix B presents
our partial progress on Conjecture 1·5.

Additional note

As this paper was being written, we learned that very similar results were obtained
independently by Bowtell, Hancock and Hyde [2], who also resolve Conjecture 1·2 in the
vast majority of cases. As with this paper, they first prove a probabilistic lemma, showing
that resolving the Kohayakawa–Kreuter conjecture is equivalent to proving a determinis-
tic colouring result. By using a wider array of colouring techniques, they are able to prove
more cases of Conjecture 1·2 than we can. Additionally, they consider a natural generalisa-
tion of the Kohayakawa–Kreuter to uniform hypergraphs (a topic that we chose not to pursue
here) and establish its 0-statement for almost all pairs of hypergraphs; see also [9] for more
on such hypergraph questions. In contrast, their work does not cover families of graphs, a
generalization that falls out naturally from our approach.

2. Proof outline

We now sketch, at a very high level, the proof of the probabilistic lemma. Let us
fix a strictly balanced pair of families (H,L). We wish to upper-bound the probability
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that Gn,p is Ramsey for (H,L), where p ≤ cn−1/m2(H,L) for an appropriately chosen con-
stant c = c(H,L) > 0. Our approach is modeled on the recent proof of the 0-statement of
Theorem 1·1 due to the first two authors [17]; however, there are substantial additional
difficulties that arise in the asymmetric setting.

One can immediately make several simplifying assumptions. First, if Gn,p is Ramsey
for (H,L), then there exists some G ⊆ Gn,p that is minimally Ramsey for (H,L), in the
sense that any proper subgraph G′ � G is not Ramsey for (H,L). It is not hard to show
(see Lemma 3·2 below) that every minimally Ramsey graph has a number of interest-
ing properties. In particular, if G is minimally Ramsey, then every edge of G lies in at
least one copy of some H ∈H, and at least one copy of some L ∈L. Our arguments will
exploit a well-known strengthening of this property, which we call supporting a core; see
Definition 3·1 for the precise definition.

We would ideally like to union-bound over all possible minimally Ramsey graphs G in
order to show that a.a.s. none of them appears in Gn,p. Unfortunately, there are potentially
too many minimally Ramsey graphs for this to be possible. To overcome this, we construct a
smaller family S of subgraphs of Kn such that every Ramsey graph G contains some element
of S as a subgraph. Since S is much smaller than the family of minimally Ramsey graphs,
we can effectively union-bound over S. This basic idea also underlies the container method
[1, 28] and the recent work of Harel, Mousset and Samotij on the upper tail problem for
subgraph counts [12]. The details here, however, are slightly subtle; there are actually three
different types of graphs in S and a different union-bound argument is needed to handle each
type.

We construct our family S with the use of an exploration process on minimally Ramsey
graphs, each of which supports a core. This exploration process starts with a fixed edge of
Kn and gradually adds to it copies of graphs in H∪L. As long as the subgraph G′ ⊆ G
of explored edges is not yet all of G, we add to G′ a copy of some graph in H∪L that
intersects G′ but is not fully contained in it. By choosing this copy in a principled manner
(more on this momentarily), we can ensure that S satisfies certain conditions which enable
this union-bound argument.

Since our goal is to show that the final graph G′ is rather dense (and thus unlikely to appear
in Gn,p), we always prefer to add copies of graphs in H, as these boost the density of G′.
If there are no available copies of H ∈H, we explore along some L ∈L. In the symmetric
setting where m2(H) = m2(L) this is still fine, since all graphs in H and L are relatively
dense. However, in the asymmetric case L may be very sparse, which can hurt us; however,
the “core” property guarantees that each copy of L comes with at least one copy of some
H ∈H per new edge. An elementary (but fairly involved) computation shows that the losses
and the gains pencil out, which is the key fact showing that S has the desired properties.

3. Preliminaries
3·1. Ramsey graphs and cores

Given a graph G, denote by FH[G],FL[G] the set of all copies of members of H,L,
respectively, in G. We think of FH[G],FL[G] as hypergraphs on the ground set E(G); in
particular, we think of an element of FH[G],FL[G] as a collection of edges of G that form
a copy of some H ∈H, L ∈L, respectively. To highlight the (important) difference between
the members ofH∪L and their copies (i.e. the elements ofFH[G] ∪FL[G]), we will denote
the former by H and L and the latter by Ĥ and L̂.
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Given a graph G and FH ⊆FH[G],FL ⊆FL[G], we say that the tuple (G,FH,FL) is
Ramsey if, for every two-colouring of E(G), there is an element of FH that is monochro-
matic red or an element of FL that is monochromatic blue. In particular, we see that G is
Ramsey for (H,L) if and only if (G,FH[G],FL[G]) is Ramsey. Having said that, allowing
tuples (G,FH,FL) where FH and FL are proper subsets of FH[G] and FL[G], respec-
tively, enables us to deduce further useful properties. These are encapsulated in the following
definition.

Definition 3·1. An (H,L)-core (or core for short) is a tuple (G,FH,FL), where G is a graph
and FH ⊆FH[G],FL ⊆FL[G], with the following properties:

(i) the hypergraph FH ∪FL is connected and spans E(G);

(ii) for every Ĥ ∈FH and every edge e ∈ Ĥ, there exists an L̂ ∈FL such that Ĥ ∩ L̂ = {e};
(iii) for every L̂ ∈FL and every edge e ∈ L̂, there exists an Ĥ ∈FH such that Ĥ ∩ L̂ = {e}.
We say that G supports a core if there exist FH ⊆FH[G],FL ⊆FL[G] such that

(G,FH,FL) is a core.
The reason we care about cores is that minimal Ramsey graphs support cores, as shown in

the following lemma. Essentially the same lemma appears in the work of Rödl and Ruciński
[25], where it is given as an exercise. The same idea was already used in several earlier
works, including [15, Claim 6] and [18, Lemma 4·1].

LEMMA 3·2. Suppose that a graph G is Ramsey for (H,L), but none of its proper subgraphs
are Ramsey for (H,L). Then G supports an (H,L)-core.

Proof. As G is Ramsey for (H,L), we know that (G,FH[G],FL[G]) is a Ramsey tuple. Let
FH ⊆FH[G],FL ⊆FL[G] be inclusion-minimal subfamilies such that (G,FH,FL) is still
a Ramsey tuple. In other words, this tuple is Ramsey, but for any F′

H ⊆FH,F′
L ⊆FL such

that at least one inclusion is strict, the tuple (G,F′
H,F′

L) is not Ramsey. We will show that
(G,FH,FL) is a core.

If some e ∈ E(G) is not contained in any edge of FH ∪FL, then (G \ e,FH,FL) is
still Ramsey, and thus G \ e is Ramsey for (H,L), contradicting the minimality of G.
Furthermore, if FH ∪FL is not connected, then at least one of its connected components
induces a Ramsey tuple, which contradicts the minimality of (FH,FL). Thus, the first con-
dition in the definition of a core is satisfied. We now turn to the next two parts of the
definition.

To see that the second condition in the definition of a core is satisfied, fix some Ĥ ∈FH
and some e ∈ Ĥ. By minimality, we can find a two-colouring of E(G) such that no element
of FL is blue and no element of FH \ {Ĥ} is red. Note that all edges of Ĥ are coloured red,
as otherwise our colouring would witness (G,FH,FL) being not Ramsey. Flip the colour
of e from red to blue. Since Ĥ is now no longer monochromatic red, we must have created
a monochromatic blue element L̂ of FL. As all edges of Ĥ \ e are still red, we see that
Ĥ ∩ L̂ = {e}, as required. Interchanging the roles of FH,FL, and the colours yields the third
condition in the definition of a core.
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3·2. Numerical lemmas

In this section, we collect a few useful numerical lemmas, all of which are simple com-
binatorial facts about vertex- and edge-counts in graphs. We begin with the following
well-known result, which we will use throughout.

LEMMA 3·3 (The mediant inequality). Let a, c ≥ 0 and b, d > 0 be real numbers with a/b ≤
c/d. Then

a

b
≤ a + c

b + d
≤ c

d
.

Moreover, if one inequality is strict, then so is the other (which happens if and only if a/b <

c/d).

Proof. Both inequalities are easily seen to be equivalent to the inequality ad ≤ bc, which is
itself the same as a/b ≤ c/d.

LEMMA 3·4. Let (H,L) be a strictly balanced pair. If m2(L) < m2(H), then m2(L) <

m2(H,L) < m2(H).

Proof. To see the second inequality, let H ∈H be a graph with m2(H) = m2(H) and observe
that the strict m2(·,L)-balancedness of H implies that

m2(H,L) = eH

vH − 2 + 1/m2(L)
= (eH − 1) + 1

(vH − 2) + 1/m2(L)
≤ m2(H) · (vH − 2) + 1

(vH − 2) + 1/m2(L)
.

Since m2(H) = m2(H) > m2(L), Lemma 3·3 implies that m2(H,L) ≤ m2(H,L) < m2(H).
For the first inequality, let H ∈H be a graph for which m2(H,L) = m2(H,L) and let

J ⊆ H be its subgraph with eJ−1
vJ−2 = m2(H). By the strict m2(·,L)-balancedness of H, we

have

m2(H,L) ≥ m2(J,L) = (eJ − 1) + 1

(vJ − 2) + 1/m2(L)
= m2(H) · (vJ − 2) + 1

(vJ − 2) + 1/m2(L)
.

Since m2(H) > m2(L), Lemma 3·3 implies that m2(H,L) = m2(H,L) ≥ m2(J,L) > m2(L).

LEMMA 3·5. Let H ∈H be strictly m2(·,L)-balanced. Then for any F � H with vF ≥ 2, we
have

eH − eF > m2(H,L) · (vH − vF) ≥ m2(H,L) · (vH − vF).

Proof. The second inequality follows from the definition of m2(H,L). Since eF < eH , we
may assume that vF < vH , as otherwise the claimed inequality holds vacuously. Since H is
strictly m2(·,L)-balanced, we have

m2(H,L) = eH

vH − 2 + 1/m2(L)
= (eH − eF) + eF

(vH − vF) + (vF − 2 + 1/m2(L))

whereas
eF

vF − 2 + 1/m2(L)
< m2(H,L).

Since vH > vF, we may use Lemma 3·3 to conclude that (eH − eF)/(vH − vF) > m2(H,L).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000143
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.162, on 30 Jul 2025 at 09:12:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000143
https://www.cambridge.org/core


304 EDEN KUPERWASSER, WOJCIECH SAMOTIJ AND YUVAL WIGDERSON

LEMMA 3·6. Let L ∈L be strictly 2-balanced. Then for any J � L, we have

eL − eJ ≥ m2(L) · (vL − vJ) ≥ m2(L) · (vL − vJ).

Moreover, the first inequality is strict unless J = K2.

Proof. The second inequality is immediate since m2(L) ≤ m2(L). Since eJ < eL, we may
assume that vJ < vL, as otherwise the claimed (strict) inequality holds vacuously. We clearly
have equality if J = K2 and strict inequality if vJ = 2 and eJ = 0, so we may assume
henceforth that vJ > 2. Since L is strictly 2-balanced,

m2(L) = eL − 1

vL − 2
= (eL − eJ) + (eJ − 1)

(vL − vJ) + (vJ − 2)

whereas (eJ − 1)/(vJ − 2) < m2(L). Since vJ > 2, we may apply Lemma 3·3 to conclude the
desired result, with a strict inequality.

LEMMA 3·7. Suppose that (H,L) is a strictly balanced pair. Defining α := m2(H,L) and
X := minH∈H{(eH − 1) − α · (vH − 2)}, we have that

X + (vK − 2)(α − 1) ≥ eK ·
(

α

m2(L)
− 1

)
for every L ∈L and every non-empty K ⊆ L. Moreover, the inequality is strict unless K = K2.

Proof. Without loss of generality, we may assume that m2(L) < α and that vK > 2, as
otherwise the statement holds vacuously (recall from Lemma 3·4 that α = m2(H,L) >

m2(L) > 1). Fix some L ∈L and a nonempty K ⊆ L. Recall that each H ∈H is strictly
m2(·,L)-balanced and satisfies m2(H,L) ≥ m2(H,L) = α. This implies that

eH

vH − 2 + 1/m2(L)
≥ α

or, equivalently,

eH ≥ α · (vH − 2) + α

m2(L)
.

Consequently,

X = min
H∈H

{(eH − 1) − α · (vH − 2)} ≥ α

m2(L)
− 1 ≥ α

m2(L)
− 1,

where the final inequality uses that m2(L) ≥ m2(L).
Since L is strictly 2-balanced and we assumed that m2(L) < α, we have

(eK − 1) ·
(

α

m2(L)
− 1

)
≤ m2(L) · (vK − 2) ·

(
α

m2(L)
− 1

)
= (vK − 2)(α − m2(L)).

Rearranging the above inequality, we obtain

eK ·
(

α

m2(L)
− 1

)
− (vK − 2)(α − 1) ≤ (1 − m2(L))(vK − 2) +

(
α

m2(L)
− 1

)
<

α

m2(L)
− 1 ≤ X,
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where the penultimate inequality uses the assumption that vK > 2.

4. Proof of the probabilistic lemma

In this section, we prove Theorem 1·10. We in fact prove the following more precise
statement.

LEMMA 4·1 (Theorem 1·10, rephrased). Let (H,L) be a strictly balanced pair of finite
families of graphs satisfying m2(H) > m2(L). There exists a constant c > 0 such that the fol-
lowing holds. If p ≤ cn−1/m2(H,L), then a.a.s. every G ⊆ Gn,p which supports a core satisfies
m(G) ≤ m2(H,L).

Note that this immediately implies the difficult direction in Theorem 1·10. Indeed, given a
tuple (H1, . . . ,Hr), we first define a family L by replacing each graph inH2 with a strictly
2-balanced subgraph of maximal 2-density. We then likewise define H by replacing every
graph in H1 with a strictly balanced subgraph with respect to m2(·,L) which achieves the
maximum. Note that (H,L) is a strictly balanced pair and that m2(H,L) = m2(H1,H2).

Now, any graph that is Ramsey for (H1, . . . ,Hr) must also be Ramsey for (H,L), and
must therefore contain a minimal (H,L)-Ramsey graph G. The graph G will then have two
properties. First, by Lemma 3·2 it supports an (H,L)-core. Second, by the deterministic
lemma (i.e., the assumption of Theorem 1·10) we have that m(G) > m2(H,L). However,
Lemma 4·1 asserts that when p ≤ cn−1/m2(H1,H2) then a.a.s. Gn,p does not contain sub-
graphs G with both these properties, implying that a.a.s. Gn,p is not Ramsey for the tuple
(H1, . . . ,Hr).

Our proof of Lemma 4·1 follows closely the proof of the probabilistic lemma in recent
work of the first two authors [17]. Fix a strictly balanced pair (H,L) of families satisfying
m2(H) > m2(L), and let α := m2(H,L). Let Gbad denote the set of graphs G ⊆ Kn which
support a core and satisfy m(G) > m2(H,L). The key lemma, which implies Lemma 4·1, is
as follows.

LEMMA 4·2. There exist constants �, K > 0 and a collection S of subgraphs of Kn

satisfying the following properties:

(a) every element of Gbad contains some S ∈S as a subgraph;

(b) every S ∈S satisfies at least one of the following three conditions:

(i) vS ≥ log n and eS ≥ α · (vS − 2);
(ii) vS < log n and eS ≥ α · vS + 1;

(iii) vS ≤ K and m(S) > α.

(c) for every k ∈ [[n]], there are at most (�n)k graphs S ∈S with vS = k.

Before we prove Lemma 4·2, let us see why it implies Lemma 4·1.

Proof of Lemma 4·1. Recall that p ≤ cn−1/α , for a small constant c = c(H,L) to be chosen
later. We wish to prove that a.a.s. Gn,p contains no element of Gbad. By Lemma 4·2(a), it
suffices to prove that a.a.s. Gn,p contains no element of S. By (b), the elements of S are of
three types, each of which we deal with separately. First, recall that for any fixed graph S
with m(S) > α, we have that Pr(S ⊆ Gn,p) = o(1) (see e.g. [14, Theorem 3·4]). As there are
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only a constant number of graphs on at most K vertices, we may apply the union bound and
conclude that a.a.s. no graph S satisfying vS ≤ K and m(S) > α appears in Gn,p. This deals
with the elements of S corresponding to case (iii).

Let S′ ⊆S be the set of S ∈S which lie in cases (i) or (ii). We have that

Pr(S ⊆ Gn,p for some S ∈S′) ≤
∑
S∈S′

peS

≤
�log n−1∑

k=1

(�n)kpαk+1 +
∞∑

k=�log n
(�n)kpα(k−2)

≤ p
∞∑

k=1

(�cα)k + c−2αn2
∞∑

k=�log n
(�cα)k.

We now choose c so that �cα = e−3. Then the first sum above can be bounded by p, which
tends to 0 as n → ∞. The second term can be bounded by 2c−2αn−1, which also tends to 0
as n → ∞. All in all, we find that a.a.s. Gn,p does not contain any graph in S, as claimed.

4·1. The exploration process and the proof of Lemma 4·2
In this section, we prove Lemma 4·2. We will construct the family S by considering an

exploration process on the set G of graphs G ⊆ Kn which support a core. For each such G ∈
G, let us arbitrarily choose collections FH ⊆FH[G] and FL ⊆FL[G] such that (G,FH,FL)
is a core. From now on, by copies of graphs from H,L in G, we mean only those copies
that belong to the families FH,FL, respectively. This subtlety will be extremely important
in parts of the analysis.

We first fix arbitrary orderings on the graphs inH andL. Additionally, we fix a labeling of
the vertices of Kn, which induces an ordering of all subgraphs according to the lexicographic
order. Together with the ordering onH,L, we obtain a lexicographic ordering on all copies
in Kn of graphs in H,L. Now, given a G ∈G, we build a sequence G0 � G1 � · · · ⊆ G of
graphs with no isolated edges as follows. We start with G0 being the graph comprising only
the smallest edge of G and no further vertices. As long as Gi �= G, do the following: Since
G �= Gi and (G,FH,FL) is a core, there must be some copy of a graph from H∪L which
belongs to FH ∪FL that intersects Gi in at least one edge but is not fully contained in Gi.
Call such an overlapping copy regular if it intersects Gi in exactly one edge (and thus exactly
two vertices), called its root; otherwise, call the copy degenerate. We form Gi+1 from Gi as
follows:

(1) Suppose first that there is an overlapping copy of some graph in H (be it regu-
lar or degenerate). We form Gi+1 by adding to Gi the smallest (according to the
lexicographic order) such copy. We call Gi → Gi+1 a degenerateH-step.

(2) Otherwise, there must be an overlapping copy L̂ of some L ∈L. Note that, for every
edge e ∈ L̂ \ Gi, there must be a copy of some H ∈H that meets L̂ only at e, as
(G,FH,FL) is a core. Note further that this copy of H does not intersect Gi, as oth-
erwise we would perform a degenerate H-step. We pick the smallest such copy for
every e ∈ L̂ \ Gi, and call it Ĥe (note that the graphs He ∈H such that He ∼= Ĥe may
be different for different choices of e). We say that L̂ is pristine if it is regular and
the graphs {Ĥe}e∈L̂\Gi

are all vertex-disjoint (apart from the intersections that they are
forced to have in V (̂L)).
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(2·1) If there is a pristine copy of some graph in L, we pick the smallest one in the
following sense: First, among all edges of Gi that are roots of a pristine copy of
some graph in L, we choose the one that arrived to Gi earliest. Second, among all
pristine copies that are rooted at this edge, we pick the smallest (according to the
lexicographic order). We then form Gi+1 by adding to Gi this smallest copy L̂ as
well as all Ĥe where e ∈ L̂ \ Gi. We call Gi → Gi+1 a pristine step.

(2·2) If there are no pristine copies of any graph inL, we pick the smallest (according to
the lexicographic order) overlapping copy L̂ of a graph inL and we still form Gi+1

by adding to Gi the union of L̂ and all its Ĥe with e ∈ L̂ \ Gi. We call Gi → Gi+1 a
degenerate L-step.

We define the balance of Gi to be

b(Gi) := eGi − α · vGi ,

where we recall that α = m2(H,L). The key result we will need in order to prove (b) is the
following lemma. We remark that a similar result was proved by Hyde [13, Claims 6·2 and
6·3]; it plays an integral role in his approach to the Kohayakawa–Kreuter conjecture.

LEMMA 4·3. For every i, we have that b(Gi+1) ≥ b(Gi). Moreover, there exists some δ =
δ(H,L) > 0 such that b(Gi+1) ≥ b(Gi) + δ if Gi+1 was obtained from Gi by a degenerate
step.

As the proof of Lemma 4·3 is somewhat technical, we defer it to Section 4.2. For the
moment, we assume the result and continue the discussion of how we construct the family
S. We now let � := �2α/δ, where δ is the constant from Lemma 4·3. For G ∈G, let

τ (G) := min{i : vGi ≥ log n or Gi = G or Gi−1 → Gi is the �th degenerate step}
and let

S := {Gτ (G) : G ∈Gbad}. (1)

Having defined the family S, we are ready to prove Lemma 4·2. Since the definition of S
clearly guarantees property (a), it remains to establish properties (b) and (c). We begin by
showing that, if K is sufficiently large (depending only onH and L), then (b) holds.

Proof of Lemma 4·2(b). Let δ be the constant from Lemma 4·3, let M := max{eL · vH : H ∈
H, L ∈L}, and let K := 2M2�; note that each of these parameters depends only on H and
L.

Every S ∈S is of the form Gτ (G) for some G ∈Gbad. We split into cases depending on
which of the three conditions defining τ (G) caused us to stop the exploration. Suppose first
that we stopped the exploration because vS ≥ log n. By Lemma 4·3, we have that

eS − α · vS = b(S) = b(Gτ (G)) ≥ b(G0) = 1 − 2α,

and therefore eS ≥ α · (vS − 2). This yields case 4.2.
Next, suppose we stopped the exploration because step Gτ (G)−1 → Gτ (G) was the �th

degenerate step. As we are not in the previous case, we may assume that vS < log n. By
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Lemma 4·3 and our choice of �, we have that

eS − α · vS = b(S) = b(Gτ (G)) ≥ b(G0) + �δ ≥ 1 − 2α + 2α = 1.

Rearranging, we see that eS ≥ α · vS + 1, yielding case (ii).
The remaining case is when we stop because S = G ∈Gbad. Since the definition of Gbad

implies that m(G) > α, in order to establish (iii), we only need to show that vG ≤ K. For this
proof, we need to keep track of another parameter during the exploration process, which we
term the pristine boundary. Recall that at every pristine step, we add to Gi a copy L̂ of some
L ∈L that intersects Gi in a single edge (the root), and then add copies Ĥe of graphs He ∈H,
one for every edge of L̂ apart from the root. Let us say that the boundary of this step is the
set of all newly added vertices that are not in L̂, that is, the set V(Gi+1) \ (V(Gi) ∪ V (̂L)) =
(
⋃

e∈L̂\Gi
V(Ĥe)) \ V (̂L). Note that the size of the boundary is equal to

Yi :=
∑

e∈L̂\Gi

(vHe − 2);

indeed, by the definition of pristine steps, the copies Ĥe are vertex-disjoint outside of V (̂L).
We claim that Yi ≥ 3. To see this, note first that L has at least three edges, as it is not a

forest. Similarly, each He has at least three vertices. Putting these together, we see that there
are at least two terms in the sum, and every term in the sum is at least one. Thus, Yi ≥ 3
unless eL = 3 and vHe = 3 for all e. But in this case, L = K3 = He ∈H for all e, which means
that L̂ should have been added to Gi as a degenerateH-step.

We now inductively define the pristine boundary ∂Gi of Gi as follows. We set ∂G0 := ∅.
If Gi → Gi+1 is a pristine step, then we delete from ∂Gi the two endpoints of the root and add
to ∂Gi the boundary of this pristine step. Note that |∂Gi+1| ≥ |∂Gi| + Yi − 2 ≥ |∂Gi| + 1. On
the other hand, if Gi → Gi+1 is a degenerate step, then we only remove vertices from ∂Gi,
without adding any new vertices. Namely, we remove from ∂Gi all the vertices which are
included in the newly added graphs. In other words, if we performed a degenerate H-step
by adding a copy Ĥ of some graph in H, we set ∂Gi+1 := ∂Gi \ V(Ĥ). Similarly, if we
performed a degenerate L-step by adding a copy L̂ of some graph in L along with the
graphs Ĥe for all e ∈ L̂ \ Gi, we set ∂Gi+1 := ∂Gi \ (V (̂L) ∪ ⋃

e V(Ĥe)). Note that in either
case |∂Gi+1| ≥ |∂Gi| − M, as the union of all graphs added in each degenerate step can have
at most M vertices.

We now argue that ∂Gτ (G) =∅. Indeed, suppose we had some vertex v ∈ ∂Gτ (G). By def-
inition, v was added during a pristine step, as a vertex of a copy Ĥe of some graph He ∈H,
and was never touched again. Observe that v is incident to some edge uv of Ĥe that was
not touched by any later step of the exploration. However, as (G,FH,FL) is a core and
Ĥe ∈FH, there must be some L̂uv ∈FL that intersects Ĥe only at uv. Moreover, as L̂uv has
minimum degree at least two (by the strict 2-balancedness assumption), there is some edge
vw ∈ L̂uv \ uv that is incident to v. Since we assumed that Gτ (G) = G, the edge vw must have
been added at some point, a contradiction to the assumption that v was never touched again.

Finally, since |∂Gi| increases by at least one during every pristine step and decreases by
at most M during each of the at most � degenerate steps, in order to achieve ∂Gτ (G) =∅,
there can be at most M� pristine steps. In particular, the total number of exploration steps is
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at most M� + �. As each exploration step adds at most M vertices to Gi, we conclude that
vG ≤ M(M� + �) + 2 ≤ K. This completes the proof of (iii).

Proof of Lemma 4·2(c). Suppose S has k vertices and let G ∈Gbad be such that S = Gτ (G).
We consider the exploration process on G. Note that in every step we add an overlapping
copy of a graph from a finite family F that comprises all graphs in H (for the cases where
we made a degenerateH-step) and graphs in L that have graphs fromH glued on subsets of
their edges, with all intersection patterns (for the pristine and degenerate L-steps). Let F×
denote the graphs in F that correspond to a pristine step.

Now, every degenerate step can be described by specifying the graph F ∈F whose copy
F̂ we are adding, the subgraph F′ ⊆ F and the embedding ϕ : V(F′) → V(Gi) that describe
the intersection F̂ ∩ Gi, and the sequence of vF − vF′ vertices of Kn that complete ϕ to an
embedding of F into Kn. Every pristine step is uniquely described by the root edge in Gi,
the graph F ∈F×, the edge of F corresponding to the root, and the (ordered sequence of)
vF − 2 vertices of Kn that complete the root edge to a copy of F in Kn. There are at most nk

ways to choose the sequence of vertices that were added through this exploration process,
in the order that they are introduced to G. Each pristine step adds at least one new vertex, so
there are at most k pristine steps. Furthermore, there are always at most � degenerate steps,
meaning that τ (G) ≤ k + �. In particular, there are at most (k + �) · 2k+� ways to choose
τ (G) and to specify which steps were pristine.

For every degenerate step, there are at most

∑
F∈F

vF∑
�=2

(
vF

�

)
k� ≤ |F| · (k + 1)Mv

ways of choosing F ∈F and describing the intersection of its copy F̂ with Gi (the set V(F′) ⊆
V(F) and the embedding ϕ above), where Mv := max{vF : F ∈F}. As for the pristine steps,
note that, in the course of our exploration, the sequence of the arrival times of the roots
to Gτ (G) must be non-decreasing. This is because as soon as an edge appears in some Gi,
every pristine step that includes it as a root at any later step is already available, and we
always choose the one rooted at the edge that arrived to G the earliest. Therefore, there are
at most

(eS+k
k

)
possible sequences of root edges, since this is the number of non-decreasing

sequences of length k in [[eS]]. To supplement this bound, remember that every step increases
the number of edges in Gi by at most Me := max{eF : F ∈F}, which means that

eS ≤ 1 + τ (G) · Me ≤ 1 + (k + �) · Me.

To summarise, the number of S ∈S with k vertices is at most

nk · (k + �) · 2k+� · (|F| · (k + 1)Mv
)� ·

(
(k + �) · Me + k + 1

k

)
· (|F| · Me)

k .

Every term in this product, apart from the first, is bounded by an exponential function of k,
since �, |F|, Mv, and Me are all constants. Therefore, if we choose � = �(H,L) sufficiently
large, we find that the number of S ∈S with vS = k is at most (�n)k, as claimed.
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4·2. Proof of Lemma 4·3
In this section, we prove Lemma 4·3. The proof is divided into a number of claims. Recall

Lemma 3·5, which asserts that

eH − eF > m2(H,L) · (vH − vF) = α · (vH − vF)

for all H ∈H and all F � H. This implies that we can choose some δ1 = δ1(H,L) > 0 so
that

eH − eF ≥ α · (vH − vF) + δ1 (2)

for all H ∈H and all F � H; we henceforth fix such a δ1 > 0.
Our first claim deals with the (easy) case that Gi → Gi+1 is a degenerateH-step.

CLAIM 4·4 If Gi → Gi+1 is a degenerateH-step, then b(Gi+1) ≥ b(Gi) + δ1.

Proof. Suppose we add to Gi a copy of some H ∈H that intersects Gi on a subgraph F ⊆ H.
This means that

eGi+1 = eGi + (eH − eF) and vGi+1 = vGi + (vH − vF)

and thus

b(Gi+1) − b(Gi) = (eH − eF) − α · (vH − vF) ≥ δ1,

where the inequality follows from (2), as F must be a proper subgraph of H.

Now, suppose that Gi → Gi+1 is an L-step, either degenerate or pristine, which means
that we add a copy L̂ of some L ∈L and then add, for every edge e ∈ L̂ \ Gi, a copy Ĥe of
some He ∈H. Let G′

i := Gi ∪ L̂ and let Ĵ := Gi ∩ L̂, so that Ĵ ∼= J for some J � L with at
least one edge. Note that

b(G′
i) − b(Gi) = (eL − eJ) − α · (vL − vJ), (3)

as we add eL − eJ edges and vL − vJ vertices to Gi when forming G′
i.

In order to analyse b(Gi+1) − b(G′
i), we now define an auxiliary graph I as follows. Its

vertices are the edges of L̂ \ Ĵ. Recall that, for every such edge e, the graph Ĥe ∼= He inter-
sects the edges of G′

i only in the edge e. A pair e, f of edges of L̂ \ Ĵ will be adjacent in I if
and only if their corresponding graphs Ĥe and Ĥf share at least one edge (equivalently, the
graphs Ĥe \ e and Ĥf \ f share an edge).

Denote the connected components of I by K1, . . . , Km and note that each of them
corresponds to a subgraph of L̂ \ Ĵ. For each j ∈ [[m]], let

Uj :=
⋃
e∈Kj

(Ĥe \ e).

Note that the graphs G′
i and U1, . . . , Um are pairwise edge-disjoint and that each Uj shares

at least vKj vertices (the endpoints of all the edges of Kj) with G′
i. It follows that

b(Gi+1) − b(G′
i) ≥

m∑
j=1

(eUj − α · (vUj − vKj)) =
m∑

j=1

(b(Uj) + α · vKj). (4)
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Finally, as in the statement of Lemma 3·7, define

X := min{(eH − 1) − α · (vH − 2) : H ∈H}.
The following claim lies at the heart of the matter.

CLAIM 4·5. For every j ∈ [[m]], we have

b(Uj) ≥ X − 2α − (vKj − 2) + min{δ1, 1} · 1vKj>2.

Proof. Since Kj is connected in I, we may order its edges as e1, . . . , e� so that, for each
r ∈ [[� − 1]], the edge er+1 is I-adjacent to {e1, . . . , er}. We define, for each r ∈ {0, . . . , �},

Ur
j :=

r⋃
s=1

(Ĥes \ es),

so that ∅= U0
j ⊆ · · · ⊆ U�

j = Uj. Observe that

b(U1
j ) = eU1

j
− α · vU1

j
= (eHe1

− 1) − α · vHe1
≥ X − 2α,

where the inequality follows from the definition of X.
Suppose now that r ≥ 1 and let F̂ be the intersection of Ĥer+1 \ er+1 with Ur

j ; note that this
intersection is non-empty as er+1 is I-adjacent to {e1, . . . , er}. We have

b(Ur+1
j ) − b(Ur

j ) = (eHer+1
− 1 − eF) − α · (vHer+1

− vF).

Let tr+1 be the number of endpoints of er+1 that are not in Ur
j . Suppose first that tr+1 = 0,

that is, both endpoints of er+1 are already in Ur
j . In this case, both endpoints of er+1 also

belong to F̂ and thus F̂ ∪ er+1 is isomorphic to a subgraph F+ ⊆ Her+1 with eF + 1 edges
and vF vertices, which means that

b(Ur+1
j ) − b(Ur

j ) = (eHer+1
− eF+) − α · (vHer+1

− vF+) ≥ 0,

by Lemma 3·5. In case tr+1 > 0, F is a proper subgraph of Her+1 and thus we have

b(Ur+1
j ) − b(Ur

j ) ≥ δ1 − 1 ≥ δ1 − tr+1,

see (2). We may thus conclude that

b(Uj) = b(U1
j ) +

�−1∑
r=1

(b(Ur+1
j ) − b(Ur

j )) ≥ X − 2α −
�−1∑
r=1

tr+1 + δ1 · 1t2+···+t�>0.

The desired inequality follows as t2 + · · · + t� = |V(Kj) \ V(U1
j )| ≤ vKj − 2 and, further,

vKj > 2 implies that the sum t2 + · · · + t� is either positive or at most vKj − 3.
We are now ready to show that the balance never decreases when we perform an L-step.

CLAIM 4·6. If Gi → Gi+1 is an L-step, then b(Gi+1) ≥ b(Gi). Moreover, if this L-step is
degenerate, then b(Gi+1) ≥ b(Gi) + δ2 for some δ2 > 0 that depends only onH and L.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000143
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.162, on 30 Jul 2025 at 09:12:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000143
https://www.cambridge.org/core


312 EDEN KUPERWASSER, WOJCIECH SAMOTIJ AND YUVAL WIGDERSON

Proof. By (3), (4) and Claim 4·6, we have

b(Gi+1) − b(Gi) = b(G′
i) − b(Gi) + b(Gi+1) − b(G′

i)

≥ (eL − eJ) − α · (vL − vJ) +
m∑

j=1

(b(Uj) + α · vKj)

≥ (eL − eJ) − α · (vL − vJ) +
m∑

j=1

(
X + (vKj − 2)(α − 1)

) + min{δ1, 1} · 1I�=∅,

since I is nonempty only if one of its components has more than two vertices. We now apply
Lemma 3·7 to each component Kj to conclude that

m∑
j=1

(
X + (vKj − 2)(α − 1)

) ≥
m∑

j=1

eKj ·
(

α

m2(L)
− 1

)
= (eL − eJ)

(
α

m2(L)
− 1

)
.

Therefore,

b(Gi+1) − b(Gi) ≥ (eL − eJ) · α

m2(L)
− α · (vL − vJ) + min{δ1, 1} · 1I�=∅

≥ min{δ1, 1} · 1I�=∅,

where the last inequality follows from Lemma 3·6. This implies the desired result if the L-
step is pristine. If theL-step is not pristine but I has no edges, it means that some vertex was
repeated between different Ĥe. In that case, the first inequality in (4) is strict (we assumed
there that the graphs Uj share no vertices outside of V(Kj)). All in all, we obtain the desired
boost in the degenerate case.

Combining Claims 4·4 and 4·6, we obtain Lemma 4·3. This completes the proof of the
probabilistic lemma.

5. Proof of the deterministic lemma

Given the probabilistic lemma and the work of the first two authors on the symmetric
case [17], in order to prove Conjecture 1·9, which generalises the Kohayakawa–Kreuter
conjecture, we only need to show the following. For every strictly balanced pair (H,L) of
finite families of graphs with m2(H) > m2(L) > 1, we can two-colour the edges of every
graph G satisfying m(G) ≤ m2(H,L) so that there are neither red monochromatic copies of
any H ∈H nor blue monochromatic copies of any L ∈L. As discussed in the introduction,
we do not know how to do this in all cases. However, the following proposition lists a number
of extra assumptions under which we are able to find such a colouring. We recall the notion
of the 1-density (or fractional arboricity) of a graph L, defined by

m1(L) := max

{
eJ

vJ − 1
: J ⊆ L, vJ ≥ 2

}
.

We also make the following definition.

Definition 5·1. Given positive integers s ≤ t, we say that a graph is an (s,t)-graph if its
minimum degree is at least s, and every edge contains a vertex of degree at least t. We
say that a graph is (s,t)-avoiding if none of its subgraphs is an (s, t)-graph.
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PROPOSITION 5·2. Let (H,L) be a strictly balanced pair of finite families of graphs
satisfying m2(H) > m2(L) and suppose that at least one of the following conditions holds:

(a) χ(L) ≥ 3 for all L ∈L;

(b) χ(H) > m2(H,L) + 1 for every H ∈H;

(c) m1(L) > 2 for all L ∈L;

(d) every H ∈H contains an (s,t)-graph as a subgraph, for some integers s ≤ t satisfying

1

s + 1
+ 1

t + 1
<

1

m2(H,L)
;

(e) �m2(H,L) < m2(H);

Then any graph G with m(G) ≤ m2(H,L) is not Ramsey for (H,L).

Cases (a)–(c) all follow fairly easily from known colouring techniques; we supply the
details in the remainder of this section. Case (d) is proved by a short inductive argument,
see below. Case (e) follows from our partial progress on Conjecture 1·5, namely, that we are
able to prove it when m(G) is an integer; we present the proof of this result in Appendix B.
We end this section with short derivations of Theorems 1·4 and 1·7 from the proposition.

Proof of Theorem 1·4. Assume that m2(L) > 11/5. By passing to a subgraph with the
same 2-density, we may assume that L is strictly 2-balanced. Thanks to cases (a) and (c) of
Proposition 5·2, we are done unless m1(L) ≤ 2 and L is bipartite. The bounds on m1(L) and
m2(L) imply that 2vL − 2 ≥ eL > (11/5)(vL − 2) + 1, which yields vL < 7. However, as L is
bipartite on at most six vertices, we have m2(L) ≤ m2(K3,3) = 2, a contradiction.

Proof of Theorem 1·7. Cases (a), (b), (c), and (f ) follow immediately
7

from
Proposition 5·2. For Theorem 1·7(d), note that a graph with minimum degree d is a (d,
d)-graph. Thus, if H1 has degeneracy at least d, then it contains some (d, d)-graph as a sub-
graph. Similarly, Theorem 1·7(e) follows, since if s ≤ t, then Ks,t is an (s, t)-graph satisfying
1/m2(Ks,t) = (s + t − 2)/(st − 1) ≥ 1/(s + 1) + 1/(t + 1).

5·1. Auxiliary results.

We start with a helpful observation relating m(G) and the degeneracy of G. We say that a
graph is d-degenerate if its degeneracy is at most d.

LEMMA 5·3. Every graph G is 
2m(G)�-degenerate.

Proof. For every G′ ⊆ G, we have

δ(G′) ≤
⌊

2eG′

vG′

⌋
≤ 
2m(G)�,

where δ(G′) is the minimum degree of G′.

7 Proposition 5·2(c) implies Theorem 1·7(b) thanks to Nash-Williams’s theorem (Theorem 5·7 below).
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Our second lemma allows us to compare between the various densities.

LEMMA 5·4. For every graph H, we have m2(H) ≤ m1(H) + 1/2 ≤ m(H) + 1.

Proof. Notice that both (e − 1)/(v − 2) ≤ e/(v − 1) + 1/2 and e/(v − 1) ≤ e/v + 1/2 are
equivalent to e ≤ (v

2

)
, so both inequalities hold whenever v, e are the numbers of vertices and

edges, respectively, of any graph. In particular, if v, e correspond to the subgraph of H that
achieves m2(H), we find that m2(H) = (e − 1)/(v − 2) ≤ e/(v − 1) + 1/2 ≤ m1(H) + 1/2.
The second inequality follows in the same way, now passing to the subgraph that achieves
m1(H).

Our next lemma gives a lower bound on the average degree of an (s, t)-graph. We remark
that this inequality is tight for Ks,t and that it can be restated as eH/vH ≥ m(Ks,t).

LEMMA 5·5. If H is an (s,t)-graph, then

1

s
+ 1

t
≥ vH

eH
.

Proof. The assumption that H is an (s, t)-graph implies that, for every uv ∈ E(H), we have
1/deg (u) + 1/deg (v) ≤ 1/s + 1/t. This means that

eH ·
(

1

s
+ 1

t

)
≥

∑
uv∈E(H)

(
1

deg (u)
+ 1

deg (v)

)
= vH .

The next lemma supplies a decomposition of a graph of bounded degeneracy.

LEMMA 5·6. If a graph G is (dk − 1)-degenerate, for some positive integers d,k, then there
is a partition V(G) = V1 ∪ · · · ∪ Vk such that the graphs G[V1], . . . , G[Vk] are all (d − 1)-
degenerate.

Proof. We may construct the desired partition in the following way. Initialise V1 = · · · =
Vk =∅ and let v1, . . . , vn be an ordering of the vertices of G such that every vi has at most
dk − 1 neighbors preceding it. We distribute the vertices one-by-one, each time putting vi

in a set Vj where, at the time, vi has the smallest number of neighbors. By the pigeonhole
principle, this number is at most 
(dk − 1)/k� = d − 1.

Finally, we quote Nash-Williams’s theorem on partitions of graphs into forests.

THEOREM 5·7 (Nash-Williams [21]). A graph G can be partitioned into t forests if and only
if �m1(G) ≤ t.

5·2. Proof of Proposition 5·2
We are now ready to prove Proposition 5·2. Denote α := m2(H,L) and let G be an arbi-

trary graph satisfying m(G) ≤ α. We will argue that (the edge set of) G can be partitioned
into anH-free graph and anL-free graph. We split into cases, depending on which condition
is satisfied by the pair (H,L).

Cases (a) and (b). Let k := 
α� + 1, so that m(G) ≤ α < k, and note that Lemma 5·3 implies
that G is (2k − 1)-degenerate. Consequently, Lemma 5·6 yields two partitions of the edges
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of G: a partition into a 1-degenerate graph and a k-colourable graph; and a partition into a
(k − 1)-degenerate graph and a bipartite graph. The existence of the first partition proves (b),
as every 1-degenerate graph is L-free whereas the assumption on H implies that χ(H) > k
for every H ∈H. We now argue that the existence of the second partition proves (a). To
this end, note that the assumption there implies that every bipartite graph is L-free, so it
is enough to show that δ(H) ≥ k for every H ∈H and thus every (k − 1)-degenerate graph
is H-free. To see that this is the case, consider an arbitrary H ∈H and let v ∈ V(H) be its
vertex with smallest degree. As H is strictly m2(·,L)-balanced, Lemma 3·5 gives δ(H) =
eH − eH\v > α, unless vH = 3, in which case H = K3 and we still have δ(H) ≥ 2 = m2(H) ≥
m2(H) > α. Since δ(H) is an integer, we actually have δ(H) ≥ 
α� + 1 = k, as needed.

Case (c). It is enough to show that G can be partitioned into an H-free graph and a union
of two forests; indeed, if m1(L) > 2 for all L ∈L, then no union of two forests can con-
tain a member of L as a subgraph, by (the easy direction of) Theorem 5·7. Let m1(H) :=
min{m1(H) : H ∈H}. By Lemma 5·4 and the assumption m(G) ≤ m2(H,L) < m2(H), we
find that

m1(G) ≤ m(G) + 1

2
≤ m2(H) + 1

2
≤ m1(H) + 1.

As a result, if we let t := �m1(H), we find that �m1(G) ≤ t + 1 and therefore Theorem 5·7
supplies a partition G into t + 1 forests G1, . . . , Gt+1. Taking G′ := G1 ∪ . . . ∪ Gt−1, we
arrive at a partition G = G′ ∪ (Gt ∪ Gt+1). By (the easy direction of) Theorem 5·7, we know
that m1(G′) ≤ t − 1 < m1(H), so G′ isH-free. As Gt and Gt+1 are forests, we get the desired
decomposition.

Case (d). It is enough to show that G can be decomposed into a forest and an (s, t)-avoiding
graph. Assume that this is not the case and let G be a smallest counterexample with m(G) ≤
α. It is enough to show that G is an (s + 1, t + 1)-graph, as then Lemma 5·5 gives

1

s + 1
+ 1

t + 1
≥ vG

eG
≥ 1

m(G)
≥ 1

α
,

a contradiction.
Suppose first that G has a vertex v of degree at most s. By minimality of G, we can

decompose the edges of G \ v into an (s, t)-avoiding graph K and a forest F. Adding an
arbitrary edge incident with v to F and the remaining edges to K maintains F being a forest
and K being (s, t)-avoiding, as any (s, t)-subgraph of K would have to use v, which has
degree at most s − 1 in K. This contradicts our assumption on indecomposability of G.

Second, suppose that G contains an edge uv with deg (u), deg (v) ≤ t. By minimality of G,
we can decompose G′ := G \ uv into a forest F and an (s, t)-avoiding graph K. Adding uv
to F must close a cycle, meaning that both u and v are incident to at least one F-edge of G′
and thus the K-degrees of u and v in G′ are at most t − 2. This means, however, that we can
add uv to K while still keeping the degrees of both its endpoints strictly below t. Again, we
find that K contains no (s, t)-subgraph, a contradiction.

Case (e). Let k := �m2(H,L). Since we assume that m2(H) > k, it is enough to decom-
pose G into a forest and a graph K with m2(K) ≤ k. The following theorem, which implies
Conjecture 1·5 in the case that m(G) is an integer, supplies such a decomposition.
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THEOREM 5·8. Let k be an integer, and let G be a graph with m(G) ≤ k. Then there exists a
forest F ⊆ G such that m2(G \ F) ≤ k.

The proof of Theorem 5·8 is substantially more involved, as it relies on techniques from
matroid theory. We are hopeful that similar techniques may be used to prove Conjecture 1·5
in its entirety. We defer the proof of Theorem 5·8 to Appendix B.
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Appendix A. The three-colour setting

In this section, we explain what about the proof needs to change to handle the case r ≥ 3,
and prove Theorem 1·6. As many of these results are essentially identical to the results
discussed previously, we omit or shorten several of the proofs. We begin by defining a natural
three-colour analogue of cores.

Definition A·1. LetH1,H2,H3 be three finite families of graphs. A tuple (G,F1,F2,F3) is
an (H1,H2,H3)-core if G is a graph and Fi ⊆FHi[G] for all i ∈ [[3]] are families satisfying
the following properties:

(1) the hypergraph F1 ∪F2 ∪F3 is connected and spans E(G);

(ii) for every i ∈ [[3]], every Ĥi ∈Fi, every edge e ∈ Ĥi, and every j ∈ [[3]] \ {i}, there is
some Ĥj ∈Fj with Ĥi ∩ Ĥj = {e}.

We say that G supports a core if there exists a core (G,F1,F2,F3).
The following simple lemma is a straightforward generalisation of Lemma 3·2, so we

omit the proof.

LEMMA A·2. Let G be a graph that is minimally Ramsey for (H1,H2,H3), in the sense
that any proper subgraph G′ � G is not Ramsey for (H1,H2,H3). Then G supports a core.

It would be very convenient if every (H1,H2,H3)-core were also an (H1,H2)-core. At
first glance this seems true, since the intersection property in Definition A·1 core easily
implies the intersection property in Definition 3·1. Unfortunately, it may be the case that
the hypergraph F1 ∪F2 ∪F3 is connected, but that the hypergraph F1 ∪F2 is disconnected.
Nonetheless, this is the only obstruction, and the following result is true.
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LEMMA A·3. Let (G,F1,F2,F3) be (H1,H2,H3)-core for some families of graphs
H1,H2,H3. Then (G,F1,F2 ∪F3) is an (H1,H2 ∪H3)-core.

Proof. First note that the hypergraph F1 ∪ (F2 ∪F3) is simply the same as the hypergraph
F1 ∪F2 ∪F3, so it is connected and spans E(G) by assumption. For every Ĥ1 ∈F1 and
every edge e ∈ Ĥ1, we may apply Definition A·1 with j = 2 to see that there exists some
Ĥ2 ∈F2 ⊆F2 ∪F3 such that Ĥ1 ∩ Ĥ2 = {e}. Similarly, applying Definition A·1 with j = 1,
we see that for every Ĥ23 ∈F2 ∪F3 and every edge e ∈ Ĥ23, there is some Ĥ1 ∈F1 such that
Ĥ1 ∩ Ĥ23 = {e}. Thus, (G,F1,F2 ∪F3) is an (H1,H2 ∪H3)-core.

The key (trivial) observation is that if m2(H2) = m2(H3), then m2(H2 ∪H3) is also
equal to both these numbers, as m2(H2 ∪H3) = min{m2(H2), m2(H3)}. Now, suppose we
are given families H1,H2,H3 with m2(H1) > m2(H2) = m2(H3). By passing to families
of subgraphs, we may assume that H2,H3 are strictly 2-balanced and that H1 is strictly
m2(·,H2)-balanced. We now define H=H1 and L=H2 ∪H3. By Lemma 4·1, we know
that there exists some c > 0 such that if p ≤ cn−1/m2(H,L), then a.a.s. Gn,p contains no
subgraph G which supports an (H,L)-core and satisfies m(G) > m2(H,L).

On the other hand, if Gn,p is Ramsey for (H1,H2,H3), then it must contain some mini-
mally Ramsey subgraph G. By Lemmas A·2 and A·3, G supports an (H,L)-core. Moreover,
by the above, we must have m(G) ≤ m2(H,L) = m2(H1,H2), for otherwise G � Gn,p a.a.s.
Given this, the following deterministic lemma concludes the proof.

LEMMA A·4. Let H1,H2,H3 satisfy m(H1) ≥ m(H2) ≥ m(H3) > 1. If G is Ramsey for
(H1,H2,H3), then m(G) > m2(H1,H2).

Proof. We will actually prove that m(G) > m2(H1), which implies the desired result since
m2(H1) ≥ m2(H1,H2). Suppose for contradiction that m(G) ≤ m2(H1). By Theorem 5·7 (cf.
the proof of Proposition 5·2(c)), we know that G is the union of an H1-free graph and two
forests. As m2(H2) ≥ m2(H3) > 1, every graph inH2 ∪H3 contains a cycle, and hence each
of these forests isH2 ∪H3-free. Using one colour for theH1-free graph and one colour for
each of the two forests, we see that G is not Ramsey for (H1,H2,H3).

Appendix B. Proof of Conjecture 1·5 in the integer case

In this section, we present the proof of Theorem 5·8, which implies Conjecture 1·5 in the
case that m(G) is an integer. We will use some well-known results from matroid theory; all
definitions and proofs can be found in any standard reference on matroid theory, such as
Oxley’s book [23].

The main result we will need is the following matroid partitioning theorem, originally
due to Edmonds [5]. We remark that this theorem easily implies Nash–Williams’s theorem
(Theorem 5·7), which was used in the proof of Proposition 5·2(c).

THEOREM B·1. Let M1, M2 be matroids on the same ground set E, with rank functions
r1, r2, respectively. Then E can be partitioned as E = I1 ∪ I2, with Ii independent in Mi for
i = 1, 2, if and only if

r1(X) + r2(X) ≥ |X|
for every X ⊆ E.
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A slightly weaker statement appears as [23, Theorem 11·3·12], where the result is
only stated when M1 = M2. However, it is clear and well known that the same proof
proves Theorem B·1, using the formula for the rank of a matroid union, as given in [23,
Theorem 11·3·1].

In our application, we will set E = E(G) and let M1 be the graphic matroid of G, whose
independent sets are precisely the acyclic subgraphs of G. We may view any subset of E(G)
as a subgraph J of G; we then use eJ rather than |J| to denote the size of this subset of E(G).
Additionally, we use vJ to denote the number of vertices incident to any edge of J, and ωJ

to denote the number of connected components of J. It is well-known (e.g. [23, equation
1·3·8]) that the rank function of M1 is given by r1(J) = vJ − ωJ for all J ⊆ E(G).

The second matroid we use will be one whose independent sets are precisely those sub-
graphs K ⊆ G with m2(K) ≤ k. The fact that this is a matroid is the content of the next
lemma.

LEMMA B·2. Let G be a graph and let k be a positive integer. Then the family of subgraphs
K ⊆ G with m2(K) ≤ k is the collection of independent sets of a matroid.

Proof. Define a function f : 2E(G) →Z by f (J) = k(vJ − 2) + 1, for every J ⊆ E(G). Note
that this function is integer-valued since k ∈Z. Additionally, it is clear that f is increas-
ing, in the sense that f (J) ≤ f (J′) whenever J ⊆ J′. Finally, we claim that f is submodular.
This is easiest to see by recalling that the function g(J) = vJ is submodular (see e.g. [23,
Proposition 11·1·6]); as f is obtained from g by multiplying by a positive constant and adding
a constant, we find that f is submodular as well.

Now, by [23, Corollary 11·1·2], we find that there exists a matroid M(f ) on E(G) whose
independent sets are precisely those K ⊆ E(G) with the property that eJ ≤ f (J) for all non-
empty J ⊆ K. Note that, for a graph J with at least three vertices, the inequality eJ ≤ f (J)
is equivalent to d2(J) ≤ k, where d2(J) = (eJ − 1)/(vJ − 2). If J is non-empty and has only
two vertices, then it must have one edge and eJ ≤ f (J) always holds. Thus, we see that K is
independent in M(f ) if and only if max{(eJ − 1)/(vJ − 2) : J ⊆ K, vJ ≥ 3} ≤ k. This condition
is precisely the condition that m2(K) ≤ k.

In order to apply Theorem B·1 to the matroids M1, M2, we need a way of lower-bounding
the rank function of M2. This is achieved by the following lemma.

LEMMA B·3. Let k be a positive integer. If J is a graph with m(J) ≤ k, then there is a
subgraph J′ ⊆ J with m2(J′) ≤ k and eJ ≤ eJ′ + vJ − 1.

Proof. A well-known theorem of Hakimi [10], which is itself a simple consequence of
Theorem B·1, implies that since m(J) ≤ k, we can partition J into graphs J1, . . . , Jk, with
m(Ji) ≤ 1 for all i (i.e. every component of every Ji has at most one cycle). We may
assume without loss of generality that Jk is non-empty. Let e be an edge of Jk and define
J′ = J1 ∪ · · · ∪ Jk−1 ∪ {e}. We claim that m2(J′) ≤ k and eJ ≤ eJ′ + vJ − 1.

The second claim is fairly easy to see, as

eJ′ = 1 +
k−1∑
i=1

eJi = 1 + (eJ − eJk ) ≥ 1 + eJ − vJk ≥ eJ − vJ + 1,

where the second equality uses the fact that J1, . . . , Jk partition J, and the two inequalities
follow from eJk ≤ vJk ≤ vJ , since m(Jk) ≤ 1 and Jk ⊆ J.
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So it remains to prove that m2(J′) ≤ k, i.e. that d2(L) ≤ k for all L ⊆ J′. If vL ≤ 2k − 1, then

d2(L) ≤
(vL

2

) − 1

vL − 2
= 1

2
· v2

L − vL − 2

vL − 2
= 1

2
(vL + 1) ≤ k,

as claimed. So we may assume that vL ≥ 2k. As m(Ji) ≤ 1 for all i, we see that eL ≤ (k −
1)vL + 1. Therefore,

d2(L) = eL − 1

vL − 2
≤ (k − 1)vL

vL − 2
≤ kvL − 2k

vL − 2
= k.

With all of these preliminaries, we are ready to prove Theorem 5·8.

Proof of Theorem 5·8. Let G be a graph with m(G) ≤ k and let E = E(G). Let M1 be
the graphic matroid on the ground set E and let M2 be the matroid given by Lemma
B·2, whose independent sets are those K ⊆ G with m2(K) ≤ k. We wish to prove that E
can be partitioned into an independent set from M1 and an independent set from M2; by
Theorem B·1, it suffices to prove that r1(J) + r2(J) ≥ eJ for all J ⊆ G.

So fix some J ⊆ G, and let its connected components be J1, . . . , Jt. We then have that
r1(J) = vJ − ωJ = vJ − t. As m(G) ≤ k, we certainly have that m(Ji) ≤ k for all i, and hence
Lemma B·3 implies that there exist J′

i ⊆ Ji with m2(J′
i) ≤ k and eJi ≤ eJ′

i
+ vJi − 1. Let J′ =

J′
1 ∪ · · · ∪ J′

t . If J′ is a matching, then m2(J′) ≤ 1 ≤ k. If not, then its maximal 2-density is
attained on some connected component, hence m2(J′) = maxi m2(J′

i) ≤ k. Therefore, J′ is
independent in M2, which implies that

r2(J) ≥ r2(J′) = eJ′ =
t∑

i=1

eJ′
i
≥

t∑
i=1

(eJi − (vJi − 1)) = eJ − (vJ − t).

Recalling that r1(J) = vJ − t, we conclude that r1(J) + r2(J) ≥ eJ , as claimed.
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